aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/BearSSL/src/ec/ec_c25519_m62.c
blob: 6b058eb1bf97a38f168c6f45af1bcf3888ef7273 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*
 * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "inner.h"

#if BR_INT128 || BR_UMUL128

#if BR_UMUL128
#include <intrin.h>
#endif

static const unsigned char GEN[] = {
	0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

static const unsigned char ORDER[] = {
	0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};

static const unsigned char *
api_generator(int curve, size_t *len)
{
	(void)curve;
	*len = 32;
	return GEN;
}

static const unsigned char *
api_order(int curve, size_t *len)
{
	(void)curve;
	*len = 32;
	return ORDER;
}

static size_t
api_xoff(int curve, size_t *len)
{
	(void)curve;
	*len = 32;
	return 0;
}

/*
 * A field element is encoded as five 64-bit integers, in basis 2^51.
 * Limbs may be occasionally larger than 2^51, to save on carry
 * propagation costs.
 */

#define MASK51   (((uint64_t)1 << 51) - (uint64_t)1)

/*
 * Swap two field elements, conditionally on a flag.
 */
static inline void
f255_cswap(uint64_t *a, uint64_t *b, uint32_t ctl)
{
	uint64_t m, w;

	m = -(uint64_t)ctl;
	w = m & (a[0] ^ b[0]); a[0] ^= w; b[0] ^= w;
	w = m & (a[1] ^ b[1]); a[1] ^= w; b[1] ^= w;
	w = m & (a[2] ^ b[2]); a[2] ^= w; b[2] ^= w;
	w = m & (a[3] ^ b[3]); a[3] ^= w; b[3] ^= w;
	w = m & (a[4] ^ b[4]); a[4] ^= w; b[4] ^= w;
}

/*
 * Addition with no carry propagation. Limbs double in size.
 */
static inline void
f255_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
{
	d[0] = a[0] + b[0];
	d[1] = a[1] + b[1];
	d[2] = a[2] + b[2];
	d[3] = a[3] + b[3];
	d[4] = a[4] + b[4];
}

/*
 * Subtraction.
 * On input, limbs must fit on 60 bits each. On output, result is
 * partially reduced, with max value 2^255+19456; moreover, all
 * limbs will fit on 51 bits, except the low limb, which may have
 * value up to 2^51+19455.
 */
static inline void
f255_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
{
	uint64_t cc, w;

	/*
	 * We compute d = (2^255-19)*1024 + a - b. Since the limbs
	 * fit on 60 bits, the maximum value of operands are slightly
	 * more than 2^264, but much less than 2^265-19456. This
	 * ensures that the result is positive.
	 */

	/*
	 * Initial carry is 19456, since we add 2^265-19456. Each
	 * individual subtraction may yield a carry up to 513.
	 */
	w = a[0] - b[0] - 19456;
	d[0] = w & MASK51;
	cc = -(w >> 51) & 0x3FF;
	w = a[1] - b[1] - cc;
	d[1] = w & MASK51;
	cc = -(w >> 51) & 0x3FF;
	w = a[2] - b[2] - cc;
	d[2] = w & MASK51;
	cc = -(w >> 51) & 0x3FF;
	w = a[3] - b[3] - cc;
	d[3] = w & MASK51;
	cc = -(w >> 51) & 0x3FF;
	d[4] = ((uint64_t)1 << 61) + a[4] - b[4] - cc;

	/*
	 * Partial reduction. The intermediate result may be up to
	 * slightly above 2^265, but less than 2^265+2^255. When we
	 * truncate to 255 bits, the upper bits will be at most 1024.
	 */
	d[0] += 19 * (d[4] >> 51);
	d[4] &= MASK51;
}

/*
 * UMUL51(hi, lo, x, y) computes:
 *
 *   hi = floor((x * y) / (2^51))
 *   lo = x * y mod 2^51
 *
 * Note that lo < 2^51, but "hi" may be larger, if the input operands are
 * larger.
 */
#if BR_INT128

#define UMUL51(hi, lo, x, y)   do { \
		unsigned __int128 umul_tmp; \
		umul_tmp = (unsigned __int128)(x) * (unsigned __int128)(y); \
		(hi) = (uint64_t)(umul_tmp >> 51); \
		(lo) = (uint64_t)umul_tmp & MASK51; \
	} while (0)

#elif BR_UMUL128

#define UMUL51(hi, lo, x, y)   do { \
		uint64_t umul_hi, umul_lo; \
		umul_lo = _umul128((x), (y), &umul_hi); \
		(hi) = (umul_hi << 13) | (umul_lo >> 51); \
		(lo) = umul_lo & MASK51; \
	} while (0)

#endif

/*
 * Multiplication.
 * On input, limbs must fit on 54 bits each.
 * On output, limb 0 is at most 2^51 + 155647, and other limbs fit
 * on 51 bits each.
 */
static inline void
f255_mul(uint64_t *d, uint64_t *a, uint64_t *b)
{
	uint64_t t[10], hi, lo, w, cc;

	/*
	 * Perform cross products, accumulating values without carry
	 * propagation.
	 *
	 * Since input limbs fit on 54 bits each, each individual
	 * UMUL51 will produce a "hi" of less than 2^57. The maximum
	 * sum will be at most 5*(2^57-1) + 4*(2^51-1) (for t[5]),
	 * i.e. less than 324*2^51.
	 */

	UMUL51(t[1], t[0], a[0], b[0]);

	UMUL51(t[2], lo, a[1], b[0]); t[1] += lo;
	UMUL51(hi, lo, a[0], b[1]); t[1] += lo; t[2] += hi;

	UMUL51(t[3], lo, a[2], b[0]); t[2] += lo;
	UMUL51(hi, lo, a[1], b[1]); t[2] += lo; t[3] += hi;
	UMUL51(hi, lo, a[0], b[2]); t[2] += lo; t[3] += hi;

	UMUL51(t[4], lo, a[3], b[0]); t[3] += lo;
	UMUL51(hi, lo, a[2], b[1]); t[3] += lo; t[4] += hi;
	UMUL51(hi, lo, a[1], b[2]); t[3] += lo; t[4] += hi;
	UMUL51(hi, lo, a[0], b[3]); t[3] += lo; t[4] += hi;

	UMUL51(t[5], lo, a[4], b[0]); t[4] += lo;
	UMUL51(hi, lo, a[3], b[1]); t[4] += lo; t[5] += hi;
	UMUL51(hi, lo, a[2], b[2]); t[4] += lo; t[5] += hi;
	UMUL51(hi, lo, a[1], b[3]); t[4] += lo; t[5] += hi;
	UMUL51(hi, lo, a[0], b[4]); t[4] += lo; t[5] += hi;

	UMUL51(t[6], lo, a[4], b[1]); t[5] += lo;
	UMUL51(hi, lo, a[3], b[2]); t[5] += lo; t[6] += hi;
	UMUL51(hi, lo, a[2], b[3]); t[5] += lo; t[6] += hi;
	UMUL51(hi, lo, a[1], b[4]); t[5] += lo; t[6] += hi;

	UMUL51(t[7], lo, a[4], b[2]); t[6] += lo;
	UMUL51(hi, lo, a[3], b[3]); t[6] += lo; t[7] += hi;
	UMUL51(hi, lo, a[2], b[4]); t[6] += lo; t[7] += hi;

	UMUL51(t[8], lo, a[4], b[3]); t[7] += lo;
	UMUL51(hi, lo, a[3], b[4]); t[7] += lo; t[8] += hi;

	UMUL51(t[9], lo, a[4], b[4]); t[8] += lo;

	/*
	 * The upper words t[5]..t[9] are folded back into the lower
	 * words, using the rule that 2^255 = 19 in the field.
	 *
	 * Since each t[i] is less than 324*2^51, the additions below
	 * will yield less than 6480*2^51 in each limb; this fits in
	 * 64 bits (6480*2^51 < 8192*2^51 = 2^64), hence there is
	 * no overflow.
	 */
	t[0] += 19 * t[5];
	t[1] += 19 * t[6];
	t[2] += 19 * t[7];
	t[3] += 19 * t[8];
	t[4] += 19 * t[9];

	/*
	 * Propagate carries.
	 */
	w = t[0];
	d[0] = w & MASK51;
	cc = w >> 51;
	w = t[1] + cc;
	d[1] = w & MASK51;
	cc = w >> 51;
	w = t[2] + cc;
	d[2] = w & MASK51;
	cc = w >> 51;
	w = t[3] + cc;
	d[3] = w & MASK51;
	cc = w >> 51;
	w = t[4] + cc;
	d[4] = w & MASK51;
	cc = w >> 51;

	/*
	 * Since the limbs were 64-bit values, the top carry is at
	 * most 8192 (in practice, that cannot be reached). We simply
	 * performed a partial reduction.
	 */
	d[0] += 19 * cc;
}

/*
 * Multiplication by A24 = 121665.
 * Input must have limbs of 60 bits at most.
 */
static inline void
f255_mul_a24(uint64_t *d, const uint64_t *a)
{
	uint64_t t[5], cc, w;

	/*
	 * 121665 = 15 * 8111. We first multiply by 15, with carry
	 * propagation and partial reduction.
	 */
	w = a[0] * 15;
	t[0] = w & MASK51;
	cc = w >> 51;
	w = a[1] * 15 + cc;
	t[1] = w & MASK51;
	cc = w >> 51;
	w = a[2] * 15 + cc;
	t[2] = w & MASK51;
	cc = w >> 51;
	w = a[3] * 15 + cc;
	t[3] = w & MASK51;
	cc = w >> 51;
	w = a[4] * 15 + cc;
	t[4] = w & MASK51;
	t[0] += 19 * (w >> 51);

	/*
	 * Then multiplication by 8111. At that point, we known that
	 * t[0] is less than 2^51 + 19*8192, and other limbs are less
	 * than 2^51; thus, there will be no overflow.
	 */
	w = t[0] * 8111;
	d[0] = w & MASK51;
	cc = w >> 51;
	w = t[1] * 8111 + cc;
	d[1] = w & MASK51;
	cc = w >> 51;
	w = t[2] * 8111 + cc;
	d[2] = w & MASK51;
	cc = w >> 51;
	w = t[3] * 8111 + cc;
	d[3] = w & MASK51;
	cc = w >> 51;
	w = t[4] * 8111 + cc;
	d[4] = w & MASK51;
	d[0] += 19 * (w >> 51);
}

/*
 * Finalize reduction.
 * On input, limbs must fit on 51 bits, except possibly the low limb,
 * which may be slightly above 2^51.
 */
static inline void
f255_final_reduce(uint64_t *a)
{
	uint64_t t[5], cc, w;

	/*
	 * We add 19. If the result (in t[]) is below 2^255, then a[]
	 * is already less than 2^255-19, thus already reduced.
	 * Otherwise, we subtract 2^255 from t[], in which case we
	 * have t = a - (2^255-19), and that's our result.
	 */
	w = a[0] + 19;
	t[0] = w & MASK51;
	cc = w >> 51;
	w = a[1] + cc;
	t[1] = w & MASK51;
	cc = w >> 51;
	w = a[2] + cc;
	t[2] = w & MASK51;
	cc = w >> 51;
	w = a[3] + cc;
	t[3] = w & MASK51;
	cc = w >> 51;
	w = a[4] + cc;
	t[4] = w & MASK51;
	cc = w >> 51;

	/*
	 * The bit 255 of t is in cc. If that bit is 0, when a[] must
	 * be unchanged; otherwise, it must be replaced with t[].
	 */
	cc = -cc;
	a[0] ^= cc & (a[0] ^ t[0]);
	a[1] ^= cc & (a[1] ^ t[1]);
	a[2] ^= cc & (a[2] ^ t[2]);
	a[3] ^= cc & (a[3] ^ t[3]);
	a[4] ^= cc & (a[4] ^ t[4]);
}

static uint32_t
api_mul(unsigned char *G, size_t Glen,
	const unsigned char *kb, size_t kblen, int curve)
{
	unsigned char k[32];
	uint64_t x1[5], x2[5], z2[5], x3[5], z3[5];
	uint32_t swap;
	int i;

	(void)curve;

	/*
	 * Points are encoded over exactly 32 bytes. Multipliers must fit
	 * in 32 bytes as well.
	 */
	if (Glen != 32 || kblen > 32) {
		return 0;
	}

	/*
	 * RFC 7748 mandates that the high bit of the last point byte must
	 * be ignored/cleared; the "& MASK51" in the initialization for
	 * x1[4] clears that bit.
	 */
	x1[0] = br_dec64le(&G[0]) & MASK51;
	x1[1] = (br_dec64le(&G[6]) >> 3) & MASK51;
	x1[2] = (br_dec64le(&G[12]) >> 6) & MASK51;
	x1[3] = (br_dec64le(&G[19]) >> 1) & MASK51;
	x1[4] = (br_dec64le(&G[24]) >> 12) & MASK51;

	/*
	 * We can use memset() to clear values, because exact-width types
	 * like uint64_t are guaranteed to have no padding bits or
	 * trap representations.
	 */
	memset(x2, 0, sizeof x2);
	x2[0] = 1;
	memset(z2, 0, sizeof z2);
	memcpy(x3, x1, sizeof x1);
	memcpy(z3, x2, sizeof x2);

	/*
	 * The multiplier is provided in big-endian notation, and
	 * possibly shorter than 32 bytes.
	 */
	memset(k, 0, (sizeof k) - kblen);
	memcpy(k + (sizeof k) - kblen, kb, kblen);
	k[31] &= 0xF8;
	k[0] &= 0x7F;
	k[0] |= 0x40;

	swap = 0;

	for (i = 254; i >= 0; i --) {
		uint64_t a[5], aa[5], b[5], bb[5], e[5];
		uint64_t c[5], d[5], da[5], cb[5];
		uint32_t kt;

		kt = (k[31 - (i >> 3)] >> (i & 7)) & 1;
		swap ^= kt;
		f255_cswap(x2, x3, swap);
		f255_cswap(z2, z3, swap);
		swap = kt;

		/*
		 * At that point, limbs of x_2 and z_2 are assumed to fit
		 * on at most 52 bits each.
		 *
		 * Each f255_add() adds one bit to the maximum range of
		 * the values, but f255_sub() and f255_mul() bring back
		 * the limbs into 52 bits. All f255_add() outputs are
		 * used only as inputs for f255_mul(), which ensures
		 * that limbs remain in the proper range.
		 */

		/* A = x_2 + z_2   -- limbs fit on 53 bits each */
		f255_add(a, x2, z2);

		/* AA = A^2 */
		f255_mul(aa, a, a);

		/* B = x_2 - z_2 */
		f255_sub(b, x2, z2);

		/* BB = B^2 */
		f255_mul(bb, b, b);

		/* E = AA - BB */
		f255_sub(e, aa, bb);

		/* C = x_3 + z_3   -- limbs fit on 53 bits each */
		f255_add(c, x3, z3);

		/* D = x_3 - z_3 */
		f255_sub(d, x3, z3);

		/* DA = D * A */
		f255_mul(da, d, a);

		/* CB = C * B */
		f255_mul(cb, c, b);

		/* x_3 = (DA + CB)^2 */
		f255_add(x3, da, cb);
		f255_mul(x3, x3, x3);

		/* z_3 = x_1 * (DA - CB)^2 */
		f255_sub(z3, da, cb);
		f255_mul(z3, z3, z3);
		f255_mul(z3, x1, z3);

		/* x_2 = AA * BB */
		f255_mul(x2, aa, bb);

		/* z_2 = E * (AA + a24 * E) */
		f255_mul_a24(z2, e);
		f255_add(z2, aa, z2);
		f255_mul(z2, e, z2);
	}

	f255_cswap(x2, x3, swap);
	f255_cswap(z2, z3, swap);

	/*
	 * Compute 1/z2 = z2^(p-2). Since p = 2^255-19, we can mutualize
	 * most non-squarings. We use x1 and x3, now useless, as temporaries.
	 */
	memcpy(x1, z2, sizeof z2);
	for (i = 0; i < 15; i ++) {
		f255_mul(x1, x1, x1);
		f255_mul(x1, x1, z2);
	}
	memcpy(x3, x1, sizeof x1);
	for (i = 0; i < 14; i ++) {
		int j;

		for (j = 0; j < 16; j ++) {
			f255_mul(x3, x3, x3);
		}
		f255_mul(x3, x3, x1);
	}
	for (i = 14; i >= 0; i --) {
		f255_mul(x3, x3, x3);
		if ((0xFFEB >> i) & 1) {
			f255_mul(x3, z2, x3);
		}
	}

	/*
	 * Compute x2/z2. We have 1/z2 in x3.
	 */
	f255_mul(x2, x2, x3);
	f255_final_reduce(x2);

	/*
	 * Encode the final x2 value in little-endian. We first assemble
	 * the limbs into 64-bit values.
	 */
	x2[0] |= x2[1] << 51;
	x2[1] = (x2[1] >> 13) | (x2[2] << 38);
	x2[2] = (x2[2] >> 26) | (x2[3] << 25);
	x2[3] = (x2[3] >> 39) | (x2[4] << 12);
	br_enc64le(G, x2[0]);
	br_enc64le(G + 8, x2[1]);
	br_enc64le(G + 16, x2[2]);
	br_enc64le(G + 24, x2[3]);
	return 1;
}

static size_t
api_mulgen(unsigned char *R,
	const unsigned char *x, size_t xlen, int curve)
{
	const unsigned char *G;
	size_t Glen;

	G = api_generator(curve, &Glen);
	memcpy(R, G, Glen);
	api_mul(R, Glen, x, xlen, curve);
	return Glen;
}

static uint32_t
api_muladd(unsigned char *A, const unsigned char *B, size_t len,
	const unsigned char *x, size_t xlen,
	const unsigned char *y, size_t ylen, int curve)
{
	/*
	 * We don't implement this method, since it is used for ECDSA
	 * only, and there is no ECDSA over Curve25519 (which instead
	 * uses EdDSA).
	 */
	(void)A;
	(void)B;
	(void)len;
	(void)x;
	(void)xlen;
	(void)y;
	(void)ylen;
	(void)curve;
	return 0;
}

/* see bearssl_ec.h */
const br_ec_impl br_ec_c25519_m62 = {
	(uint32_t)0x20000000,
	&api_generator,
	&api_order,
	&api_xoff,
	&api_mul,
	&api_mulgen,
	&api_muladd
};

/* see bearssl_ec.h */
const br_ec_impl *
br_ec_c25519_m62_get(void)
{
	return &br_ec_c25519_m62;
}

#else

/* see bearssl_ec.h */
const br_ec_impl *
br_ec_c25519_m62_get(void)
{
	return 0;
}

#endif