aboutsummaryrefslogtreecommitdiffstats
path: root/scheduling/RTLtoBTLproof.v
blob: 633e1b8e9bd97ce771a4d62541029bb053d6ed92 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
Require Import Coqlib Maps Lia.
Require Import AST Integers Values Events Memory Globalenvs Smallstep.
Require Import RTL Op Registers OptionMonad BTL.

Require Import Errors Linking RTLtoBTL.

Require Import Linking.

Record match_function dupmap (f:RTL.function) (tf: BTL.function): Prop := {
  dupmap_correct: match_cfg dupmap (fn_code tf) (RTL.fn_code f);
  dupmap_entrypoint: dupmap!(fn_entrypoint tf) = Some (RTL.fn_entrypoint f);
  preserv_fnsig: fn_sig tf = RTL.fn_sig f;
  preserv_fnparams: fn_params tf = RTL.fn_params f;
  preserv_fnstacksize: fn_stacksize tf = RTL.fn_stacksize f
}.

Inductive match_fundef: RTL.fundef -> fundef -> Prop :=
  | match_Internal dupmap f tf: match_function dupmap f tf -> match_fundef (Internal f) (Internal tf)
  | match_External ef: match_fundef (External ef) (External ef).

Inductive match_stackframes: RTL.stackframe -> stackframe -> Prop :=
  | match_stackframe_intro 
      dupmap res f sp pc rs f' pc'
      (TRANSF: match_function dupmap f f')
      (DUPLIC: dupmap!pc' = Some pc)
      : match_stackframes (RTL.Stackframe res f sp pc rs) (Stackframe res f' sp pc' rs).

Lemma verify_function_correct dupmap f f' tt:
  verify_function dupmap f' f = OK tt ->
  fn_sig f' = RTL.fn_sig f ->
  fn_params f' = RTL.fn_params f ->
  fn_stacksize f' = RTL.fn_stacksize f ->
  match_function dupmap f f'.
Proof.
  unfold verify_function; intro VERIF. monadInv VERIF.
  constructor; eauto.
  - eapply verify_cfg_correct; eauto.
  - eapply verify_is_copy_correct; eauto.
Qed.

Lemma transf_function_correct f f':
  transf_function f = OK f' -> exists dupmap, match_function dupmap f f'.
Proof.
  unfold transf_function; unfold bind. repeat autodestruct.
  intros H _ _ X. inversion X; subst; clear X.
  eexists; eapply verify_function_correct; simpl; eauto.
Qed.

Lemma transf_fundef_correct f f':
  transf_fundef f = OK f' -> match_fundef f f'.
Proof.
  intros TRANSF; destruct f; simpl; monadInv TRANSF.
  + exploit transf_function_correct; eauto.
    intros (dupmap & MATCH_F).
    eapply match_Internal; eauto.
  + eapply match_External.
Qed.

Definition match_prog (p: RTL.program) (tp: program) :=
  match_program (fun _ f tf => transf_fundef f = OK tf) eq p tp.

Lemma transf_program_match:
  forall prog tprog, transf_program prog = OK tprog -> match_prog prog tprog.
Proof.
  intros. eapply match_transform_partial_program_contextual; eauto.
Qed.

Section BTL_SIMULATES_RTL.

Variable prog: RTL.program.
Variable tprog: program.

Hypothesis TRANSL: match_prog prog tprog.

Let ge := Genv.globalenv prog.
Let tge := Genv.globalenv tprog.

Local Open Scope nat_scope.

(** * Match relation from a RTL state to a BTL state

The "option iblock" parameter represents the current BTL execution state.
Thus, each RTL single step is symbolized by a new BTL "option iblock"
starting at the equivalent PC.

The simulation diagram for match_states_intro is as follows:

<<

        RTL state       match_states_intro        BTL state
      [pcR0,rs0,m0] --------------------------- [pcB0,rs0,m0]
           |                                         |
           |                                         |
   RTL_RUN | *E0                                     | BTL_RUN
           |                                         |
           |                   MIB                   |
      [pcR1,rs1,m1] ------------------------------- [ib]

>>
*)

Inductive match_strong_state dupmap st st' f f' sp rs1 m1 rs0 m0 pcB0 pcR0 pcR1 ib ib0 isfst: Prop :=
  | match_strong_state_intro
      (STACKS: list_forall2 match_stackframes st st')
      (TRANSF: match_function dupmap f f')
      (ATpc0: (fn_code f')!pcB0 = Some ib0)
      (DUPLIC: dupmap!pcB0 = Some pcR0)
      (MIB: match_iblock dupmap (RTL.fn_code f) isfst pcR1 ib None)
      (IS_EXPD: is_expand ib)
      (RTL_RUN: star RTL.step ge (RTL.State st f sp pcR0 rs0 m0) E0 (RTL.State st f sp pcR1 rs1 m1))
      (BTL_RUN: iblock_istep_run tge sp ib0.(entry) rs0 m0 = iblock_istep_run tge sp ib rs1 m1)
      : match_strong_state dupmap st st' f f' sp rs1 m1 rs0 m0 pcB0 pcR0 pcR1 ib ib0 isfst
  .

Inductive match_states: (option iblock) -> RTL.state -> state -> Prop :=
  | match_states_intro
      dupmap st st' f f' sp rs1 m1 rs0 m0 pcB0 pcR0 pcR1 ib ib0 isfst
      (MSTRONG: match_strong_state dupmap st st' f f' sp rs1 m1 rs0 m0 pcB0 pcR0 pcR1 ib ib0 isfst)
      (NGOTO: is_goto ib = false)
      : match_states (Some ib) (RTL.State st f sp pcR1 rs1 m1) (State st' f' sp pcB0 rs0 m0)
  | match_states_call
      st st' f f' args m
      (STACKS: list_forall2 match_stackframes st st')
      (TRANSF: match_fundef f f')
      : match_states None (RTL.Callstate st f args m) (Callstate st' f' args m)
  | match_states_return
      st st' v m
      (STACKS: list_forall2 match_stackframes st st')
      : match_states None (RTL.Returnstate st v m) (Returnstate st' v m)
  .

Lemma symbols_preserved s: Genv.find_symbol tge s = Genv.find_symbol ge s.
Proof.
  rewrite <- (Genv.find_symbol_match TRANSL). reflexivity.
Qed.

Lemma senv_preserved: Senv.equiv ge tge.
Proof.
  eapply (Genv.senv_match TRANSL).
Qed.

Lemma functions_translated (v: val) (f: RTL.fundef):
  Genv.find_funct ge v = Some f ->
  exists tf cunit, transf_fundef f = OK tf /\ Genv.find_funct tge v = Some tf /\ linkorder cunit prog.
Proof.
  intros. exploit (Genv.find_funct_match TRANSL); eauto.
  intros (cu & tf & A & B & C).
  repeat eexists; intuition eauto.
  + unfold incl; auto.
  + eapply linkorder_refl.
Qed.

Lemma function_ptr_translated v f:
  Genv.find_funct_ptr ge v = Some f ->
  exists tf,
  Genv.find_funct_ptr tge v = Some tf /\ transf_fundef f = OK tf.
Proof.
  intros.
  exploit (Genv.find_funct_ptr_transf_partial TRANSL); eauto.
Qed.

Lemma function_sig_translated f tf: transf_fundef f = OK tf -> funsig tf = RTL.funsig f.
Proof.
  intros H; apply transf_fundef_correct in H; destruct H; simpl; eauto.
  erewrite preserv_fnsig; eauto.
Qed.

Lemma transf_initial_states s1:
  RTL.initial_state prog s1 ->
  exists ib s2, initial_state tprog s2 /\ match_states ib s1 s2.
Proof.
  intros. inv H.
  exploit function_ptr_translated; eauto. intros (tf & FIND & TRANSF).
  eexists. eexists. split.
  - econstructor; eauto.
    + eapply (Genv.init_mem_transf_partial TRANSL); eauto.
    + replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved. eauto.
      symmetry. eapply match_program_main. eauto.
    + erewrite function_sig_translated; eauto.
  - constructor; eauto.
    constructor.
    apply transf_fundef_correct; auto.
Qed.

Lemma transf_final_states ib s1 s2 r:
  match_states ib s1 s2 -> RTL.final_state s1 r -> final_state s2 r.
Proof.
  intros. inv H0. inv H. inv STACKS. constructor.
Qed.

Lemma find_function_preserved ri rs0 fd
  (FIND : RTL.find_function ge ri rs0 = Some fd)
  : exists fd', find_function tge ri rs0 = Some fd'
                /\ transf_fundef fd = OK fd'.
Proof.
  pose symbols_preserved as SYMPRES.
  destruct ri.
  + simpl in FIND; apply functions_translated in FIND.
    destruct FIND as (tf & cunit & TFUN & GFIND & LO).
    eexists; split. eauto. assumption.
  + simpl in FIND. destruct (Genv.find_symbol _ _) eqn:GFS; try discriminate.
    apply function_ptr_translated in FIND. destruct FIND as (tf & GFF & TF).
    eexists; split. simpl. rewrite symbols_preserved.
    rewrite GFS. eassumption. assumption.
Qed.

(** Representing an intermediate BTL state

We keep a measure of code that remains to be executed with the omeasure
type defined below. Intuitively, each RTL step corresponds to either
   - a single BTL step if we are on the last instruction of the block
   - no BTL step (as we use a "big step" semantics) but a change in
     the measure which represents the new intermediate state of the BTL code
 *)
Fixpoint measure ib: nat :=
  match ib with
  | Bseq ib1 ib2
  | Bcond _ _ ib1 ib2 _ => measure ib1 + measure ib2
  | ib => 1
  end.

Definition omeasure (oib: option iblock): nat :=
 match oib with
 | None => 0
 | Some ib => measure ib
 end.

Remark measure_pos: forall ib,
  measure ib > 0.
Proof.
  induction ib; simpl; auto; lia.
Qed.

Lemma entry_isnt_goto dupmap f pc ib:
  match_iblock dupmap (RTL.fn_code f) true pc (entry ib) None ->
  is_goto (entry ib) = false.
Proof.
  intros.
  destruct (entry ib); trivial.
  destruct fi; trivial. inv H. inv H4.
Qed.

Lemma expand_entry_isnt_goto dupmap f pc ib:
  match_iblock dupmap (RTL.fn_code f) true pc (expand (entry ib) None) None ->
  is_goto (expand (entry ib) None) = false.
Proof.
  destruct (is_goto (expand (entry ib) None))eqn:EQG.
  - destruct (expand (entry ib) None);
    try destruct fi; try discriminate; trivial.
    intros; inv H; inv H4.
  - destruct (expand (entry ib) None);
    try destruct fi; try discriminate; trivial.
Qed.

Lemma list_nth_z_rev_dupmap:
  forall dupmap ln ln' (pc pc': node) val,
  list_nth_z ln val = Some pc ->
  list_forall2 (fun n' n => dupmap!n' = Some n) ln' ln ->
  exists (pc': node),
     list_nth_z ln' val = Some pc'
  /\ dupmap!pc' = Some pc.
Proof.
  induction ln; intros until val; intros LNZ LFA.
  - inv LNZ.
  - inv LNZ. destruct (zeq val 0) eqn:ZEQ.
    + inv H0. destruct ln'; inv LFA.
      simpl. exists p. split; auto.
    + inv LFA. simpl. rewrite ZEQ. exploit IHln. 2: eapply H0. all: eauto.
      intros (pc'1 & LNZ & REV). exists pc'1. split; auto. congruence.
Qed.

Lemma expand_iblock_istep_rec_correct sp ib rs0 m0 rs1 m1 ofin1:
  forall (ISTEP: iblock_istep tge sp rs0 m0 ib rs1 m1 ofin1)
  k ofin2 rs2 m2
  (CONT: match ofin1 with
         | None =>
             (k = None /\ rs2=rs1 /\ m2=m1 /\ ofin2 = None)
             \/ (exists rem, k = Some rem
                /\ iblock_istep tge sp rs1 m1 rem rs2 m2 ofin2)
         | Some fin1 => rs2=rs1 /\ m2=m1 /\ ofin2=Some fin1
         end),
  iblock_istep tge sp rs0 m0 (expand ib k) rs2 m2 ofin2.
Proof.
  induction 1; simpl.
  { (* BF *)
    intros ? ? ? ? (HRS & HM & HOF); subst.
    constructor. }
    (*destruct k; intros. try inv CONT.*)
  1-4: (* Bnop, Bop, Bload, Bstore *)
    destruct k; intros; destruct CONT as [[HK [HRS [HM HO]]]|[rem [HR ISTEP]]];
    subst; try (inv HK; fail); try (inv HR; fail); try (econstructor; eauto; fail);
    inversion HR; subst; clear HR;
    eapply exec_seq_continue; [ econstructor; eauto | assumption].
  - (* Bseq_stop *)
    destruct k; intros; apply IHISTEP; eauto.
  - (* Bseq_continue *)
    destruct ofin; intros.
    + destruct CONT as [HRS [HM HOF]]; subst.
      eapply IHISTEP1; right. eexists; repeat split; eauto.
    + destruct CONT as [[HK [HRS [HM HO]]]|[rem [HR ISTEP]]]; subst.
      * eapply IHISTEP1; right. eexists; repeat split; eauto.
        eapply IHISTEP2; left; simpl; auto.
      * eapply IHISTEP1; right. eexists; repeat split; eauto.
  - (* Bcond *)
    destruct ofin; intros;
    econstructor; eauto;
    destruct b; eapply IHISTEP; eauto.
Qed.

Lemma expand_iblock_istep_correct sp ib rs0 m0 rs1 m1 ofin:
  iblock_istep tge sp rs0 m0 ib rs1 m1 ofin ->
  iblock_istep tge sp rs0 m0 (expand ib None) rs1 m1 ofin.
Proof.
  intros; eapply expand_iblock_istep_rec_correct; eauto.
  destruct ofin; simpl; auto.
Qed.

(* TODO useless? *)
Lemma expand_iblock_istep_run_Some_rec sp ib rs0 m0 rs1 m1 ofin1:
  forall (ISTEP: iblock_istep_run tge sp ib rs0 m0 =
  Some {| _rs := rs1; _m := m1; _fin := ofin1 |})
  k ofin2 rs2 m2
  (CONT: match ofin1 with
         | None =>
             (k = None /\ rs2=rs1 /\ m2=m1 /\ ofin2 = None)
             \/ (exists rem, k = Some rem
                /\ iblock_istep_run tge sp rem rs1 m1 =
                Some {| _rs := rs2; _m := m2; _fin := ofin2 |})
         | Some fin1 => rs2=rs1 /\ m2=m1 /\ ofin2=Some fin1
         end),
  iblock_istep_run tge sp (expand ib k) rs0 m0 =
  Some {| _rs := rs2; _m := m2; _fin := ofin2 |}.
Proof.
  intros. destruct ofin1;
  rewrite <- iblock_istep_run_equiv in *.
  - destruct CONT as [HRS [HM HO]]; subst.
    eapply expand_iblock_istep_rec_correct; eauto.
    simpl; auto.
  - eapply expand_iblock_istep_rec_correct; eauto.
    simpl. destruct CONT as [HL | [rem [HR ISTEP']]].
    left; auto. rewrite <- iblock_istep_run_equiv in ISTEP'.
    right; eexists; split; eauto.
Qed.

Lemma expand_iblock_istep_run_None_rec sp ib:
  forall rs0 m0 o k
  (ISTEP: iblock_istep_run tge sp ib rs0 m0 = o)
  (CONT: match o with
         | Some (out rs1 m1 ofin) =>
             exists rem,
             k = Some rem /\ ofin = None /\
             iblock_istep_run tge sp rem rs1 m1 = None
         | _ => True
     end),
  iblock_istep_run tge sp (expand ib k) rs0 m0 = None.
Proof.
  induction ib; simpl;
  try discriminate.
  - (* BF *)
    intros; destruct o; try discriminate; simpl in *.
    inv ISTEP. destruct CONT as [rem [HR [HO ISTEP]]]; inv HR; inv HO.
  - (* Bnop *)
    intros; destruct o; inv ISTEP; destruct k;
    destruct CONT as [rem [HR [HO ISTEP]]]; inv HR; inv HO; trivial.
  - (* Bop *)
    intros; destruct o;
    destruct (eval_operation _ _ _ _ _) eqn:EVAL; inv ISTEP; destruct k;
    simpl; rewrite EVAL; auto; destruct CONT as [rem [HR [HO ISTEP]]];
    inv HR; inv HO; trivial.
  - (* Bload *)
    intros; destruct o;
    destruct (trap) eqn:TRAP;
    try destruct (eval_addressing _ _ _ _) eqn:EVAL;
    try destruct (Mem.loadv _ _ _) eqn:MEM; inv ISTEP; destruct k;
    simpl; try rewrite EVAL; try rewrite MEM; simpl; auto;
    destruct CONT as [rem [HR [HO ISTEP]]]; inv HR; inv HO; trivial.
  - (* Bstore *)
    intros; destruct o;
    destruct (eval_addressing _ _ _ _) eqn:EVAL;
    try destruct (Mem.storev _ _ _) eqn:MEM; inv ISTEP; destruct k;
    simpl; try rewrite EVAL; try rewrite MEM; simpl; auto;
    destruct CONT as [rem [HR [HO ISTEP]]]; inv HR; inv HO; trivial.
  - (* Bseq *)
    intros.
    eapply IHib1; eauto.
    destruct (iblock_istep_run tge sp ib1 rs0 m0) eqn:EQib1; try auto.
    destruct o0. eexists; split; eauto. simpl in *.
    destruct _fin; inv ISTEP.
    + destruct CONT as [rem [_ [CONTRA _]]]; inv CONTRA.
    + split; auto. eapply IHib2; eauto.
  - (* Bcond *)
    intros; destruct (eval_condition _ _ _); trivial.
    destruct b.
    + eapply IHib1; eauto.
    + eapply IHib2; eauto.
Qed.

Lemma expand_preserves_iblock_istep_run_None sp ib:
  forall rs m, iblock_istep_run tge sp ib rs m = None
  -> iblock_istep_run tge sp (expand ib None) rs m = None.
Proof.
  intros; eapply expand_iblock_istep_run_None_rec; eauto.
  simpl; auto.
Qed.

Lemma expand_preserves_iblock_istep_run sp ib:
  forall rs m, iblock_istep_run tge sp ib rs m =
  iblock_istep_run tge sp (expand ib None) rs m.
Proof.
  intros.
  destruct (iblock_istep_run tge sp ib rs m) eqn:ISTEP.
  - destruct o. symmetry.
    rewrite <- iblock_istep_run_equiv in *.
    apply expand_iblock_istep_correct; auto.
  - symmetry.
    apply expand_preserves_iblock_istep_run_None; auto.
Qed.

Lemma expand_matchiblock_rec_correct dupmap cfg ib pc isfst:
  forall opc1
  (MIB: match_iblock dupmap cfg isfst pc ib opc1) k opc2
  (CONT: match opc1 with
         | Some pc' =>
             k = None /\ opc2 = opc1 \/
             (exists rem, k = Some rem
             /\ match_iblock dupmap cfg false pc' rem opc2)
         | None => opc2=opc1
         end),
  match_iblock dupmap cfg isfst pc (expand ib k) opc2.
Proof.
  induction 1; simpl.
  { (* BF *)
    intros; inv CONT; econstructor; eauto. }
  1-4: (* Bnop *)
    destruct k; intros; destruct CONT as [[HK HO] | [rem [HR MIB]]];
    try inv HK; try inv HO; try inv HR; repeat econstructor; eauto.
  { (* Bgoto *)
    intros; inv CONT; apply mib_exit; auto. }
  { (* Bseq *)
    intros. eapply IHMIB1. right. eexists; split; eauto. }
  { (* Bcond *)
    intros. inv H0;
    econstructor; eauto; try econstructor.
    destruct opc0; econstructor. }
Qed.

Lemma expand_matchiblock_correct dupmap cfg ib pc isfst opc:
  match_iblock dupmap cfg isfst pc ib opc ->
  match_iblock dupmap cfg isfst pc (expand ib None) opc.
Proof.
  intros.
  eapply expand_matchiblock_rec_correct; eauto.
  destruct opc; simpl; auto.
Qed.

(** * Match strong state property

Used when executing non-atomic instructions such as Bseq/Bcond(ib1,ib2).
Two possible executions:

<<

 **ib2 is a Bgoto (left side):**

      RTL state                MSS1             BTL state
     [pcR1,rs1,m1] -------------------------- [ib1,pcB0,rs0,m0]
           |                                         |
           |                                         |
           |                                         | BTL_STEP
           |                                         |
           |                                         |
  RTL_STEP | *E0                       [ib2,pc=(Bgoto succ),rs2,m2]
           |                          /              |
           |             MSS2        /               |
           |       _________________/                | BTL_GOTO
           |      /                                  |
           |     /   GOAL: match_states              |
    [pcR2,rs2,m2] ------------------------ [ib?,pc=succ,rs2,m2]


 **ib2 is any other instruction (right side):**

See explanations of opt_simu below.

>>
*)

Lemma match_strong_state_simu
  dupmap st st' f f' sp rs2 m2 rs1 m1 rs0 m0 pcB0 pcR0 pcR1 pcR2 isfst ib1 ib2 ib0 n
  (STEP : RTL.step ge (RTL.State st f sp pcR1 rs1 m1) E0 (RTL.State st f sp pcR2 rs2 m2))
  (MSS1 : match_strong_state dupmap st st' f f' sp rs1 m1 rs0 m0 pcB0 pcR0 pcR1 ib1 ib0 isfst)
  (MSS2 : match_strong_state dupmap st st' f f' sp rs2 m2 rs0 m0 pcB0 pcR0 pcR2 ib2 ib0 false)
  (MES  : measure ib2 < n)
  : exists (oib' : option iblock),
      (exists s2', step tge (State st' f' sp pcB0 rs0 m0) E0 s2'
          /\ match_states oib' (RTL.State st f sp pcR2 rs2 m2) s2')
          \/ (omeasure oib' < n /\ E0=E0
          /\ match_states oib' (RTL.State st f sp pcR2 rs2 m2) (State st' f' sp pcB0 rs0 m0)).
Proof.
  destruct (is_goto ib2) eqn:GT.
  destruct ib2; try destruct fi; try discriminate.
  - (* Bgoto *)
    inv MSS2. inversion MIB; subst; try inv H3.
    remember H0 as ODUPLIC; clear HeqODUPLIC.
    eapply dupmap_correct in TRANSF as DMC. unfold match_cfg in DMC.
    apply DMC in H0 as [ib [FNC MI]]; clear DMC.
    eexists; left; eexists; split.
    + repeat econstructor; eauto.
      apply iblock_istep_run_equiv in BTL_RUN; eauto.
    + econstructor; apply expand_matchiblock_correct in MI.
      econstructor; eauto. apply expand_correct; trivial.
      econstructor. apply expand_preserves_iblock_istep_run.
      eapply expand_entry_isnt_goto; eauto.
  - (* Others *)
    exists (Some ib2); right; split.
    simpl; auto.
    split; auto. econstructor; eauto.
Qed.

Lemma opt_simu_intro
  dupmap st st' f f' sp rs m rs0 m0 pcB0 pcR0 pcR1 ib ib0 isfst s1' t
  (STEP : RTL.step ge (RTL.State st f sp pcR1 rs m) t s1')
  (MSTRONG : match_strong_state dupmap st st' f f' sp rs m rs0 m0 pcB0 pcR0 pcR1 ib ib0 isfst)
  (NGOTO : is_goto ib = false)
  : exists (oib' : option iblock),
     (exists s2', step tge (State st' f' sp pcB0 rs0 m0) t s2' /\ match_states oib' s1' s2')
  \/ (omeasure oib' < omeasure (Some ib) /\ t=E0 /\ match_states oib' s1' (State st' f' sp pcB0 rs0 m0)).
Proof.
  inversion MSTRONG; subst. inv MIB.
  - (* mib_BF *)
    inv H0;
    inversion STEP; subst; try_simplify_someHyps; intros.
    + (* Breturn *)
      eexists; left; eexists; split.
      * econstructor; eauto. econstructor.
        eexists; eexists; split.
        eapply iblock_istep_run_equiv in BTL_RUN.
        eapply BTL_RUN. econstructor; eauto.
        erewrite preserv_fnstacksize; eauto.
      * econstructor; eauto.
    + (* Bcall *)
      rename H10 into FIND.
      eapply find_function_preserved in FIND.
      destruct FIND as (fd' & FF & TRANSFUN).
      eexists; left; eexists; split.
      * econstructor; eauto. econstructor.
        eexists; eexists; split.
        eapply iblock_istep_run_equiv in BTL_RUN.
        eapply BTL_RUN. econstructor; eauto.
        eapply function_sig_translated; eauto.
      * repeat (econstructor; eauto).
        eapply transf_fundef_correct; eauto.
    + (* Btailcall *)
      rename H9 into FIND.
      eapply find_function_preserved in FIND.
      destruct FIND as (fd' & FF & TRANSFUN).
      eexists; left; eexists; split.
      * econstructor; eauto. econstructor.
        eexists; eexists; split.
        eapply iblock_istep_run_equiv in BTL_RUN.
        eapply BTL_RUN. econstructor; eauto.
        eapply function_sig_translated; eauto.
        erewrite preserv_fnstacksize; eauto.
      * repeat (econstructor; eauto).
        eapply transf_fundef_correct; eauto.
    + (* Bbuiltin *)
      eapply dupmap_correct in TRANSF as DMC. unfold match_cfg in DMC.
      remember H1 as ODUPLIC; clear HeqODUPLIC.
      apply DMC in H1 as [ib [FNC MI]]; clear DMC.
      eexists; left; eexists; split.
      * econstructor; eauto. econstructor.
        eexists; eexists; split.
        eapply iblock_istep_run_equiv in BTL_RUN.
        eapply BTL_RUN. econstructor; eauto.
        pose symbols_preserved as SYMPRES.
        eapply eval_builtin_args_preserved; eauto.
        eapply external_call_symbols_preserved; eauto. eapply senv_preserved.
      * econstructor; eauto; apply expand_matchiblock_correct in MI.
        { econstructor; eauto. apply expand_correct; trivial.  
          apply star_refl. apply expand_preserves_iblock_istep_run. }
        eapply expand_entry_isnt_goto; eauto.
    + (* Bjumptable *)
      exploit list_nth_z_rev_dupmap; eauto.
      intros (pc'0 & LNZ & DM).
      eapply dupmap_correct in TRANSF as DMC. unfold match_cfg in DMC.
      remember DM as ODUPLIC; clear HeqODUPLIC.
      apply DMC in DM as [ib [FNC MI]]; clear DMC.
      eexists; left; eexists; split.
      * econstructor; eauto. econstructor.
        eexists; eexists; split.
        eapply iblock_istep_run_equiv in BTL_RUN.
        eapply BTL_RUN. econstructor; eauto.
      * econstructor; eauto; apply expand_matchiblock_correct in MI.
        { econstructor; eauto. apply expand_correct; trivial.  
          apply star_refl. apply expand_preserves_iblock_istep_run. }
        eapply expand_entry_isnt_goto; eauto.
  - (* mib_exit *)
    discriminate.
  - (* mib_seq *)
    inversion H; subst;
    try (inv IS_EXPD; try inv H5; discriminate; fail);
    inversion STEP; subst; try_simplify_someHyps; intros.
    + (* Bnop *)
      eapply match_strong_state_simu.
      1,2: do 2 (econstructor; eauto).
      econstructor; eauto.
      inv IS_EXPD; eauto. simpl in *; discriminate.
      eapply star_right; eauto. lia.
    + (* Bop *)
      eapply match_strong_state_simu.
      1,2: do 2 (econstructor; eauto).
      econstructor; eauto.
      inv IS_EXPD; eauto. simpl in *; discriminate.
      eapply star_right; eauto.
      erewrite eval_operation_preserved in H11.
      erewrite H11 in BTL_RUN; simpl in BTL_RUN; auto.
      intros; rewrite <- symbols_preserved; trivial. lia.
    + (* Bload *)
      eapply match_strong_state_simu.
      1,2: do 2 (econstructor; eauto).
      econstructor; eauto.
      inv IS_EXPD; eauto. simpl in *; discriminate.
      eapply star_right; eauto.
      erewrite eval_addressing_preserved in H11.
      erewrite H11, H12 in BTL_RUN; simpl in BTL_RUN; auto.
      intros; rewrite <- symbols_preserved; trivial. lia.
    + (* Bstore *)
      eapply match_strong_state_simu.
      1,2: do 2 (econstructor; eauto).
      econstructor; eauto.
      inv IS_EXPD; eauto. simpl in *; discriminate.
      eapply star_right; eauto.
      erewrite eval_addressing_preserved in H11.
      erewrite H11, H12 in BTL_RUN; simpl in BTL_RUN; auto.
      intros; rewrite <- symbols_preserved; trivial. lia.
  - (* mib_cond *)
    inversion STEP; subst; try_simplify_someHyps; intros.
    intros; rewrite H12 in BTL_RUN. destruct b;
    eapply match_strong_state_simu; eauto.
    1,3: inv H2; econstructor; eauto.
    1,3,5,7: inv IS_EXPD; auto; discriminate.
    1-4: eapply star_right; eauto.
    assert (measure bnot > 0) by apply measure_pos; lia.
    assert (measure bso > 0) by apply measure_pos; lia.
Qed.

(** * Main RTL to BTL simulation theorem

Two possible executions:

<<

 **Last instruction (left side):**

    RTL state         match_states          BTL state
       s1 ------------------------------------ s2
       |                                       |
  STEP |       Classical lockstep simu         | 
       |                                       | 
       s1' ----------------------------------- s2' 


 **Middle instruction (right side):**

    RTL state         match_states [oib]    BTL state
       s1 ------------------------------------ s2
       |                               _______/
  STEP | *E0       ___________________/         
       |          / match_states [oib']         
       s1' ______/
   Where omeasure oib' < omeasure oib

>>
*)

Theorem opt_simu s1 t s1' oib s2:
 RTL.step ge s1 t s1' ->
 match_states oib s1 s2 ->
 exists (oib' : option iblock),
     (exists s2', step tge s2 t s2' /\ match_states oib' s1' s2')
  \/ (omeasure oib' < omeasure oib /\ t=E0 /\ match_states oib' s1' s2) 
 .
Proof.
  inversion 2; subst; clear H0.
  - (* State *)
    exploit opt_simu_intro; eauto.
  - (* Callstate *)
    inv H.
    + (* Internal function *)
      inv TRANSF.
      rename H0 into TRANSF.
      eapply dupmap_entrypoint in TRANSF as ENTRY.
      eapply dupmap_correct in TRANSF as DMC. unfold match_cfg in DMC.
      apply DMC in ENTRY as DMC'.
      destruct DMC' as [ib [CENTRY MI]]; clear DMC.
      eexists; left; eexists; split.
      * eapply exec_function_internal.
        erewrite preserv_fnstacksize; eauto.
      * apply expand_matchiblock_correct in MI.
        econstructor. econstructor; eauto.
        apply expand_correct; trivial.
        3: eapply expand_entry_isnt_goto; eauto.
        all: erewrite preserv_fnparams; eauto.
        constructor.
        apply expand_preserves_iblock_istep_run.
    + (* External function *)
      inv TRANSF.
      eexists; left; eexists; split.
      * eapply exec_function_external.
        eapply external_call_symbols_preserved.
        eapply senv_preserved. eauto.
      * econstructor; eauto.
  - (* Returnstate *)
    inv H. inv STACKS. inv H1.
    eapply dupmap_correct in TRANSF as DMC. unfold match_cfg in DMC.
    remember DUPLIC as ODUPLIC; clear HeqODUPLIC.
    apply DMC in DUPLIC as [ib [FNC MI]]; clear DMC.
    eexists; left; eexists; split.
    + eapply exec_return.
    + apply expand_matchiblock_correct in MI.
      econstructor. econstructor; eauto.
      apply expand_correct; trivial.
      constructor. apply expand_preserves_iblock_istep_run.
      eapply expand_entry_isnt_goto; eauto.
Qed.

Local Hint Resolve plus_one star_refl: core.

Theorem transf_program_correct:
  forward_simulation (RTL.semantics prog) (BTL.semantics tprog).
Proof.
  eapply (Forward_simulation (L1:=RTL.semantics prog) (L2:=semantics tprog) (ltof _ omeasure) match_states).
  constructor 1; simpl.
  - apply well_founded_ltof.
  - eapply transf_initial_states.
  - eapply transf_final_states.
  - intros s1 t s1' STEP i s2 MATCH. exploit opt_simu; eauto. clear MATCH STEP.
    destruct 1 as (oib' & [ (s2' & STEP & MATCH) | (MEASURE & TRACE & MATCH) ]).
    + repeat eexists; eauto.
    + subst. repeat eexists; eauto.
  - eapply senv_preserved.
Qed.

End BTL_SIMULATES_RTL.