aboutsummaryrefslogtreecommitdiffstats
path: root/scheduling/RTLpathSchedulerproof.v
blob: a9c2fa7630e3fc7740ceb338844cf77ae0451e0e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
Require Import AST Linking Values Maps Globalenvs Smallstep Registers.
Require Import Coqlib Maps Events Errors Op.
Require Import RTL RTLpath RTLpathLivegen RTLpathLivegenproof RTLpathSE_theory.
Require Import RTLpathScheduler.

Definition match_prog (p tp: program) :=
  match_program (fun _ f tf => transf_fundef f = OK tf) eq p tp.

Lemma transf_program_match:
  forall prog tprog, transf_program prog = OK tprog -> match_prog prog tprog.
Proof.
  intros. eapply match_transform_partial_program_contextual; eauto.
Qed.

Section PRESERVATION.

Variable prog: program.
Variable tprog: program.

Hypothesis TRANSL: match_prog prog tprog.

Let pge := Genv.globalenv prog.
Let tpge := Genv.globalenv tprog.

Hypothesis all_fundef_liveness_ok: forall b fd, Genv.find_funct_ptr pge b = Some fd -> liveness_ok_fundef fd.

Lemma symbols_preserved s: Genv.find_symbol tpge s = Genv.find_symbol pge s.
Proof.
  rewrite <- (Genv.find_symbol_match TRANSL). reflexivity.
Qed.

Lemma senv_preserved:
  Senv.equiv pge tpge.
Proof.
  eapply (Genv.senv_match TRANSL).
Qed.

Lemma functions_preserved:
  forall (v: val) (f: fundef),
  Genv.find_funct pge v = Some f ->
  exists tf cunit, transf_fundef f = OK tf /\ Genv.find_funct tpge v = Some tf /\ linkorder cunit prog.
Proof.
  intros. exploit (Genv.find_funct_match TRANSL); eauto.
  intros (cu & tf & A & B & C).
  repeat eexists; intuition eauto.
  + unfold incl; auto.
  + eapply linkorder_refl.
Qed.

Lemma function_ptr_preserved:
  forall v f,
  Genv.find_funct_ptr pge v = Some f ->
  exists tf,
  Genv.find_funct_ptr tpge v = Some tf /\ transf_fundef f = OK tf.
Proof.
  intros.
  exploit (Genv.find_funct_ptr_transf_partial TRANSL); eauto.
Qed.

Lemma function_sig_preserved:
  forall f tf, transf_fundef f = OK tf -> funsig tf = funsig f.
Proof.
  intros. destruct f.
  - simpl in H. monadInv H.
    destruct (transf_function f) as [res H]; simpl in * |- *; auto.
    destruct (H _ EQ).
    intuition subst; auto.
    symmetry.
    eapply match_function_preserves.
    eassumption.
  - simpl in H. monadInv H. reflexivity.
Qed.

Theorem transf_initial_states:
  forall s1, initial_state prog s1 ->
  exists s2, initial_state tprog s2 /\ match_states s1 s2.
Proof.
  intros. inv H.
  exploit function_ptr_preserved; eauto. intros (tf & FIND &  TRANSF).
  exists (Callstate nil tf nil m0).
  split.
  - econstructor; eauto.
    + intros; apply (Genv.init_mem_match TRANSL); assumption.
    + replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved. eauto.
      symmetry. eapply match_program_main. eauto.
    + destruct f.
      * monadInv TRANSF. rewrite <- H3.
        destruct (transf_function f) as [res H]; simpl in * |- *; auto.
        destruct (H _ EQ).
        intuition subst; auto.
        symmetry; eapply match_function_preserves. eassumption.
      * monadInv TRANSF. assumption.
  - constructor; eauto.
    + constructor.
    + apply transf_fundef_correct; auto.
(*     + eapply all_fundef_liveness_ok; eauto. *)
Qed.

Theorem transf_final_states s1 s2 r:
  final_state s1 r -> match_states s1 s2 -> final_state s2 r.
Proof.
  unfold final_state.
  intros H; inv H.
  intros H; inv H; simpl in * |- *; try congruence.
  inv H1.
  destruct st; simpl in * |- *; try congruence.
  inv STACKS. constructor.
Qed.


Let ge := Genv.globalenv (RTLpath.transf_program prog).
Let tge := Genv.globalenv (RTLpath.transf_program tprog).

Lemma senv_sym x y: Senv.equiv x y -> Senv.equiv y x.
Proof.
  unfold Senv.equiv. intuition congruence.
Qed.

Lemma senv_transitivity x y z: Senv.equiv x y -> Senv.equiv y z -> Senv.equiv x z.
Proof.
  unfold Senv.equiv. intuition congruence.
Qed.

Lemma senv_preserved_RTL:
  Senv.equiv ge tge.
Proof.
  eapply senv_transitivity. { eapply senv_sym; eapply RTLpath.senv_preserved. }
  eapply senv_transitivity. { eapply senv_preserved. }
  eapply RTLpath.senv_preserved.
Qed.

Lemma symbols_preserved_RTL s: Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
  unfold tge, ge. erewrite RTLpath.symbols_preserved; eauto.
  rewrite symbols_preserved.
  erewrite RTLpath.symbols_preserved; eauto.
Qed.

Program Definition mkctx sp rs0 m0 {f1: RTLpath.function} (hyp: liveness_ok_function f1)
   :  simu_proof_context f1
   := {| the_ge1:= ge; the_ge2 := tge; the_sp:=sp; the_rs0:=rs0; the_m0:=m0 |}.
Obligation 2.
  erewrite symbols_preserved_RTL. eauto.
Qed.

Lemma s_find_function_fundef f sp svos rs0 m0 fd
  (LIVE: liveness_ok_function f):
  sfind_function pge ge sp svos rs0 m0 = Some fd ->
  liveness_ok_fundef fd.
Proof.
  unfold sfind_function. destruct svos; simpl.
  + destruct (seval_sval _ _ _ _); try congruence.
    eapply find_funct_liveness_ok; eauto.
  + destruct (Genv.find_symbol _ _); try congruence.
    intros. eapply all_fundef_liveness_ok; eauto.
Qed.
Local Hint Resolve s_find_function_fundef: core.

Lemma s_find_function_preserved f sp svos1 svos2 rs0 m0 fd
  (LIVE: liveness_ok_function f):
  (svident_simu f (mkctx sp rs0 m0 LIVE) svos1 svos2) ->
  sfind_function pge ge sp svos1 rs0 m0 = Some fd ->
  exists fd', sfind_function tpge tge sp svos2 rs0 m0 = Some fd'
              /\ transf_fundef fd = OK fd'.
Proof.
  Local Hint Resolve symbols_preserved_RTL: core.
  unfold sfind_function. intros [sv1 sv2 SIMU|]; simpl in *.
  + rewrite !(seval_preserved ge tge) in *; eauto.
    destruct (seval_sval _ _ _ _); try congruence.
    erewrite <- SIMU; try congruence. clear SIMU.
    intros; exploit functions_preserved; eauto.
    intros (fd' & cunit & (X1 & X2 & X3)). eexists.
    repeat split; eauto.
  + subst. rewrite symbols_preserved. destruct (Genv.find_symbol _ _); try congruence.
    intros; exploit function_ptr_preserved; eauto.
Qed.

Lemma sistate_simu f dupmap outframe sp st st' rs m is 
  (LIVE: liveness_ok_function f):
  ssem_internal ge sp st rs m is ->
  sistate_simu dupmap f outframe st st' (mkctx sp rs m LIVE)->
  exists is',
    ssem_internal tge sp st' rs m is' /\ istate_simu f dupmap outframe is is'.
Proof.
  intros SEM X; eapply X; eauto.
Qed.

Lemma seval_builtin_sval_preserved sp rs m:
  forall bs, seval_builtin_sval ge sp bs rs m = seval_builtin_sval tge sp bs rs m.
Proof.
  induction bs.
  all: try (simpl; try reflexivity; erewrite seval_preserved by eapply symbols_preserved_RTL; reflexivity).
  all: simpl; rewrite IHbs1; rewrite IHbs2; reflexivity.
Qed.

Lemma seval_list_builtin_sval_preserved sp rs m:
  forall lbs,
  seval_list_builtin_sval ge sp lbs rs m = seval_list_builtin_sval tge sp lbs rs m.
Proof.
  induction lbs; [simpl; reflexivity|].
  simpl. rewrite seval_builtin_sval_preserved. rewrite IHlbs.
  reflexivity.
Qed.

Lemma ssem_final_simu dm f f' stk stk' sp st st' rs0 m0 sv sv' rs m t s
  (LIVE: liveness_ok_function f):
  match_function dm f f' ->
  list_forall2 match_stackframes stk stk' ->
  sfval_simu dm f st.(si_pc) st'.(si_pc) (mkctx sp rs0 m0 LIVE) sv sv' ->
  ssem_final pge ge sp st.(si_pc) stk f rs0 m0 sv rs m t s ->
  exists s', ssem_final tpge tge sp st'.(si_pc) stk' f' rs0 m0 sv' rs m t s' /\ match_states s s'.
Proof.
  Local Hint Resolve transf_fundef_correct: core.
  intros FUN STK SFV. destruct SFV; intros SEM; inv SEM; simpl in *.
  - (* Snone *)
    exploit initialize_path. { eapply dupmap_path_entry1; eauto. }
    intros (path & PATH).
    eexists; split; econstructor; eauto.
    eapply eqlive_reg_refl.
  - (* Scall *)
    exploit s_find_function_preserved; eauto.
    intros (fd' & FIND & TRANSF).
    erewrite <- function_sig_preserved; eauto.
    exploit initialize_path. { eapply dupmap_path_entry1; eauto. }
    intros (path & PATH).
    eexists; split; econstructor; eauto.
    + eapply eq_trans; try eassumption; auto.
    + simpl. repeat (econstructor; eauto).
  - (* Stailcall *)
    exploit s_find_function_preserved; eauto.
    intros (fd' & FIND & TRANSF).
    erewrite <- function_sig_preserved; eauto.
    eexists; split; econstructor; eauto.
    + erewrite <- preserv_fnstacksize; eauto.
    + eapply eq_trans; try eassumption; auto.
  - (* Sbuiltin *)
    pose senv_preserved_RTL as SRTL.
    exploit initialize_path. { eapply dupmap_path_entry1; eauto. }
    intros (path & PATH).
    eexists; split; econstructor; eauto.
    + eapply seval_builtin_args_preserved; eauto.
      eapply seval_list_builtin_sval_correct; eauto.
      rewrite H0.
      erewrite seval_list_builtin_sval_preserved; eauto.
    + eapply external_call_symbols_preserved; eauto.
    + eapply eqlive_reg_refl.
  - (* Sjumptable *)
    exploit ptree_get_list_nth_rev; eauto. intros (p2 & LNZ & DM).
    exploit initialize_path. { eapply dupmap_path_entry1; eauto. }
    intros (path & PATH).
    eexists; split; econstructor; eauto.
    + eapply eq_trans; try eassumption; auto.
    + eapply eqlive_reg_refl.
  - (* Sreturn *)
    eexists; split; econstructor; eauto.
    erewrite <- preserv_fnstacksize; eauto.
  - (* Sreturn bis *)
    eexists; split; econstructor; eauto.
    + erewrite <- preserv_fnstacksize; eauto.
    + rewrite <- H. erewrite <- seval_preserved; eauto.
Qed.

Lemma siexec_snone_por_correct rs' is t s alive path0 i sp s0 st0 stk stk' f rs0 m0: forall
  (SSEM2 : ssem_final pge ge sp (si_pc s0) stk f rs0 m0 Snone
          (irs is) (imem is) t s)
  (SIEXEC : siexec_inst i st0 = Some s0)
  (ICHK : inst_checker (fn_path f) alive (pre_output_regs path0) i = Some tt),
  (liveness_ok_function f) ->
  list_forall2 match_stackframes stk stk' ->
  eqlive_reg (fun r : Regset.elt => Regset.In r (pre_output_regs path0)) (irs is) rs' ->
  exists s' : state,
    ssem_final pge ge sp (si_pc s0) stk f rs0 m0 Snone rs' (imem is) t s' /\
    eqlive_states s s'.
Proof.
  Local Hint Resolve eqlive_stacks_refl: core.
  intros ? ? ? LIVE STK EQLIVE.
  inversion SSEM2; subst; clear SSEM2.
  eexists; split.
  * econstructor.
  * generalize ICHK.
    unfold inst_checker. destruct i; simpl in *;
    unfold exit_checker; try discriminate.
    all:
      try destruct (list_mem _ _); simpl;
      try (destruct (Regset.subset _ _) eqn:SUB_ALIVE; try congruence; fail).
    4,5:
      destruct (Regset.mem _ _); destruct (Regset.subset _ _) eqn:SUB_ALIVE; try congruence.
    1,2,3,4: assert (NPC: n=(si_pc s0)).
    all: try (inv SIEXEC; simpl; auto; fail).
    1,2,3,4:
      try (destruct (Regset.subset _ _) eqn:SUB_ALIVE; try congruence);
      simpl; inversion_SOME p;
      destruct (Regset.subset (input_regs p) (pre_output_regs path0)) eqn:SUB_PATH; try congruence;
      intros NPATH _; econstructor; eauto;
      try (instantiate (1:=p); rewrite <- NPC; auto; fail).
    1,2,3,4:
      eapply eqlive_reg_monotonic; eauto; simpl;
      intros; apply Regset.subset_2 in SUB_PATH;
      unfold Regset.Subset in SUB_PATH;
      apply SUB_PATH in H; auto.
    assert (NPC: n0=(si_pc s0)). { inv SIEXEC; simpl; auto. }
    inversion_SOME p.
    2: { destruct (Regset.subset _ _) eqn:?; try congruence. }
    destruct (Regset.subset _ _) eqn:SUB_ALIVE; try congruence.
    2: { destruct (Regset.subset (pre_output_regs path0) alive) eqn:?; try congruence. }
    simpl.
    destruct (Regset.subset (pre_output_regs path0) alive) eqn:SUB_ALIVE'; try congruence.
    inversion_SOME p'.
    destruct (Regset.subset (input_regs p') (pre_output_regs path0)) eqn:SUB_PATH; try congruence.
    intros NPATH NPATH' _. econstructor; eauto.
    instantiate (1:=p'). rewrite <- NPC; auto.
    eapply eqlive_reg_monotonic; eauto; simpl.
    intros. apply Regset.subset_2 in SUB_PATH.
    unfold Regset.Subset in SUB_PATH.
    apply SUB_PATH in H; auto.
Qed.

Lemma pre_output_regs_correct f pc0 path0 stk stk' sp (st:sstate) rs0 m0 t s is rs':
  (liveness_ok_function f) ->
  (fn_path f) ! pc0 = Some path0 ->
  sexec f pc0 = Some st -> 
  list_forall2 match_stackframes stk stk' ->
  ssem_final pge ge sp (si_pc st) stk f rs0 m0 (final st) (irs is) (imem is) t s ->
  eqlive_reg (fun r : Regset.elt => Regset.In r (pre_output_regs path0)) (irs is) rs' ->
  exists s', ssem_final pge ge sp (si_pc st) stk f rs0 m0 (final st) rs' (imem is) t s' /\ eqlive_states s s'.
Proof.
  Local Hint Resolve eqlive_stacks_refl: core.
  intros LIVE PATH0 SEXEC STK SSEM2 EQLIVE.
  (* start decomposing path_checker *)
  generalize (LIVE pc0 path0 PATH0).
  unfold path_checker.
  inversion_SOME res; intros IPCHK.
  inversion_SOME i; intros INST ICHK.
  exploit ipath_checker_default_succ; eauto. intros DEFSUCC.
  (* start decomposing SEXEC *)
  generalize SEXEC; clear SEXEC.
  unfold sexec; rewrite PATH0.
  inversion_SOME st0; intros SEXEC_PATH.
  exploit siexec_path_default_succ; eauto.
  simpl. rewrite DEFSUCC.
  clear DEFSUCC. destruct res as [alive pc1]. simpl in *.
  try_simplify_someHyps.
  destruct (siexec_inst i st0) eqn: SIEXEC; try_simplify_someHyps; intros.
  (* Snone *)
  eapply siexec_snone_por_correct; eauto.
  destruct i; try_simplify_someHyps; try congruence;
  inversion SSEM2; subst; clear SSEM2; simpl in *.
 + (* Scall *)
    eexists; split.
    * econstructor; eauto.
    * econstructor; eauto.
      econstructor; eauto.
      (* wf *)
      generalize ICHK.
      unfold inst_checker; simpl in *.
      destruct (Regset.subset _ _) eqn:SUB_ALIVE; try congruence.
      destruct (list_mem _ _); try congruence.
      destruct (reg_sum_mem _ _); try congruence.
      intros EXIT.
      exploit exit_checker_eqlive_ext1; eauto.
      intros. destruct H as [p [PATH EQLIVE']].
      econstructor; eauto.
 + (* Stailcall *)
    eexists; split.
    * econstructor; eauto.
    * econstructor; eauto.
 + (* Sbuiltin *)
    eexists; split.
    * econstructor; eauto.
    * (* wf *)
      generalize ICHK.
      unfold inst_checker; simpl in *.
      destruct (Regset.subset _ _) eqn:SUB_ALIVE; try congruence.
      destruct (list_mem _ _); try congruence.
      intros EXIT.
      exploit exit_checker_eqlive_builtin_res; eauto.
      intros. destruct H as [p [PATH EQLIVE']].
      econstructor; eauto.
 + (* Sjumptable *)
    eexists; split.
    * econstructor; eauto.
    * (* wf *)
      generalize ICHK.
      unfold inst_checker; simpl in *.
      destruct (Regset.subset _ _) eqn:SUB_ALIVE; try congruence.
      destruct (Regset.mem _ _); try congruence.
      destruct (exit_list_checker _ _ _) eqn:EQL; try congruence.
      exploit exit_list_checker_eqlive; eauto.
      intros. destruct H as [p [PATH EQLIVE']].
      econstructor; eauto.
 + (* Sreturn *)
    eexists; split.
    * econstructor; eauto.
    * econstructor; eauto.
Qed.

(* The main theorem on simulation of symbolic states ! *)
Theorem ssem_sstate_simu dm f f' pc0 path0 stk stk' sp st st' rs m t s:
  (fn_path f) ! pc0 = Some path0 ->
  sexec f pc0 = Some st -> 
  match_function dm f f' ->
  liveness_ok_function f ->
  list_forall2 match_stackframes stk stk' ->
  ssem pge ge sp st stk f rs m t s ->
  (forall ctx: simu_proof_context f, sstate_simu dm f (pre_output_regs path0) st st' ctx) ->
  exists s', ssem tpge tge sp st' stk' f' rs m t s' /\ match_states s s'.
Proof.
  intros PATH0 SEXEC MFUNC LIVE STACKS SEM SIMU.
  destruct (SIMU (mkctx sp rs m LIVE)) as (SIMU1 & SIMU2); clear SIMU.
  destruct SEM as [is CONT SEM|is t s' CONT SEM1 SEM2]; simpl in *.
  - (* sem_early *)
    exploit sistate_simu; eauto.
    unfold istate_simu; rewrite CONT.
    intros (is' & SEM' & (path & PATH & (CONT' & RS' & M') & PC')).
    exists (State stk' f' sp (ipc is') (irs is') (imem is')).
    split.
    + eapply ssem_early; auto. congruence.
    + rewrite M'. econstructor; eauto.
  - (* sem_normal *)
    exploit sistate_simu; eauto.
    unfold istate_simu; rewrite CONT.
    intros (is' & SEM' & (CONT' & RS' & M')).
    exploit pre_output_regs_correct; eauto.
    clear SEM2; intros (s0 & SEM2 & EQLIVE).
    exploit ssem_final_simu; eauto.
    clear SEM2; intros (s1 & SEM2 & MATCH0).
    exploit ssem_final_equiv; eauto.
    clear SEM2; rewrite M'; rewrite CONT' in CONT; intros (s2 & EQ & SEM2).
    exists s2; split.
    + eapply ssem_normal; eauto.
    + eapply eqlive_match_states; eauto.
      eapply match_states_equiv; eauto.
Qed.

Lemma exec_path_simulation dupmap path stk stk' f f' sp rs m pc pc' t s:
  (fn_path f)!pc = Some path ->
  path_step ge pge path.(psize) stk f sp rs m pc t s ->
  list_forall2 match_stackframes stk stk' ->
  dupmap ! pc' = Some pc ->
  match_function dupmap f f' ->
  liveness_ok_function f ->
  exists path' s', (fn_path f')!pc' = Some path' /\ path_step tge tpge path'.(psize) stk' f' sp rs m pc' t s' /\ match_states s s'.
Proof.
  intros PATH STEP STACKS DUPPC MATCHF LIVE.
  exploit initialize_path. { eapply dupmap_path_entry2; eauto. }
  intros (path' & PATH').
  exists path'.
  exploit (sexec_correct f pc pge ge sp path stk rs m t s); eauto.
  intros (st & SYMB & SEM).
  exploit dupmap_correct; eauto.
  intros (path0 & st' & PATH0 & SYMB' & SIMU).
  rewrite PATH0 in PATH; inversion PATH; subst.
  exploit ssem_sstate_simu; eauto.
  intros (s0 & SEM0 & MATCH). 
  exploit (sexec_exact f'); eauto.
  intros (s' & STEP' & EQ).
  exists s'; intuition.
  eapply match_states_equiv; eauto.
Qed.

Lemma step_simulation s1 t s1' s2:
  step ge pge s1 t s1' ->
  match_states s1 s2 ->
  exists s2',
     step tge tpge s2 t s2'
  /\ match_states s1' s2'.
Proof.
  Local Hint Resolve eqlive_stacks_refl transf_fundef_correct: core.
  destruct 1 as [path stack f sp rs m pc t s PATH STEP | | | ]; intros MS; inv MS.
(* exec_path *)
  - try_simplify_someHyps. intros.
    exploit path_step_eqlive; eauto. (* { intros. eapply all_fundef_liveness_ok; eauto. } *)
    clear STEP EQUIV rs; intros (s2 & STEP & EQLIVE).
    exploit exec_path_simulation; eauto.
    clear STEP; intros (path' & s' & PATH' & STEP' & MATCH').
    exists s'; split.
    + eapply exec_path; eauto.
    + eapply eqlive_match_states; eauto.
(* exec_function_internal *)
  - inv LIVE.
    exploit initialize_path. { eapply (fn_entry_point_wf f). }
    destruct 1 as (path & PATH).
    inversion TRANSF as [f0 xf tf MATCHF|]; subst. eexists. split.
    + eapply exec_function_internal. erewrite <- preserv_fnstacksize; eauto.
    + erewrite preserv_fnparams; eauto.
      econstructor; eauto. 
      { apply preserv_entrypoint; auto. }
      { apply eqlive_reg_refl. }
(* exec_function_external *)
  - inversion TRANSF as [|]; subst. eexists. split.
    + econstructor. eapply external_call_symbols_preserved; eauto. apply senv_preserved_RTL.
    + constructor. assumption.
(* exec_return *)
  - inv STACKS. destruct b1 as [res' f' sp' pc' rs']. eexists. split.
    + constructor.
    + inv H1. econstructor; eauto.
Qed.

Theorem transf_program_correct:
  forward_simulation (semantics prog) (semantics tprog).
Proof.
  eapply forward_simulation_step with match_states.
  - eapply senv_preserved.
  - eapply transf_initial_states.
  - intros; eapply transf_final_states; eauto.
  - intros; eapply step_simulation; eauto.
Qed.

End PRESERVATION.