aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/BearSSL/src/ec/ec_c25519_m64.c
blob: 7e7f12f7e3ad911ef482ca24d3443741ad3361aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
/*
 * Copyright (c) 2018 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#include "inner.h"

#if BR_INT128 || BR_UMUL128

#if BR_UMUL128
#include <intrin.h>
#endif

static const unsigned char GEN[] = {
	0x09, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
	0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

static const unsigned char ORDER[] = {
	0x7F, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
	0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
};

static const unsigned char *
api_generator(int curve, size_t *len)
{
	(void)curve;
	*len = 32;
	return GEN;
}

static const unsigned char *
api_order(int curve, size_t *len)
{
	(void)curve;
	*len = 32;
	return ORDER;
}

static size_t
api_xoff(int curve, size_t *len)
{
	(void)curve;
	*len = 32;
	return 0;
}

/*
 * A field element is encoded as four 64-bit integers, in basis 2^63.
 * Operations return partially reduced values, which may range up to
 * 2^255+37.
 */

#define MASK63   (((uint64_t)1 << 63) - (uint64_t)1)

/*
 * Swap two field elements, conditionally on a flag.
 */
static inline void
f255_cswap(uint64_t *a, uint64_t *b, uint32_t ctl)
{
	uint64_t m, w;

	m = -(uint64_t)ctl;
	w = m & (a[0] ^ b[0]); a[0] ^= w; b[0] ^= w;
	w = m & (a[1] ^ b[1]); a[1] ^= w; b[1] ^= w;
	w = m & (a[2] ^ b[2]); a[2] ^= w; b[2] ^= w;
	w = m & (a[3] ^ b[3]); a[3] ^= w; b[3] ^= w;
}

/*
 * Addition in the field.
 */
static inline void
f255_add(uint64_t *d, const uint64_t *a, const uint64_t *b)
{
#if BR_INT128

	uint64_t t0, t1, t2, t3, cc;
	unsigned __int128 z;

	z = (unsigned __int128)a[0] + (unsigned __int128)b[0];
	t0 = (uint64_t)z;
	z = (unsigned __int128)a[1] + (unsigned __int128)b[1] + (z >> 64);
	t1 = (uint64_t)z;
	z = (unsigned __int128)a[2] + (unsigned __int128)b[2] + (z >> 64);
	t2 = (uint64_t)z;
	z = (unsigned __int128)a[3] + (unsigned __int128)b[3] + (z >> 64);
	t3 = (uint64_t)z & MASK63;
	cc = (uint64_t)(z >> 63);

	/*
	 * Since operands are at most 2^255+37, the sum is at most
	 * 2^256+74; thus, the carry cc is equal to 0, 1 or 2.
	 *
	 * We use: 2^255 = 19 mod p.
	 * Since we add 0, 19 or 38 to a value that fits on 255 bits,
	 * the result is at most 2^255+37.
	 */
	z = (unsigned __int128)t0 + (unsigned __int128)(19 * cc);
	d[0] = (uint64_t)z;
	z = (unsigned __int128)t1 + (z >> 64);
	d[1] = (uint64_t)z;
	z = (unsigned __int128)t2 + (z >> 64);
	d[2] = (uint64_t)z;
	d[3] = t3 + (uint64_t)(z >> 64);

#elif BR_UMUL128

	uint64_t t0, t1, t2, t3, cc;
	unsigned char k;

	k = _addcarry_u64(0, a[0], b[0], &t0);
	k = _addcarry_u64(k, a[1], b[1], &t1);
	k = _addcarry_u64(k, a[2], b[2], &t2);
	k = _addcarry_u64(k, a[3], b[3], &t3);
	cc = (k << 1) + (t3 >> 63);
	t3 &= MASK63;

	/*
	 * Since operands are at most 2^255+37, the sum is at most
	 * 2^256+74; thus, the carry cc is equal to 0, 1 or 2.
	 *
	 * We use: 2^255 = 19 mod p.
	 * Since we add 0, 19 or 38 to a value that fits on 255 bits,
	 * the result is at most 2^255+37.
	 */
	k = _addcarry_u64(0, t0, 19 * cc, &d[0]);
	k = _addcarry_u64(k, t1, 0, &d[1]);
	k = _addcarry_u64(k, t2, 0, &d[2]);
	(void)_addcarry_u64(k, t3, 0, &d[3]);

#endif
}

/*
 * Subtraction.
 * On input, limbs must fit on 60 bits each. On output, result is
 * partially reduced, with max value 2^255+19456; moreover, all
 * limbs will fit on 51 bits, except the low limb, which may have
 * value up to 2^51+19455.
 */
static inline void
f255_sub(uint64_t *d, const uint64_t *a, const uint64_t *b)
{
#if BR_INT128

	/*
	 * We compute t = 2^256 - 38 + a - b, which is necessarily
	 * positive but lower than 2^256 + 2^255, since a <= 2^255 + 37
	 * and b <= 2^255 + 37. We then subtract 0, p or 2*p, depending
	 * on the two upper bits of t (bits 255 and 256).
	 */

	uint64_t t0, t1, t2, t3, t4, cc;
	unsigned __int128 z;

	z = (unsigned __int128)a[0] - (unsigned __int128)b[0] - 38;
	t0 = (uint64_t)z;
	cc = -(uint64_t)(z >> 64);
	z = (unsigned __int128)a[1] - (unsigned __int128)b[1]
		- (unsigned __int128)cc;
	t1 = (uint64_t)z;
	cc = -(uint64_t)(z >> 64);
	z = (unsigned __int128)a[2] - (unsigned __int128)b[2]
		- (unsigned __int128)cc;
	t2 = (uint64_t)z;
	cc = -(uint64_t)(z >> 64);
	z = (unsigned __int128)a[3] - (unsigned __int128)b[3]
		- (unsigned __int128)cc;
	t3 = (uint64_t)z;
	t4 = 1 + (uint64_t)(z >> 64);

	/*
	 * We have a 257-bit result. The two top bits can be 00, 01 or 10,
	 * but not 11 (value t <= 2^256 - 38 + 2^255 + 37 = 2^256 + 2^255 - 1).
	 * Therefore, we can truncate to 255 bits, and add 0, 19 or 38.
	 * This guarantees that the result is at most 2^255+37.
	 */
	cc = (38 & -t4) + (19 & -(t3 >> 63));
	t3 &= MASK63;
	z = (unsigned __int128)t0 + (unsigned __int128)cc;
	d[0] = (uint64_t)z;
	z = (unsigned __int128)t1 + (z >> 64);
	d[1] = (uint64_t)z;
	z = (unsigned __int128)t2 + (z >> 64);
	d[2] = (uint64_t)z;
	d[3] = t3 + (uint64_t)(z >> 64);

#elif BR_UMUL128

	/*
	 * We compute t = 2^256 - 38 + a - b, which is necessarily
	 * positive but lower than 2^256 + 2^255, since a <= 2^255 + 37
	 * and b <= 2^255 + 37. We then subtract 0, p or 2*p, depending
	 * on the two upper bits of t (bits 255 and 256).
	 */

	uint64_t t0, t1, t2, t3, t4;
	unsigned char k;

	k = _subborrow_u64(0, a[0], b[0], &t0);
	k = _subborrow_u64(k, a[1], b[1], &t1);
	k = _subborrow_u64(k, a[2], b[2], &t2);
	k = _subborrow_u64(k, a[3], b[3], &t3);
	(void)_subborrow_u64(k, 1, 0, &t4);

	k = _subborrow_u64(0, t0, 38, &t0);
	k = _subborrow_u64(k, t1, 0, &t1);
	k = _subborrow_u64(k, t2, 0, &t2);
	k = _subborrow_u64(k, t3, 0, &t3);
	(void)_subborrow_u64(k, t4, 0, &t4);

	/*
	 * We have a 257-bit result. The two top bits can be 00, 01 or 10,
	 * but not 11 (value t <= 2^256 - 38 + 2^255 + 37 = 2^256 + 2^255 - 1).
	 * Therefore, we can truncate to 255 bits, and add 0, 19 or 38.
	 * This guarantees that the result is at most 2^255+37.
	 */
	t4 = (38 & -t4) + (19 & -(t3 >> 63));
	t3 &= MASK63;
	k = _addcarry_u64(0, t0, t4, &d[0]);
	k = _addcarry_u64(k, t1, 0, &d[1]);
	k = _addcarry_u64(k, t2, 0, &d[2]);
	(void)_addcarry_u64(k, t3, 0, &d[3]);

#endif
}

/*
 * Multiplication.
 */
static inline void
f255_mul(uint64_t *d, uint64_t *a, uint64_t *b)
{
#if BR_INT128

	unsigned __int128 z;
	uint64_t t0, t1, t2, t3, t4, t5, t6, t7, th;

	/*
	 * Compute the product a*b over plain integers.
	 */
	z = (unsigned __int128)a[0] * (unsigned __int128)b[0];
	t0 = (uint64_t)z;
	z = (unsigned __int128)a[0] * (unsigned __int128)b[1] + (z >> 64);
	t1 = (uint64_t)z;
	z = (unsigned __int128)a[0] * (unsigned __int128)b[2] + (z >> 64);
	t2 = (uint64_t)z;
	z = (unsigned __int128)a[0] * (unsigned __int128)b[3] + (z >> 64);
	t3 = (uint64_t)z;
	t4 = (uint64_t)(z >> 64);

	z = (unsigned __int128)a[1] * (unsigned __int128)b[0]
		+ (unsigned __int128)t1;
	t1 = (uint64_t)z;
	z = (unsigned __int128)a[1] * (unsigned __int128)b[1]
		+ (unsigned __int128)t2 + (z >> 64);
	t2 = (uint64_t)z;
	z = (unsigned __int128)a[1] * (unsigned __int128)b[2]
		+ (unsigned __int128)t3 + (z >> 64);
	t3 = (uint64_t)z;
	z = (unsigned __int128)a[1] * (unsigned __int128)b[3]
		+ (unsigned __int128)t4 + (z >> 64);
	t4 = (uint64_t)z;
	t5 = (uint64_t)(z >> 64);

	z = (unsigned __int128)a[2] * (unsigned __int128)b[0]
		+ (unsigned __int128)t2;
	t2 = (uint64_t)z;
	z = (unsigned __int128)a[2] * (unsigned __int128)b[1]
		+ (unsigned __int128)t3 + (z >> 64);
	t3 = (uint64_t)z;
	z = (unsigned __int128)a[2] * (unsigned __int128)b[2]
		+ (unsigned __int128)t4 + (z >> 64);
	t4 = (uint64_t)z;
	z = (unsigned __int128)a[2] * (unsigned __int128)b[3]
		+ (unsigned __int128)t5 + (z >> 64);
	t5 = (uint64_t)z;
	t6 = (uint64_t)(z >> 64);

	z = (unsigned __int128)a[3] * (unsigned __int128)b[0]
		+ (unsigned __int128)t3;
	t3 = (uint64_t)z;
	z = (unsigned __int128)a[3] * (unsigned __int128)b[1]
		+ (unsigned __int128)t4 + (z >> 64);
	t4 = (uint64_t)z;
	z = (unsigned __int128)a[3] * (unsigned __int128)b[2]
		+ (unsigned __int128)t5 + (z >> 64);
	t5 = (uint64_t)z;
	z = (unsigned __int128)a[3] * (unsigned __int128)b[3]
		+ (unsigned __int128)t6 + (z >> 64);
	t6 = (uint64_t)z;
	t7 = (uint64_t)(z >> 64);

	/*
	 * Modulo p, we have:
	 *
	 *   2^255 = 19
	 *   2^510 = 19*19 = 361
	 *
	 * We split the intermediate t into three parts, in basis
	 * 2^255. The low one will be in t0..t3; the middle one in t4..t7.
	 * The upper one can only be a single bit (th), since the
	 * multiplication operands are at most 2^255+37 each.
	 */
	th = t7 >> 62;
	t7 = ((t7 << 1) | (t6 >> 63)) & MASK63;
	t6 = (t6 << 1) | (t5 >> 63);
	t5 = (t5 << 1) | (t4 >> 63);
	t4 = (t4 << 1) | (t3 >> 63);
	t3 &= MASK63;

	/*
	 * Multiply the middle part (t4..t7) by 19. We truncate it to
	 * 255 bits; the extra bits will go along with th.
	 */
	z = (unsigned __int128)t4 * 19;
	t4 = (uint64_t)z;
	z = (unsigned __int128)t5 * 19 + (z >> 64);
	t5 = (uint64_t)z;
	z = (unsigned __int128)t6 * 19 + (z >> 64);
	t6 = (uint64_t)z;
	z = (unsigned __int128)t7 * 19 + (z >> 64);
	t7 = (uint64_t)z & MASK63;

	th = (361 & -th) + (19 * (uint64_t)(z >> 63));

	/*
	 * Add elements together.
	 * At this point:
	 *   t0..t3 fits on 255 bits.
	 *   t4..t7 fits on 255 bits.
	 *   th <= 361 + 342 = 703.
	 */
	z = (unsigned __int128)t0 + (unsigned __int128)t4
		+ (unsigned __int128)th;
	t0 = (uint64_t)z;
	z = (unsigned __int128)t1 + (unsigned __int128)t5 + (z >> 64);
	t1 = (uint64_t)z;
	z = (unsigned __int128)t2 + (unsigned __int128)t6 + (z >> 64);
	t2 = (uint64_t)z;
	z = (unsigned __int128)t3 + (unsigned __int128)t7 + (z >> 64);
	t3 = (uint64_t)z & MASK63;
	th = (uint64_t)(z >> 63);

	/*
	 * Since the sum is at most 2^256 + 703, the two upper bits, in th,
	 * can only have value 0, 1 or 2. We just add th*19, which
	 * guarantees a result of at most 2^255+37.
	 */
	z = (unsigned __int128)t0 + (19 * th);
	d[0] = (uint64_t)z;
	z = (unsigned __int128)t1 + (z >> 64);
	d[1] = (uint64_t)z;
	z = (unsigned __int128)t2 + (z >> 64);
	d[2] = (uint64_t)z;
	d[3] = t3 + (uint64_t)(z >> 64);

#elif BR_UMUL128

	uint64_t t0, t1, t2, t3, t4, t5, t6, t7, th;
	uint64_t h0, h1, h2, h3;
	unsigned char k;

	/*
	 * Compute the product a*b over plain integers.
	 */
	t0 = _umul128(a[0], b[0], &h0);
	t1 = _umul128(a[0], b[1], &h1);
	k = _addcarry_u64(0, t1, h0, &t1);
	t2 = _umul128(a[0], b[2], &h2);
	k = _addcarry_u64(k, t2, h1, &t2);
	t3 = _umul128(a[0], b[3], &h3);
	k = _addcarry_u64(k, t3, h2, &t3);
	(void)_addcarry_u64(k, h3, 0, &t4);

	k = _addcarry_u64(0, _umul128(a[1], b[0], &h0), t1, &t1);
	k = _addcarry_u64(k, _umul128(a[1], b[1], &h1), t2, &t2);
	k = _addcarry_u64(k, _umul128(a[1], b[2], &h2), t3, &t3);
	k = _addcarry_u64(k, _umul128(a[1], b[3], &h3), t4, &t4);
	t5 = k;
	k = _addcarry_u64(0, t2, h0, &t2);
	k = _addcarry_u64(k, t3, h1, &t3);
	k = _addcarry_u64(k, t4, h2, &t4);
	(void)_addcarry_u64(k, t5, h3, &t5);

	k = _addcarry_u64(0, _umul128(a[2], b[0], &h0), t2, &t2);
	k = _addcarry_u64(k, _umul128(a[2], b[1], &h1), t3, &t3);
	k = _addcarry_u64(k, _umul128(a[2], b[2], &h2), t4, &t4);
	k = _addcarry_u64(k, _umul128(a[2], b[3], &h3), t5, &t5);
	t6 = k;
	k = _addcarry_u64(0, t3, h0, &t3);
	k = _addcarry_u64(k, t4, h1, &t4);
	k = _addcarry_u64(k, t5, h2, &t5);
	(void)_addcarry_u64(k, t6, h3, &t6);

	k = _addcarry_u64(0, _umul128(a[3], b[0], &h0), t3, &t3);
	k = _addcarry_u64(k, _umul128(a[3], b[1], &h1), t4, &t4);
	k = _addcarry_u64(k, _umul128(a[3], b[2], &h2), t5, &t5);
	k = _addcarry_u64(k, _umul128(a[3], b[3], &h3), t6, &t6);
	t7 = k;
	k = _addcarry_u64(0, t4, h0, &t4);
	k = _addcarry_u64(k, t5, h1, &t5);
	k = _addcarry_u64(k, t6, h2, &t6);
	(void)_addcarry_u64(k, t7, h3, &t7);

	/*
	 * Modulo p, we have:
	 *
	 *   2^255 = 19
	 *   2^510 = 19*19 = 361
	 *
	 * We split the intermediate t into three parts, in basis
	 * 2^255. The low one will be in t0..t3; the middle one in t4..t7.
	 * The upper one can only be a single bit (th), since the
	 * multiplication operands are at most 2^255+37 each.
	 */
	th = t7 >> 62;
	t7 = ((t7 << 1) | (t6 >> 63)) & MASK63;
	t6 = (t6 << 1) | (t5 >> 63);
	t5 = (t5 << 1) | (t4 >> 63);
	t4 = (t4 << 1) | (t3 >> 63);
	t3 &= MASK63;

	/*
	 * Multiply the middle part (t4..t7) by 19. We truncate it to
	 * 255 bits; the extra bits will go along with th.
	 */
	t4 = _umul128(t4, 19, &h0);
	t5 = _umul128(t5, 19, &h1);
	t6 = _umul128(t6, 19, &h2);
	t7 = _umul128(t7, 19, &h3);
	k = _addcarry_u64(0, t5, h0, &t5);
	k = _addcarry_u64(k, t6, h1, &t6);
	k = _addcarry_u64(k, t7, h2, &t7);
	(void)_addcarry_u64(k, h3, 0, &h3);
	th = (361 & -th) + (19 * ((h3 << 1) + (t7 >> 63)));
	t7 &= MASK63;

	/*
	 * Add elements together.
	 * At this point:
	 *   t0..t3 fits on 255 bits.
	 *   t4..t7 fits on 255 bits.
	 *   th <= 361 + 342 = 703.
	 */
	k = _addcarry_u64(0, t0, t4, &t0);
	k = _addcarry_u64(k, t1, t5, &t1);
	k = _addcarry_u64(k, t2, t6, &t2);
	k = _addcarry_u64(k, t3, t7, &t3);
	t4 = k;
	k = _addcarry_u64(0, t0, th, &t0);
	k = _addcarry_u64(k, t1, 0, &t1);
	k = _addcarry_u64(k, t2, 0, &t2);
	k = _addcarry_u64(k, t3, 0, &t3);
	(void)_addcarry_u64(k, t4, 0, &t4);

	th = (t4 << 1) + (t3 >> 63);
	t3 &= MASK63;

	/*
	 * Since the sum is at most 2^256 + 703, the two upper bits, in th,
	 * can only have value 0, 1 or 2. We just add th*19, which
	 * guarantees a result of at most 2^255+37.
	 */
	k = _addcarry_u64(0, t0, 19 * th, &d[0]);
	k = _addcarry_u64(k, t1, 0, &d[1]);
	k = _addcarry_u64(k, t2, 0, &d[2]);
	(void)_addcarry_u64(k, t3, 0, &d[3]);

#endif
}

/*
 * Multiplication by A24 = 121665.
 */
static inline void
f255_mul_a24(uint64_t *d, const uint64_t *a)
{
#if BR_INT128

	uint64_t t0, t1, t2, t3;
	unsigned __int128 z;

	z = (unsigned __int128)a[0] * 121665;
	t0 = (uint64_t)z;
	z = (unsigned __int128)a[1] * 121665 + (z >> 64);
	t1 = (uint64_t)z;
	z = (unsigned __int128)a[2] * 121665 + (z >> 64);
	t2 = (uint64_t)z;
	z = (unsigned __int128)a[3] * 121665 + (z >> 64);
	t3 = (uint64_t)z & MASK63;

	z = (unsigned __int128)t0 + (19 * (uint64_t)(z >> 63));
	t0 = (uint64_t)z;
	z = (unsigned __int128)t1 + (z >> 64);
	t1 = (uint64_t)z;
	z = (unsigned __int128)t2 + (z >> 64);
	t2 = (uint64_t)z;
	t3 = t3 + (uint64_t)(z >> 64);

	z = (unsigned __int128)t0 + (19 & -(t3 >> 63));
	d[0] = (uint64_t)z;
	z = (unsigned __int128)t1 + (z >> 64);
	d[1] = (uint64_t)z;
	z = (unsigned __int128)t2 + (z >> 64);
	d[2] = (uint64_t)z;
	d[3] = (t3 & MASK63) + (uint64_t)(z >> 64);

#elif BR_UMUL128

	uint64_t t0, t1, t2, t3, t4, h0, h1, h2, h3;
	unsigned char k;

	t0 = _umul128(a[0], 121665, &h0);
	t1 = _umul128(a[1], 121665, &h1);
	k = _addcarry_u64(0, t1, h0, &t1);
	t2 = _umul128(a[2], 121665, &h2);
	k = _addcarry_u64(k, t2, h1, &t2);
	t3 = _umul128(a[3], 121665, &h3);
	k = _addcarry_u64(k, t3, h2, &t3);
	(void)_addcarry_u64(k, h3, 0, &t4);

	t4 = (t4 << 1) + (t3 >> 63);
	t3 &= MASK63;
	k = _addcarry_u64(0, t0, 19 * t4, &t0);
	k = _addcarry_u64(k, t1, 0, &t1);
	k = _addcarry_u64(k, t2, 0, &t2);
	(void)_addcarry_u64(k, t3, 0, &t3);

	t4 = 19 & -(t3 >> 63);
	t3 &= MASK63;
	k = _addcarry_u64(0, t0, t4, &d[0]);
	k = _addcarry_u64(k, t1, 0, &d[1]);
	k = _addcarry_u64(k, t2, 0, &d[2]);
	(void)_addcarry_u64(k, t3, 0, &d[3]);

#endif
}

/*
 * Finalize reduction.
 */
static inline void
f255_final_reduce(uint64_t *a)
{
#if BR_INT128

	uint64_t t0, t1, t2, t3, m;
	unsigned __int128 z;

	/*
	 * We add 19. If the result (in t) is below 2^255, then a[]
	 * is already less than 2^255-19, thus already reduced.
	 * Otherwise, we subtract 2^255 from t[], in which case we
	 * have t = a - (2^255-19), and that's our result.
	 */
	z = (unsigned __int128)a[0] + 19;
	t0 = (uint64_t)z;
	z = (unsigned __int128)a[1] + (z >> 64);
	t1 = (uint64_t)z;
	z = (unsigned __int128)a[2] + (z >> 64);
	t2 = (uint64_t)z;
	t3 = a[3] + (uint64_t)(z >> 64);

	m = -(t3 >> 63);
	t3 &= MASK63;
	a[0] ^= m & (a[0] ^ t0);
	a[1] ^= m & (a[1] ^ t1);
	a[2] ^= m & (a[2] ^ t2);
	a[3] ^= m & (a[3] ^ t3);

#elif BR_UMUL128

	uint64_t t0, t1, t2, t3, m;
	unsigned char k;

	/*
	 * We add 19. If the result (in t) is below 2^255, then a[]
	 * is already less than 2^255-19, thus already reduced.
	 * Otherwise, we subtract 2^255 from t[], in which case we
	 * have t = a - (2^255-19), and that's our result.
	 */
	k = _addcarry_u64(0, a[0], 19, &t0);
	k = _addcarry_u64(k, a[1], 0, &t1);
	k = _addcarry_u64(k, a[2], 0, &t2);
	(void)_addcarry_u64(k, a[3], 0, &t3);

	m = -(t3 >> 63);
	t3 &= MASK63;
	a[0] ^= m & (a[0] ^ t0);
	a[1] ^= m & (a[1] ^ t1);
	a[2] ^= m & (a[2] ^ t2);
	a[3] ^= m & (a[3] ^ t3);

#endif
}

static uint32_t
api_mul(unsigned char *G, size_t Glen,
	const unsigned char *kb, size_t kblen, int curve)
{
	unsigned char k[32];
	uint64_t x1[4], x2[4], z2[4], x3[4], z3[4];
	uint32_t swap;
	int i;

	(void)curve;

	/*
	 * Points are encoded over exactly 32 bytes. Multipliers must fit
	 * in 32 bytes as well.
	 */
	if (Glen != 32 || kblen > 32) {
		return 0;
	}

	/*
	 * RFC 7748 mandates that the high bit of the last point byte must
	 * be ignored/cleared.
	 */
	x1[0] = br_dec64le(&G[ 0]);
	x1[1] = br_dec64le(&G[ 8]);
	x1[2] = br_dec64le(&G[16]);
	x1[3] = br_dec64le(&G[24]) & MASK63;

	/*
	 * We can use memset() to clear values, because exact-width types
	 * like uint64_t are guaranteed to have no padding bits or
	 * trap representations.
	 */
	memset(x2, 0, sizeof x2);
	x2[0] = 1;
	memset(z2, 0, sizeof z2);
	memcpy(x3, x1, sizeof x1);
	memcpy(z3, x2, sizeof x2);

	/*
	 * The multiplier is provided in big-endian notation, and
	 * possibly shorter than 32 bytes.
	 */
	memset(k, 0, (sizeof k) - kblen);
	memcpy(k + (sizeof k) - kblen, kb, kblen);
	k[31] &= 0xF8;
	k[0] &= 0x7F;
	k[0] |= 0x40;

	swap = 0;

	for (i = 254; i >= 0; i --) {
		uint64_t a[4], aa[4], b[4], bb[4], e[4];
		uint64_t c[4], d[4], da[4], cb[4];
		uint32_t kt;

		kt = (k[31 - (i >> 3)] >> (i & 7)) & 1;
		swap ^= kt;
		f255_cswap(x2, x3, swap);
		f255_cswap(z2, z3, swap);
		swap = kt;

		/* A = x_2 + z_2 */
		f255_add(a, x2, z2);

		/* AA = A^2 */
		f255_mul(aa, a, a);

		/* B = x_2 - z_2 */
		f255_sub(b, x2, z2);

		/* BB = B^2 */
		f255_mul(bb, b, b);

		/* E = AA - BB */
		f255_sub(e, aa, bb);

		/* C = x_3 + z_3 */
		f255_add(c, x3, z3);

		/* D = x_3 - z_3 */
		f255_sub(d, x3, z3);

		/* DA = D * A */
		f255_mul(da, d, a);

		/* CB = C * B */
		f255_mul(cb, c, b);

		/* x_3 = (DA + CB)^2 */
		f255_add(x3, da, cb);
		f255_mul(x3, x3, x3);

		/* z_3 = x_1 * (DA - CB)^2 */
		f255_sub(z3, da, cb);
		f255_mul(z3, z3, z3);
		f255_mul(z3, x1, z3);

		/* x_2 = AA * BB */
		f255_mul(x2, aa, bb);

		/* z_2 = E * (AA + a24 * E) */
		f255_mul_a24(z2, e);
		f255_add(z2, aa, z2);
		f255_mul(z2, e, z2);
	}

	f255_cswap(x2, x3, swap);
	f255_cswap(z2, z3, swap);

	/*
	 * Compute 1/z2 = z2^(p-2). Since p = 2^255-19, we can mutualize
	 * most non-squarings. We use x1 and x3, now useless, as temporaries.
	 */
	memcpy(x1, z2, sizeof z2);
	for (i = 0; i < 15; i ++) {
		f255_mul(x1, x1, x1);
		f255_mul(x1, x1, z2);
	}
	memcpy(x3, x1, sizeof x1);
	for (i = 0; i < 14; i ++) {
		int j;

		for (j = 0; j < 16; j ++) {
			f255_mul(x3, x3, x3);
		}
		f255_mul(x3, x3, x1);
	}
	for (i = 14; i >= 0; i --) {
		f255_mul(x3, x3, x3);
		if ((0xFFEB >> i) & 1) {
			f255_mul(x3, z2, x3);
		}
	}

	/*
	 * Compute x2/z2. We have 1/z2 in x3.
	 */
	f255_mul(x2, x2, x3);
	f255_final_reduce(x2);

	/*
	 * Encode the final x2 value in little-endian.
	 */
	br_enc64le(G,      x2[0]);
	br_enc64le(G +  8, x2[1]);
	br_enc64le(G + 16, x2[2]);
	br_enc64le(G + 24, x2[3]);
	return 1;
}

static size_t
api_mulgen(unsigned char *R,
	const unsigned char *x, size_t xlen, int curve)
{
	const unsigned char *G;
	size_t Glen;

	G = api_generator(curve, &Glen);
	memcpy(R, G, Glen);
	api_mul(R, Glen, x, xlen, curve);
	return Glen;
}

static uint32_t
api_muladd(unsigned char *A, const unsigned char *B, size_t len,
	const unsigned char *x, size_t xlen,
	const unsigned char *y, size_t ylen, int curve)
{
	/*
	 * We don't implement this method, since it is used for ECDSA
	 * only, and there is no ECDSA over Curve25519 (which instead
	 * uses EdDSA).
	 */
	(void)A;
	(void)B;
	(void)len;
	(void)x;
	(void)xlen;
	(void)y;
	(void)ylen;
	(void)curve;
	return 0;
}

/* see bearssl_ec.h */
const br_ec_impl br_ec_c25519_m64 = {
	(uint32_t)0x20000000,
	&api_generator,
	&api_order,
	&api_xoff,
	&api_mul,
	&api_mulgen,
	&api_muladd
};

/* see bearssl_ec.h */
const br_ec_impl *
br_ec_c25519_m64_get(void)
{
	return &br_ec_c25519_m64;
}

#else

/* see bearssl_ec.h */
const br_ec_impl *
br_ec_c25519_m64_get(void)
{
	return 0;
}

#endif