aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/BearSSL/src/inner.h
blob: 986220f0f5421ef11db5a7dd4c5c60e15043d7ab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
/*
 * Copyright (c) 2016 Thomas Pornin <pornin@bolet.org>
 *
 * Permission is hereby granted, free of charge, to any person obtaining 
 * a copy of this software and associated documentation files (the
 * "Software"), to deal in the Software without restriction, including
 * without limitation the rights to use, copy, modify, merge, publish,
 * distribute, sublicense, and/or sell copies of the Software, and to
 * permit persons to whom the Software is furnished to do so, subject to
 * the following conditions:
 *
 * The above copyright notice and this permission notice shall be 
 * included in all copies or substantial portions of the Software.
 *
 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 
 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 
 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
 * SOFTWARE.
 */

#ifndef INNER_H__
#define INNER_H__

#include <string.h>
#include <limits.h>

#include "config.h"
#include "bearssl.h"

/*
 * On MSVC, disable the warning about applying unary minus on an
 * unsigned type: it is standard, we do it all the time, and for
 * good reasons.
 */
#if _MSC_VER
#pragma warning( disable : 4146 )
#endif

/*
 * Maximum size for a RSA modulus (in bits). Allocated stack buffers
 * depend on that size, so this value should be kept small. Currently,
 * 2048-bit RSA keys offer adequate security, and should still do so for
 * the next few decades; however, a number of widespread PKI have
 * already set their root keys to RSA-4096, so we should be able to
 * process such keys.
 *
 * This value MUST be a multiple of 64. This value MUST NOT exceed 47666
 * (some computations in RSA key generation rely on the factor size being
 * no more than 23833 bits). RSA key sizes beyond 3072 bits don't make a
 * lot of sense anyway.
 */
#define BR_MAX_RSA_SIZE   4096

/*
 * Minimum size for a RSA modulus (in bits); this value is used only to
 * filter out invalid parameters for key pair generation. Normally,
 * applications should not use RSA keys smaller than 2048 bits; but some
 * specific cases might need shorter keys, for legacy or research
 * purposes.
 */
#define BR_MIN_RSA_SIZE   512

/*
 * Maximum size for a RSA factor (in bits). This is for RSA private-key
 * operations. Default is to support factors up to a bit more than half
 * the maximum modulus size.
 *
 * This value MUST be a multiple of 32.
 */
#define BR_MAX_RSA_FACTOR   ((BR_MAX_RSA_SIZE + 64) >> 1)

/*
 * Maximum size for an EC curve (modulus or order), in bits. Size of
 * stack buffers depends on that parameter. This size MUST be a multiple
 * of 8 (so that decoding an integer with that many bytes does not
 * overflow).
 */
#define BR_MAX_EC_SIZE   528

/*
 * Some macros to recognize the current architecture. Right now, we are
 * interested into automatically recognizing architecture with efficient
 * 64-bit types so that we may automatically use implementations that
 * use 64-bit registers in that case. Future versions may detect, e.g.,
 * availability of SSE2 intrinsics.
 *
 * If 'unsigned long' is a 64-bit type, then we assume that 64-bit types
 * are efficient. Otherwise, we rely on macros that depend on compiler,
 * OS and architecture. In any case, failure to detect the architecture
 * as 64-bit means that the 32-bit code will be used, and that code
 * works also on 64-bit architectures (the 64-bit code may simply be
 * more efficient).
 *
 * The test on 'unsigned long' should already catch most cases, the one
 * notable exception being Windows code where 'unsigned long' is kept to
 * 32-bit for compatibility with all the legacy code that liberally uses
 * the 'DWORD' type for 32-bit values.
 *
 * Macro names are taken from: http://nadeausoftware.com/articles/2012/02/c_c_tip_how_detect_processor_type_using_compiler_predefined_macros
 */
#ifndef BR_64
#if ((ULONG_MAX >> 31) >> 31) == 3
#define BR_64   1
#elif defined(__ia64) || defined(__itanium__) || defined(_M_IA64)
#define BR_64   1
#elif defined(__powerpc64__) || defined(__ppc64__) || defined(__PPC64__) \
	|| defined(__64BIT__) || defined(_LP64) || defined(__LP64__)
#define BR_64   1
#elif defined(__sparc64__)
#define BR_64   1
#elif defined(__x86_64__) || defined(_M_X64)
#define BR_64   1
#elif defined(__aarch64__) || defined(_M_ARM64)
#define BR_64   1
#elif defined(__mips64)
#define BR_64   1
#endif
#endif

/*
 * Set BR_LOMUL on platforms where it makes sense.
 */
#ifndef BR_LOMUL
#if BR_ARMEL_CORTEXM_GCC
#define BR_LOMUL   1
#endif
#endif

/*
 * Architecture detection.
 */
#ifndef BR_i386
#if __i386__ || _M_IX86
#define BR_i386   1
#endif
#endif

#ifndef BR_amd64
#if __x86_64__ || _M_X64
#define BR_amd64   1
#endif
#endif

/*
 * Compiler brand and version.
 *
 * Implementations that use intrinsics need to detect the compiler type
 * and version because some specific actions may be needed to activate
 * the corresponding opcodes, both for header inclusion, and when using
 * them in a function.
 *
 * BR_GCC, BR_CLANG and BR_MSC will be set to 1 for, respectively, GCC,
 * Clang and MS Visual C. For each of them, sub-macros will be defined
 * for versions; each sub-macro is set whenever the compiler version is
 * at least as recent as the one corresponding to the macro.
 */

/*
 * GCC thresholds are on versions 4.4 to 4.9 and 5.0.
 */
#ifndef BR_GCC
#if __GNUC__ && !__clang__
#define BR_GCC   1

#if __GNUC__ > 4
#define BR_GCC_5_0   1
#elif __GNUC__ == 4 && __GNUC_MINOR__ >= 9
#define BR_GCC_4_9   1
#elif __GNUC__ == 4 && __GNUC_MINOR__ >= 8
#define BR_GCC_4_8   1
#elif __GNUC__ == 4 && __GNUC_MINOR__ >= 7
#define BR_GCC_4_7   1
#elif __GNUC__ == 4 && __GNUC_MINOR__ >= 6
#define BR_GCC_4_6   1
#elif __GNUC__ == 4 && __GNUC_MINOR__ >= 5
#define BR_GCC_4_5   1
#elif __GNUC__ == 4 && __GNUC_MINOR__ >= 4
#define BR_GCC_4_4   1
#endif

#if BR_GCC_5_0
#define BR_GCC_4_9   1
#endif
#if BR_GCC_4_9
#define BR_GCC_4_8   1
#endif
#if BR_GCC_4_8
#define BR_GCC_4_7   1
#endif
#if BR_GCC_4_7
#define BR_GCC_4_6   1
#endif
#if BR_GCC_4_6
#define BR_GCC_4_5   1
#endif
#if BR_GCC_4_5
#define BR_GCC_4_4   1
#endif

#endif
#endif

/*
 * Clang thresholds are on versions 3.7.0 and 3.8.0.
 */
#ifndef BR_CLANG
#if __clang__
#define BR_CLANG   1

#if __clang_major__ > 3 || (__clang_major__ == 3 && __clang_minor__ >= 8)
#define BR_CLANG_3_8   1
#elif __clang_major__ == 3 && __clang_minor__ >= 7
#define BR_CLANG_3_7   1
#endif

#if BR_CLANG_3_8
#define BR_CLANG_3_7   1
#endif

#endif
#endif

/*
 * MS Visual C thresholds are on Visual Studio 2005 to 2015.
 */
#ifndef BR_MSC
#if _MSC_VER
#define BR_MSC   1

#if _MSC_VER >= 1900
#define BR_MSC_2015   1
#elif _MSC_VER >= 1800
#define BR_MSC_2013   1
#elif _MSC_VER >= 1700
#define BR_MSC_2012   1
#elif _MSC_VER >= 1600
#define BR_MSC_2010   1
#elif _MSC_VER >= 1500
#define BR_MSC_2008   1
#elif _MSC_VER >= 1400
#define BR_MSC_2005   1
#endif

#if BR_MSC_2015
#define BR_MSC_2013   1
#endif
#if BR_MSC_2013
#define BR_MSC_2012   1
#endif
#if BR_MSC_2012
#define BR_MSC_2010   1
#endif
#if BR_MSC_2010
#define BR_MSC_2008   1
#endif
#if BR_MSC_2008
#define BR_MSC_2005   1
#endif

#endif
#endif

/*
 * GCC 4.4+ and Clang 3.7+ allow tagging specific functions with a
 * 'target' attribute that activates support for specific opcodes.
 */
#if BR_GCC_4_4 || BR_CLANG_3_7
#define BR_TARGET(x)   __attribute__((target(x)))
#else
#define BR_TARGET(x)
#endif

/*
 * AES-NI intrinsics are available on x86 (32-bit and 64-bit) with
 * GCC 4.8+, Clang 3.7+ and MSC 2012+.
 */
#ifndef BR_AES_X86NI
#if (BR_i386 || BR_amd64) && (BR_GCC_4_8 || BR_CLANG_3_7 || BR_MSC_2012)
#define BR_AES_X86NI   1
#endif
#endif

/*
 * SSE2 intrinsics are available on x86 (32-bit and 64-bit) with
 * GCC 4.4+, Clang 3.7+ and MSC 2005+.
 */
#ifndef BR_SSE2
#if (BR_i386 || BR_amd64) && (BR_GCC_4_4 || BR_CLANG_3_7 || BR_MSC_2005)
#define BR_SSE2   1
#endif
#endif

/*
 * RDRAND intrinsics are available on x86 (32-bit and 64-bit) with
 * GCC 4.6+, Clang 3.7+ and MSC 2012+.
 */
#ifndef BR_RDRAND
#if (BR_i386 || BR_amd64) && (BR_GCC_4_6 || BR_CLANG_3_7 || BR_MSC_2012)
#define BR_RDRAND   1
#endif
#endif

/*
 * Determine type of OS for random number generation. Macro names and
 * values are documented on:
 *    https://sourceforge.net/p/predef/wiki/OperatingSystems/
 *
 * TODO: enrich the list of detected system. Also add detection for
 * alternate system calls like getentropy(), which are usually
 * preferable when available.
 */

#ifndef BR_USE_URANDOM
#if defined _AIX \
	|| defined __ANDROID__ \
	|| defined __FreeBSD__ \
	|| defined __NetBSD__ \
	|| defined __OpenBSD__ \
	|| defined __DragonFly__ \
	|| defined __linux__ \
	|| (defined __sun && (defined __SVR4 || defined __svr4__)) \
	|| (defined __APPLE__ && defined __MACH__)
#define BR_USE_URANDOM   1
#endif
#endif

#ifndef BR_USE_WIN32_RAND
#if defined _WIN32 || defined _WIN64
#define BR_USE_WIN32_RAND   1
#endif
#endif

/*
 * POWER8 crypto support. We rely on compiler macros for the
 * architecture, since we do not have a reliable, simple way to detect
 * the required support at runtime (we could try running an opcode, and
 * trapping the exception or signal on illegal instruction, but this
 * induces some non-trivial OS dependencies that we would prefer to
 * avoid if possible).
 */
#ifndef BR_POWER8
#if __GNUC__ && ((_ARCH_PWR8 || _ARCH_PPC) && __CRYPTO__)
#define BR_POWER8   1
#endif
#endif

/*
 * Detect endinanness on POWER8.
 */
#if BR_POWER8
#if defined BR_POWER8_LE
#undef BR_POWER8_BE
#if BR_POWER8_LE
#define BR_POWER8_BE   0
#else
#define BR_POWER8_BE   1
#endif
#elif defined BR_POWER8_BE
#undef BR_POWER8_LE
#if BR_POWER8_BE
#define BR_POWER8_LE   0
#else
#define BR_POWER8_LE   1
#endif
#else
#if __LITTLE_ENDIAN__
#define BR_POWER8_LE   1
#define BR_POWER8_BE   0
#else
#define BR_POWER8_LE   0
#define BR_POWER8_BE   1
#endif
#endif
#endif

/*
 * Detect support for 128-bit integers.
 */
#if !defined BR_INT128 && !defined BR_UMUL128
#ifdef __SIZEOF_INT128__
#define BR_INT128    1
#elif _M_X64
#define BR_UMUL128   1
#endif
#endif

/*
 * Detect support for unaligned accesses with known endianness.
 *
 *  x86 (both 32-bit and 64-bit) is little-endian and allows unaligned
 *  accesses.
 *
 *  POWER/PowerPC allows unaligned accesses when big-endian. POWER8 and
 *  later also allow unaligned accesses when little-endian.
 */
#if !defined BR_LE_UNALIGNED && !defined BR_BE_UNALIGNED

#if __i386 || __i386__ || __x86_64__ || _M_IX86 || _M_X64
#define BR_LE_UNALIGNED   1
#elif BR_POWER8_BE
#define BR_BE_UNALIGNED   1
#elif BR_POWER8_LE
#define BR_LE_UNALIGNED   1
#elif (__powerpc__ || __powerpc64__ || _M_PPC || _ARCH_PPC || _ARCH_PPC64) \
	&& __BIG_ENDIAN__
#define BR_BE_UNALIGNED   1
#endif

#endif

/*
 * Detect support for an OS-provided time source.
 */

#ifndef BR_USE_UNIX_TIME
#if defined __unix__ || defined __linux__ \
	|| defined _POSIX_SOURCE || defined _POSIX_C_SOURCE \
	|| (defined __APPLE__ && defined __MACH__)
#define BR_USE_UNIX_TIME   1
#endif
#endif

#ifndef BR_USE_WIN32_TIME
#if defined _WIN32 || defined _WIN64
#define BR_USE_WIN32_TIME   1
#endif
#endif

/* ==================================================================== */
/*
 * Encoding/decoding functions.
 *
 * 32-bit and 64-bit decoding, both little-endian and big-endian, is
 * implemented with the inline functions below.
 *
 * When allowed by some compile-time options (autodetected or provided),
 * optimised code is used, to perform direct memory access when the
 * underlying architecture supports it, both for endianness and
 * alignment. This, however, may trigger strict aliasing issues; the
 * code below uses unions to perform (supposedly) safe type punning.
 * Since the C aliasing rules are relatively complex and were amended,
 * or at least re-explained with different phrasing, in all successive
 * versions of the C standard, it is always a bit risky to bet that any
 * specific version of a C compiler got it right, for some notion of
 * "right".
 */

typedef union {
	uint16_t u;
	unsigned char b[sizeof(uint16_t)];
} br_union_u16;

typedef union {
	uint32_t u;
	unsigned char b[sizeof(uint32_t)];
} br_union_u32;

typedef union {
	uint64_t u;
	unsigned char b[sizeof(uint64_t)];
} br_union_u64;

static inline void
br_enc16le(void *dst, unsigned x)
{
#if BR_LE_UNALIGNED
	((br_union_u16 *)dst)->u = x;
#else
	unsigned char *buf;

	buf = dst;
	buf[0] = (unsigned char)x;
	buf[1] = (unsigned char)(x >> 8);
#endif
}

static inline void
br_enc16be(void *dst, unsigned x)
{
#if BR_BE_UNALIGNED
	((br_union_u16 *)dst)->u = x;
#else
	unsigned char *buf;

	buf = dst;
	buf[0] = (unsigned char)(x >> 8);
	buf[1] = (unsigned char)x;
#endif
}

static inline unsigned
br_dec16le(const void *src)
{
#if BR_LE_UNALIGNED
	return ((const br_union_u16 *)src)->u;
#else
	const unsigned char *buf;

	buf = src;
	return (unsigned)buf[0] | ((unsigned)buf[1] << 8);
#endif
}

static inline unsigned
br_dec16be(const void *src)
{
#if BR_BE_UNALIGNED
	return ((const br_union_u16 *)src)->u;
#else
	const unsigned char *buf;

	buf = src;
	return ((unsigned)buf[0] << 8) | (unsigned)buf[1];
#endif
}

static inline void
br_enc32le(void *dst, uint32_t x)
{
#if BR_LE_UNALIGNED
	((br_union_u32 *)dst)->u = x;
#else
	unsigned char *buf;

	buf = dst;
	buf[0] = (unsigned char)x;
	buf[1] = (unsigned char)(x >> 8);
	buf[2] = (unsigned char)(x >> 16);
	buf[3] = (unsigned char)(x >> 24);
#endif
}

static inline void
br_enc32be(void *dst, uint32_t x)
{
#if BR_BE_UNALIGNED
	((br_union_u32 *)dst)->u = x;
#else
	unsigned char *buf;

	buf = dst;
	buf[0] = (unsigned char)(x >> 24);
	buf[1] = (unsigned char)(x >> 16);
	buf[2] = (unsigned char)(x >> 8);
	buf[3] = (unsigned char)x;
#endif
}

static inline uint32_t
br_dec32le(const void *src)
{
#if BR_LE_UNALIGNED
	return ((const br_union_u32 *)src)->u;
#else
	const unsigned char *buf;

	buf = src;
	return (uint32_t)buf[0]
		| ((uint32_t)buf[1] << 8)
		| ((uint32_t)buf[2] << 16)
		| ((uint32_t)buf[3] << 24);
#endif
}

static inline uint32_t
br_dec32be(const void *src)
{
#if BR_BE_UNALIGNED
	return ((const br_union_u32 *)src)->u;
#else
	const unsigned char *buf;

	buf = src;
	return ((uint32_t)buf[0] << 24)
		| ((uint32_t)buf[1] << 16)
		| ((uint32_t)buf[2] << 8)
		| (uint32_t)buf[3];
#endif
}

static inline void
br_enc64le(void *dst, uint64_t x)
{
#if BR_LE_UNALIGNED
	((br_union_u64 *)dst)->u = x;
#else
	unsigned char *buf;

	buf = dst;
	br_enc32le(buf, (uint32_t)x);
	br_enc32le(buf + 4, (uint32_t)(x >> 32));
#endif
}

static inline void
br_enc64be(void *dst, uint64_t x)
{
#if BR_BE_UNALIGNED
	((br_union_u64 *)dst)->u = x;
#else
	unsigned char *buf;

	buf = dst;
	br_enc32be(buf, (uint32_t)(x >> 32));
	br_enc32be(buf + 4, (uint32_t)x);
#endif
}

static inline uint64_t
br_dec64le(const void *src)
{
#if BR_LE_UNALIGNED
	return ((const br_union_u64 *)src)->u;
#else
	const unsigned char *buf;

	buf = src;
	return (uint64_t)br_dec32le(buf)
		| ((uint64_t)br_dec32le(buf + 4) << 32);
#endif
}

static inline uint64_t
br_dec64be(const void *src)
{
#if BR_BE_UNALIGNED
	return ((const br_union_u64 *)src)->u;
#else
	const unsigned char *buf;

	buf = src;
	return ((uint64_t)br_dec32be(buf) << 32)
		| (uint64_t)br_dec32be(buf + 4);
#endif
}

/*
 * Range decoding and encoding (for several successive values).
 */
void br_range_dec16le(uint16_t *v, size_t num, const void *src);
void br_range_dec16be(uint16_t *v, size_t num, const void *src);
void br_range_enc16le(void *dst, const uint16_t *v, size_t num);
void br_range_enc16be(void *dst, const uint16_t *v, size_t num);

void br_range_dec32le(uint32_t *v, size_t num, const void *src);
void br_range_dec32be(uint32_t *v, size_t num, const void *src);
void br_range_enc32le(void *dst, const uint32_t *v, size_t num);
void br_range_enc32be(void *dst, const uint32_t *v, size_t num);

void br_range_dec64le(uint64_t *v, size_t num, const void *src);
void br_range_dec64be(uint64_t *v, size_t num, const void *src);
void br_range_enc64le(void *dst, const uint64_t *v, size_t num);
void br_range_enc64be(void *dst, const uint64_t *v, size_t num);

/*
 * Byte-swap a 32-bit integer.
 */
static inline uint32_t
br_swap32(uint32_t x)
{
	x = ((x & (uint32_t)0x00FF00FF) << 8)
		| ((x >> 8) & (uint32_t)0x00FF00FF);
	return (x << 16) | (x >> 16);
}

/* ==================================================================== */
/*
 * Support code for hash functions.
 */

/*
 * IV for MD5, SHA-1, SHA-224 and SHA-256.
 */
extern const uint32_t br_md5_IV[];
extern const uint32_t br_sha1_IV[];
extern const uint32_t br_sha224_IV[];
extern const uint32_t br_sha256_IV[];

/*
 * Round functions for MD5, SHA-1, SHA-224 and SHA-256 (SHA-224 and
 * SHA-256 use the same round function).
 */
void br_md5_round(const unsigned char *buf, uint32_t *val);
void br_sha1_round(const unsigned char *buf, uint32_t *val);
void br_sha2small_round(const unsigned char *buf, uint32_t *val);

/*
 * The core function for the TLS PRF. It computes
 * P_hash(secret, label + seed), and XORs the result into the dst buffer.
 */
void br_tls_phash(void *dst, size_t len,
	const br_hash_class *dig,
	const void *secret, size_t secret_len, const char *label,
	size_t seed_num, const br_tls_prf_seed_chunk *seed);

/*
 * Copy all configured hash implementations from a multihash context
 * to another.
 */
static inline void
br_multihash_copyimpl(br_multihash_context *dst,
	const br_multihash_context *src)
{
	memcpy((void *)dst->impl, src->impl, sizeof src->impl);
}

/* ==================================================================== */
/*
 * Constant-time primitives. These functions manipulate 32-bit values in
 * order to provide constant-time comparisons and multiplexers.
 *
 * Boolean values (the "ctl" bits) MUST have value 0 or 1.
 *
 * Implementation notes:
 * =====================
 *
 * The uintN_t types are unsigned and with width exactly N bits; the C
 * standard guarantees that computations are performed modulo 2^N, and
 * there can be no overflow. Negation (unary '-') works on unsigned types
 * as well.
 *
 * The intN_t types are guaranteed to have width exactly N bits, with no
 * padding bit, and using two's complement representation. Casting
 * intN_t to uintN_t really is conversion modulo 2^N. Beware that intN_t
 * types, being signed, trigger implementation-defined behaviour on
 * overflow (including raising some signal): with GCC, while modular
 * arithmetics are usually applied, the optimizer may assume that
 * overflows don't occur (unless the -fwrapv command-line option is
 * added); Clang has the additional -ftrapv option to explicitly trap on
 * integer overflow or underflow.
 */

/*
 * Negate a boolean.
 */
static inline uint32_t
NOT(uint32_t ctl)
{
	return ctl ^ 1;
}

/*
 * Multiplexer: returns x if ctl == 1, y if ctl == 0.
 */
static inline uint32_t
MUX(uint32_t ctl, uint32_t x, uint32_t y)
{
	return y ^ (-ctl & (x ^ y));
}

/*
 * Equality check: returns 1 if x == y, 0 otherwise.
 */
static inline uint32_t
EQ(uint32_t x, uint32_t y)
{
	uint32_t q;

	q = x ^ y;
	return NOT((q | -q) >> 31);
}

/*
 * Inequality check: returns 1 if x != y, 0 otherwise.
 */
static inline uint32_t
NEQ(uint32_t x, uint32_t y)
{
	uint32_t q;

	q = x ^ y;
	return (q | -q) >> 31;
}

/*
 * Comparison: returns 1 if x > y, 0 otherwise.
 */
static inline uint32_t
GT(uint32_t x, uint32_t y)
{
	/*
	 * If both x < 2^31 and x < 2^31, then y-x will have its high
	 * bit set if x > y, cleared otherwise.
	 *
	 * If either x >= 2^31 or y >= 2^31 (but not both), then the
	 * result is the high bit of x.
	 *
	 * If both x >= 2^31 and y >= 2^31, then we can virtually
	 * subtract 2^31 from both, and we are back to the first case.
	 * Since (y-2^31)-(x-2^31) = y-x, the subtraction is already
	 * fine.
	 */
	uint32_t z;

	z = y - x;
	return (z ^ ((x ^ y) & (x ^ z))) >> 31;
}

/*
 * Other comparisons (greater-or-equal, lower-than, lower-or-equal).
 */
#define GE(x, y)   NOT(GT(y, x))
#define LT(x, y)   GT(y, x)
#define LE(x, y)   NOT(GT(x, y))

/*
 * General comparison: returned value is -1, 0 or 1, depending on
 * whether x is lower than, equal to, or greater than y.
 */
static inline int32_t
CMP(uint32_t x, uint32_t y)
{
	return (int32_t)GT(x, y) | -(int32_t)GT(y, x);
}

/*
 * Returns 1 if x == 0, 0 otherwise. Take care that the operand is signed.
 */
static inline uint32_t
EQ0(int32_t x)
{
	uint32_t q;

	q = (uint32_t)x;
	return ~(q | -q) >> 31;
}

/*
 * Returns 1 if x > 0, 0 otherwise. Take care that the operand is signed.
 */
static inline uint32_t
GT0(int32_t x)
{
	/*
	 * High bit of -x is 0 if x == 0, but 1 if x > 0.
	 */
	uint32_t q;

	q = (uint32_t)x;
	return (~q & -q) >> 31;
}

/*
 * Returns 1 if x >= 0, 0 otherwise. Take care that the operand is signed.
 */
static inline uint32_t
GE0(int32_t x)
{
	return ~(uint32_t)x >> 31;
}

/*
 * Returns 1 if x < 0, 0 otherwise. Take care that the operand is signed.
 */
static inline uint32_t
LT0(int32_t x)
{
	return (uint32_t)x >> 31;
}

/*
 * Returns 1 if x <= 0, 0 otherwise. Take care that the operand is signed.
 */
static inline uint32_t
LE0(int32_t x)
{
	uint32_t q;

	/*
	 * ~-x has its high bit set if and only if -x is nonnegative (as
	 * a signed int), i.e. x is in the -(2^31-1) to 0 range. We must
	 * do an OR with x itself to account for x = -2^31.
	 */
	q = (uint32_t)x;
	return (q | ~-q) >> 31;
}

/*
 * Conditional copy: src[] is copied into dst[] if and only if ctl is 1.
 * dst[] and src[] may overlap completely (but not partially).
 */
void br_ccopy(uint32_t ctl, void *dst, const void *src, size_t len);

#define CCOPY   br_ccopy

/*
 * Compute the bit length of a 32-bit integer. Returned value is between 0
 * and 32 (inclusive).
 */
static inline uint32_t
BIT_LENGTH(uint32_t x)
{
	uint32_t k, c;

	k = NEQ(x, 0);
	c = GT(x, 0xFFFF); x = MUX(c, x >> 16, x); k += c << 4;
	c = GT(x, 0x00FF); x = MUX(c, x >>  8, x); k += c << 3;
	c = GT(x, 0x000F); x = MUX(c, x >>  4, x); k += c << 2;
	c = GT(x, 0x0003); x = MUX(c, x >>  2, x); k += c << 1;
	k += GT(x, 0x0001);
	return k;
}

/*
 * Compute the minimum of x and y.
 */
static inline uint32_t
MIN(uint32_t x, uint32_t y)
{
	return MUX(GT(x, y), y, x);
}

/*
 * Compute the maximum of x and y.
 */
static inline uint32_t
MAX(uint32_t x, uint32_t y)
{
	return MUX(GT(x, y), x, y);
}

/*
 * Multiply two 32-bit integers, with a 64-bit result. This default
 * implementation assumes that the basic multiplication operator
 * yields constant-time code.
 */
#define MUL(x, y)   ((uint64_t)(x) * (uint64_t)(y))

#if BR_CT_MUL31

/*
 * Alternate implementation of MUL31, that will be constant-time on some
 * (old) platforms where the default MUL31 is not. Unfortunately, it is
 * also substantially slower, and yields larger code, on more modern
 * platforms, which is why it is deactivated by default.
 *
 * MUL31_lo() must do some extra work because on some platforms, the
 * _signed_ multiplication may return early if the top bits are 1.
 * Simply truncating (casting) the output of MUL31() would not be
 * sufficient, because the compiler may notice that we keep only the low
 * word, and then replace automatically the unsigned multiplication with
 * a signed multiplication opcode.
 */
#define MUL31(x, y)   ((uint64_t)((x) | (uint32_t)0x80000000) \
                       * (uint64_t)((y) | (uint32_t)0x80000000) \
                       - ((uint64_t)(x) << 31) - ((uint64_t)(y) << 31) \
                       - ((uint64_t)1 << 62))
static inline uint32_t
MUL31_lo(uint32_t x, uint32_t y)
{
	uint32_t xl, xh;
	uint32_t yl, yh;

	xl = (x & 0xFFFF) | (uint32_t)0x80000000;
	xh = (x >> 16) | (uint32_t)0x80000000;
	yl = (y & 0xFFFF) | (uint32_t)0x80000000;
	yh = (y >> 16) | (uint32_t)0x80000000;
	return (xl * yl + ((xl * yh + xh * yl) << 16)) & (uint32_t)0x7FFFFFFF;
}

#else

/*
 * Multiply two 31-bit integers, with a 62-bit result. This default
 * implementation assumes that the basic multiplication operator
 * yields constant-time code.
 * The MUL31_lo() macro returns only the low 31 bits of the product.
 */
#define MUL31(x, y)     ((uint64_t)(x) * (uint64_t)(y))
#define MUL31_lo(x, y)  (((uint32_t)(x) * (uint32_t)(y)) & (uint32_t)0x7FFFFFFF)

#endif

/*
 * Multiply two words together; the sum of the lengths of the two
 * operands must not exceed 31 (for instance, one operand may use 16
 * bits if the other fits on 15). If BR_CT_MUL15 is non-zero, then the
 * macro will contain some extra operations that help in making the
 * operation constant-time on some platforms, where the basic 32-bit
 * multiplication is not constant-time.
 */
#if BR_CT_MUL15
#define MUL15(x, y)   (((uint32_t)(x) | (uint32_t)0x80000000) \
                       * ((uint32_t)(y) | (uint32_t)0x80000000) \
		       & (uint32_t)0x7FFFFFFF)
#else
#define MUL15(x, y)   ((uint32_t)(x) * (uint32_t)(y))
#endif

/*
 * Arithmetic right shift (sign bit is copied). What happens when
 * right-shifting a negative value is _implementation-defined_, so it
 * does not trigger undefined behaviour, but it is still up to each
 * compiler to define (and document) what it does. Most/all compilers
 * will do an arithmetic shift, the sign bit being used to fill the
 * holes; this is a native operation on the underlying CPU, and it would
 * make little sense for the compiler to do otherwise. GCC explicitly
 * documents that it follows that convention.
 *
 * Still, if BR_NO_ARITH_SHIFT is defined (and non-zero), then an
 * alternate version will be used, that does not rely on such
 * implementation-defined behaviour. Unfortunately, it is also slower
 * and yields bigger code, which is why it is deactivated by default.
 */
#if BR_NO_ARITH_SHIFT
#define ARSH(x, n)   (((uint32_t)(x) >> (n)) \
                      | ((-((uint32_t)(x) >> 31)) << (32 - (n))))
#else
#define ARSH(x, n)   ((*(int32_t *)&(x)) >> (n))
#endif

/*
 * Constant-time division. The dividend hi:lo is divided by the
 * divisor d; the quotient is returned and the remainder is written
 * in *r. If hi == d, then the quotient does not fit on 32 bits;
 * returned value is thus truncated. If hi > d, returned values are
 * indeterminate.
 */
uint32_t br_divrem(uint32_t hi, uint32_t lo, uint32_t d, uint32_t *r);

/*
 * Wrapper for br_divrem(); the remainder is returned, and the quotient
 * is discarded.
 */
static inline uint32_t
br_rem(uint32_t hi, uint32_t lo, uint32_t d)
{
	uint32_t r;

	br_divrem(hi, lo, d, &r);
	return r;
}

/*
 * Wrapper for br_divrem(); the quotient is returned, and the remainder
 * is discarded.
 */
static inline uint32_t
br_div(uint32_t hi, uint32_t lo, uint32_t d)
{
	uint32_t r;

	return br_divrem(hi, lo, d, &r);
}

/* ==================================================================== */

/*
 * Integers 'i32'
 * --------------
 *
 * The 'i32' functions implement computations on big integers using
 * an internal representation as an array of 32-bit integers. For
 * an array x[]:
 *  -- x[0] contains the "announced bit length" of the integer
 *  -- x[1], x[2]... contain the value in little-endian order (x[1]
 *     contains the least significant 32 bits)
 *
 * Multiplications rely on the elementary 32x32->64 multiplication.
 *
 * The announced bit length specifies the number of bits that are
 * significant in the subsequent 32-bit words. Unused bits in the
 * last (most significant) word are set to 0; subsequent words are
 * uninitialized and need not exist at all.
 *
 * The execution time and memory access patterns of all computations
 * depend on the announced bit length, but not on the actual word
 * values. For modular integers, the announced bit length of any integer
 * modulo n is equal to the actual bit length of n; thus, computations
 * on modular integers are "constant-time" (only the modulus length may
 * leak).
 */

/*
 * Compute the actual bit length of an integer. The argument x should
 * point to the first (least significant) value word of the integer.
 * The len 'xlen' contains the number of 32-bit words to access.
 *
 * CT: value or length of x does not leak.
 */
uint32_t br_i32_bit_length(uint32_t *x, size_t xlen);

/*
 * Decode an integer from its big-endian unsigned representation. The
 * "true" bit length of the integer is computed, but all words of x[]
 * corresponding to the full 'len' bytes of the source are set.
 *
 * CT: value or length of x does not leak.
 */
void br_i32_decode(uint32_t *x, const void *src, size_t len);

/*
 * Decode an integer from its big-endian unsigned representation. The
 * integer MUST be lower than m[]; the announced bit length written in
 * x[] will be equal to that of m[]. All 'len' bytes from the source are
 * read.
 *
 * Returned value is 1 if the decode value fits within the modulus, 0
 * otherwise. In the latter case, the x[] buffer will be set to 0 (but
 * still with the announced bit length of m[]).
 *
 * CT: value or length of x does not leak. Memory access pattern depends
 * only of 'len' and the announced bit length of m. Whether x fits or
 * not does not leak either.
 */
uint32_t br_i32_decode_mod(uint32_t *x,
	const void *src, size_t len, const uint32_t *m);

/*
 * Reduce an integer (a[]) modulo another (m[]). The result is written
 * in x[] and its announced bit length is set to be equal to that of m[].
 *
 * x[] MUST be distinct from a[] and m[].
 *
 * CT: only announced bit lengths leak, not values of x, a or m.
 */
void br_i32_reduce(uint32_t *x, const uint32_t *a, const uint32_t *m);

/*
 * Decode an integer from its big-endian unsigned representation, and
 * reduce it modulo the provided modulus m[]. The announced bit length
 * of the result is set to be equal to that of the modulus.
 *
 * x[] MUST be distinct from m[].
 */
void br_i32_decode_reduce(uint32_t *x,
	const void *src, size_t len, const uint32_t *m);

/*
 * Encode an integer into its big-endian unsigned representation. The
 * output length in bytes is provided (parameter 'len'); if the length
 * is too short then the integer is appropriately truncated; if it is
 * too long then the extra bytes are set to 0.
 */
void br_i32_encode(void *dst, size_t len, const uint32_t *x);

/*
 * Multiply x[] by 2^32 and then add integer z, modulo m[]. This
 * function assumes that x[] and m[] have the same announced bit
 * length, and the announced bit length of m[] matches its true
 * bit length.
 *
 * x[] and m[] MUST be distinct arrays.
 *
 * CT: only the common announced bit length of x and m leaks, not
 * the values of x, z or m.
 */
void br_i32_muladd_small(uint32_t *x, uint32_t z, const uint32_t *m);

/*
 * Extract one word from an integer. The offset is counted in bits.
 * The word MUST entirely fit within the word elements corresponding
 * to the announced bit length of a[].
 */
static inline uint32_t
br_i32_word(const uint32_t *a, uint32_t off)
{
	size_t u;
	unsigned j;

	u = (size_t)(off >> 5) + 1;
	j = (unsigned)off & 31;
	if (j == 0) {
		return a[u];
	} else {
		return (a[u] >> j) | (a[u + 1] << (32 - j));
	}
}

/*
 * Test whether an integer is zero.
 */
uint32_t br_i32_iszero(const uint32_t *x);

/*
 * Add b[] to a[] and return the carry (0 or 1). If ctl is 0, then a[]
 * is unmodified, but the carry is still computed and returned. The
 * arrays a[] and b[] MUST have the same announced bit length.
 *
 * a[] and b[] MAY be the same array, but partial overlap is not allowed.
 */
uint32_t br_i32_add(uint32_t *a, const uint32_t *b, uint32_t ctl);

/*
 * Subtract b[] from a[] and return the carry (0 or 1). If ctl is 0,
 * then a[] is unmodified, but the carry is still computed and returned.
 * The arrays a[] and b[] MUST have the same announced bit length.
 *
 * a[] and b[] MAY be the same array, but partial overlap is not allowed.
 */
uint32_t br_i32_sub(uint32_t *a, const uint32_t *b, uint32_t ctl);

/*
 * Compute d+a*b, result in d. The initial announced bit length of d[]
 * MUST match that of a[]. The d[] array MUST be large enough to
 * accommodate the full result, plus (possibly) an extra word. The
 * resulting announced bit length of d[] will be the sum of the announced
 * bit lengths of a[] and b[] (therefore, it may be larger than the actual
 * bit length of the numerical result).
 *
 * a[] and b[] may be the same array. d[] must be disjoint from both a[]
 * and b[].
 */
void br_i32_mulacc(uint32_t *d, const uint32_t *a, const uint32_t *b);

/*
 * Zeroize an integer. The announced bit length is set to the provided
 * value, and the corresponding words are set to 0.
 */
static inline void
br_i32_zero(uint32_t *x, uint32_t bit_len)
{
	*x ++ = bit_len;
	memset(x, 0, ((bit_len + 31) >> 5) * sizeof *x);
}

/*
 * Compute -(1/x) mod 2^32. If x is even, then this function returns 0.
 */
uint32_t br_i32_ninv32(uint32_t x);

/*
 * Convert a modular integer to Montgomery representation. The integer x[]
 * MUST be lower than m[], but with the same announced bit length.
 */
void br_i32_to_monty(uint32_t *x, const uint32_t *m);

/*
 * Convert a modular integer back from Montgomery representation. The
 * integer x[] MUST be lower than m[], but with the same announced bit
 * length. The "m0i" parameter is equal to -(1/m0) mod 2^32, where m0 is
 * the least significant value word of m[] (this works only if m[] is
 * an odd integer).
 */
void br_i32_from_monty(uint32_t *x, const uint32_t *m, uint32_t m0i);

/*
 * Compute a modular Montgomery multiplication. d[] is filled with the
 * value of x*y/R modulo m[] (where R is the Montgomery factor). The
 * array d[] MUST be distinct from x[], y[] and m[]. x[] and y[] MUST be
 * numerically lower than m[]. x[] and y[] MAY be the same array. The
 * "m0i" parameter is equal to -(1/m0) mod 2^32, where m0 is the least
 * significant value word of m[] (this works only if m[] is an odd
 * integer).
 */
void br_i32_montymul(uint32_t *d, const uint32_t *x, const uint32_t *y,
	const uint32_t *m, uint32_t m0i);

/*
 * Compute a modular exponentiation. x[] MUST be an integer modulo m[]
 * (same announced bit length, lower value). m[] MUST be odd. The
 * exponent is in big-endian unsigned notation, over 'elen' bytes. The
 * "m0i" parameter is equal to -(1/m0) mod 2^32, where m0 is the least
 * significant value word of m[] (this works only if m[] is an odd
 * integer). The t1[] and t2[] parameters must be temporary arrays,
 * each large enough to accommodate an integer with the same size as m[].
 */
void br_i32_modpow(uint32_t *x, const unsigned char *e, size_t elen,
	const uint32_t *m, uint32_t m0i, uint32_t *t1, uint32_t *t2);

/* ==================================================================== */

/*
 * Integers 'i31'
 * --------------
 *
 * The 'i31' functions implement computations on big integers using
 * an internal representation as an array of 32-bit integers. For
 * an array x[]:
 *  -- x[0] encodes the array length and the "announced bit length"
 *     of the integer: namely, if the announced bit length is k,
 *     then x[0] = ((k / 31) << 5) + (k % 31).
 *  -- x[1], x[2]... contain the value in little-endian order, 31
 *     bits per word (x[1] contains the least significant 31 bits).
 *     The upper bit of each word is 0.
 *
 * Multiplications rely on the elementary 32x32->64 multiplication.
 *
 * The announced bit length specifies the number of bits that are
 * significant in the subsequent 32-bit words. Unused bits in the
 * last (most significant) word are set to 0; subsequent words are
 * uninitialized and need not exist at all.
 *
 * The execution time and memory access patterns of all computations
 * depend on the announced bit length, but not on the actual word
 * values. For modular integers, the announced bit length of any integer
 * modulo n is equal to the actual bit length of n; thus, computations
 * on modular integers are "constant-time" (only the modulus length may
 * leak).
 */

/*
 * Test whether an integer is zero.
 */
uint32_t br_i31_iszero(const uint32_t *x);

/*
 * Add b[] to a[] and return the carry (0 or 1). If ctl is 0, then a[]
 * is unmodified, but the carry is still computed and returned. The
 * arrays a[] and b[] MUST have the same announced bit length.
 *
 * a[] and b[] MAY be the same array, but partial overlap is not allowed.
 */
uint32_t br_i31_add(uint32_t *a, const uint32_t *b, uint32_t ctl);

/*
 * Subtract b[] from a[] and return the carry (0 or 1). If ctl is 0,
 * then a[] is unmodified, but the carry is still computed and returned.
 * The arrays a[] and b[] MUST have the same announced bit length.
 *
 * a[] and b[] MAY be the same array, but partial overlap is not allowed.
 */
uint32_t br_i31_sub(uint32_t *a, const uint32_t *b, uint32_t ctl);

/*
 * Compute the ENCODED actual bit length of an integer. The argument x
 * should point to the first (least significant) value word of the
 * integer. The len 'xlen' contains the number of 32-bit words to
 * access. The upper bit of each value word MUST be 0.
 * Returned value is ((k / 31) << 5) + (k % 31) if the bit length is k.
 *
 * CT: value or length of x does not leak.
 */
uint32_t br_i31_bit_length(uint32_t *x, size_t xlen);

/*
 * Decode an integer from its big-endian unsigned representation. The
 * "true" bit length of the integer is computed and set in the encoded
 * announced bit length (x[0]), but all words of x[] corresponding to
 * the full 'len' bytes of the source are set.
 *
 * CT: value or length of x does not leak.
 */
void br_i31_decode(uint32_t *x, const void *src, size_t len);

/*
 * Decode an integer from its big-endian unsigned representation. The
 * integer MUST be lower than m[]; the (encoded) announced bit length
 * written in x[] will be equal to that of m[]. All 'len' bytes from the
 * source are read.
 *
 * Returned value is 1 if the decode value fits within the modulus, 0
 * otherwise. In the latter case, the x[] buffer will be set to 0 (but
 * still with the announced bit length of m[]).
 *
 * CT: value or length of x does not leak. Memory access pattern depends
 * only of 'len' and the announced bit length of m. Whether x fits or
 * not does not leak either.
 */
uint32_t br_i31_decode_mod(uint32_t *x,
	const void *src, size_t len, const uint32_t *m);

/*
 * Zeroize an integer. The announced bit length is set to the provided
 * value, and the corresponding words are set to 0. The ENCODED bit length
 * is expected here.
 */
static inline void
br_i31_zero(uint32_t *x, uint32_t bit_len)
{
	*x ++ = bit_len;
	memset(x, 0, ((bit_len + 31) >> 5) * sizeof *x);
}

/*
 * Right-shift an integer. The shift amount must be lower than 31
 * bits.
 */
void br_i31_rshift(uint32_t *x, int count);

/*
 * Reduce an integer (a[]) modulo another (m[]). The result is written
 * in x[] and its announced bit length is set to be equal to that of m[].
 *
 * x[] MUST be distinct from a[] and m[].
 *
 * CT: only announced bit lengths leak, not values of x, a or m.
 */
void br_i31_reduce(uint32_t *x, const uint32_t *a, const uint32_t *m);

/*
 * Decode an integer from its big-endian unsigned representation, and
 * reduce it modulo the provided modulus m[]. The announced bit length
 * of the result is set to be equal to that of the modulus.
 *
 * x[] MUST be distinct from m[].
 */
void br_i31_decode_reduce(uint32_t *x,
	const void *src, size_t len, const uint32_t *m);

/*
 * Multiply x[] by 2^31 and then add integer z, modulo m[]. This
 * function assumes that x[] and m[] have the same announced bit
 * length, the announced bit length of m[] matches its true
 * bit length.
 *
 * x[] and m[] MUST be distinct arrays. z MUST fit in 31 bits (upper
 * bit set to 0).
 *
 * CT: only the common announced bit length of x and m leaks, not
 * the values of x, z or m.
 */
void br_i31_muladd_small(uint32_t *x, uint32_t z, const uint32_t *m);

/*
 * Encode an integer into its big-endian unsigned representation. The
 * output length in bytes is provided (parameter 'len'); if the length
 * is too short then the integer is appropriately truncated; if it is
 * too long then the extra bytes are set to 0.
 */
void br_i31_encode(void *dst, size_t len, const uint32_t *x);

/*
 * Compute -(1/x) mod 2^31. If x is even, then this function returns 0.
 */
uint32_t br_i31_ninv31(uint32_t x);

/*
 * Compute a modular Montgomery multiplication. d[] is filled with the
 * value of x*y/R modulo m[] (where R is the Montgomery factor). The
 * array d[] MUST be distinct from x[], y[] and m[]. x[] and y[] MUST be
 * numerically lower than m[]. x[] and y[] MAY be the same array. The
 * "m0i" parameter is equal to -(1/m0) mod 2^31, where m0 is the least
 * significant value word of m[] (this works only if m[] is an odd
 * integer).
 */
void br_i31_montymul(uint32_t *d, const uint32_t *x, const uint32_t *y,
	const uint32_t *m, uint32_t m0i);

/*
 * Convert a modular integer to Montgomery representation. The integer x[]
 * MUST be lower than m[], but with the same announced bit length.
 */
void br_i31_to_monty(uint32_t *x, const uint32_t *m);

/*
 * Convert a modular integer back from Montgomery representation. The
 * integer x[] MUST be lower than m[], but with the same announced bit
 * length. The "m0i" parameter is equal to -(1/m0) mod 2^32, where m0 is
 * the least significant value word of m[] (this works only if m[] is
 * an odd integer).
 */
void br_i31_from_monty(uint32_t *x, const uint32_t *m, uint32_t m0i);

/*
 * Compute a modular exponentiation. x[] MUST be an integer modulo m[]
 * (same announced bit length, lower value). m[] MUST be odd. The
 * exponent is in big-endian unsigned notation, over 'elen' bytes. The
 * "m0i" parameter is equal to -(1/m0) mod 2^31, where m0 is the least
 * significant value word of m[] (this works only if m[] is an odd
 * integer). The t1[] and t2[] parameters must be temporary arrays,
 * each large enough to accommodate an integer with the same size as m[].
 */
void br_i31_modpow(uint32_t *x, const unsigned char *e, size_t elen,
	const uint32_t *m, uint32_t m0i, uint32_t *t1, uint32_t *t2);

/*
 * Compute a modular exponentiation. x[] MUST be an integer modulo m[]
 * (same announced bit length, lower value). m[] MUST be odd. The
 * exponent is in big-endian unsigned notation, over 'elen' bytes. The
 * "m0i" parameter is equal to -(1/m0) mod 2^31, where m0 is the least
 * significant value word of m[] (this works only if m[] is an odd
 * integer). The tmp[] array is used for temporaries, and has size
 * 'twlen' words; it must be large enough to accommodate at least two
 * temporary values with the same size as m[] (including the leading
 * "bit length" word). If there is room for more temporaries, then this
 * function may use the extra room for window-based optimisation,
 * resulting in faster computations.
 *
 * Returned value is 1 on success, 0 on error. An error is reported if
 * the provided tmp[] array is too short.
 */
uint32_t br_i31_modpow_opt(uint32_t *x, const unsigned char *e, size_t elen,
	const uint32_t *m, uint32_t m0i, uint32_t *tmp, size_t twlen);

/*
 * Compute d+a*b, result in d. The initial announced bit length of d[]
 * MUST match that of a[]. The d[] array MUST be large enough to
 * accommodate the full result, plus (possibly) an extra word. The
 * resulting announced bit length of d[] will be the sum of the announced
 * bit lengths of a[] and b[] (therefore, it may be larger than the actual
 * bit length of the numerical result).
 *
 * a[] and b[] may be the same array. d[] must be disjoint from both a[]
 * and b[].
 */
void br_i31_mulacc(uint32_t *d, const uint32_t *a, const uint32_t *b);

/*
 * Compute x/y mod m, result in x. Values x and y must be between 0 and
 * m-1, and have the same announced bit length as m. Modulus m must be
 * odd. The "m0i" parameter is equal to -1/m mod 2^31. The array 't'
 * must point to a temporary area that can hold at least three integers
 * of the size of m.
 *
 * m may not overlap x and y. x and y may overlap each other (this can
 * be useful to test whether a value is invertible modulo m). t must be
 * disjoint from all other arrays.
 *
 * Returned value is 1 on success, 0 otherwise. Success is attained if
 * y is invertible modulo m.
 */
uint32_t br_i31_moddiv(uint32_t *x, const uint32_t *y,
	const uint32_t *m, uint32_t m0i, uint32_t *t);

/* ==================================================================== */

/*
 * FIXME: document "i15" functions.
 */

static inline void
br_i15_zero(uint16_t *x, uint16_t bit_len)
{
	*x ++ = bit_len;
	memset(x, 0, ((bit_len + 15) >> 4) * sizeof *x);
}

uint32_t br_i15_iszero(const uint16_t *x);

uint16_t br_i15_ninv15(uint16_t x);

uint32_t br_i15_add(uint16_t *a, const uint16_t *b, uint32_t ctl);

uint32_t br_i15_sub(uint16_t *a, const uint16_t *b, uint32_t ctl);

void br_i15_muladd_small(uint16_t *x, uint16_t z, const uint16_t *m);

void br_i15_montymul(uint16_t *d, const uint16_t *x, const uint16_t *y,
	const uint16_t *m, uint16_t m0i);

void br_i15_to_monty(uint16_t *x, const uint16_t *m);

void br_i15_modpow(uint16_t *x, const unsigned char *e, size_t elen,
	const uint16_t *m, uint16_t m0i, uint16_t *t1, uint16_t *t2);

uint32_t br_i15_modpow_opt(uint16_t *x, const unsigned char *e, size_t elen,
	const uint16_t *m, uint16_t m0i, uint16_t *tmp, size_t twlen);

void br_i15_encode(void *dst, size_t len, const uint16_t *x);

uint32_t br_i15_decode_mod(uint16_t *x,
	const void *src, size_t len, const uint16_t *m);

void br_i15_rshift(uint16_t *x, int count);

uint32_t br_i15_bit_length(uint16_t *x, size_t xlen);

void br_i15_decode(uint16_t *x, const void *src, size_t len);

void br_i15_from_monty(uint16_t *x, const uint16_t *m, uint16_t m0i);

void br_i15_decode_reduce(uint16_t *x,
	const void *src, size_t len, const uint16_t *m);

void br_i15_reduce(uint16_t *x, const uint16_t *a, const uint16_t *m);

void br_i15_mulacc(uint16_t *d, const uint16_t *a, const uint16_t *b);

uint32_t br_i15_moddiv(uint16_t *x, const uint16_t *y,
	const uint16_t *m, uint16_t m0i, uint16_t *t);

/*
 * Variant of br_i31_modpow_opt() that internally uses 64x64->128
 * multiplications. It expects the same parameters as br_i31_modpow_opt(),
 * except that the temporaries should be 64-bit integers, not 32-bit
 * integers.
 */
uint32_t br_i62_modpow_opt(uint32_t *x31, const unsigned char *e, size_t elen,
	const uint32_t *m31, uint32_t m0i31, uint64_t *tmp, size_t twlen);

/*
 * Type for a function with the same API as br_i31_modpow_opt() (some
 * implementations of this type may have stricter alignment requirements
 * on the temporaries).
 */
typedef uint32_t (*br_i31_modpow_opt_type)(uint32_t *x,
	const unsigned char *e, size_t elen,
	const uint32_t *m, uint32_t m0i, uint32_t *tmp, size_t twlen);

/*
 * Wrapper for br_i62_modpow_opt() that uses the same type as
 * br_i31_modpow_opt(); however, it requires its 'tmp' argument to the
 * 64-bit aligned.
 */
uint32_t br_i62_modpow_opt_as_i31(uint32_t *x,
	const unsigned char *e, size_t elen,
	const uint32_t *m, uint32_t m0i, uint32_t *tmp, size_t twlen);

/* ==================================================================== */

static inline size_t
br_digest_size(const br_hash_class *digest_class)
{
	return (size_t)(digest_class->desc >> BR_HASHDESC_OUT_OFF)
		& BR_HASHDESC_OUT_MASK;
}

/*
 * Get the output size (in bytes) of a hash function.
 */
size_t br_digest_size_by_ID(int digest_id);

/*
 * Get the OID (encoded OBJECT IDENTIFIER value, without tag and length)
 * for a hash function. If digest_id is not a supported digest identifier
 * (in particular if it is equal to 0, i.e. br_md5sha1_ID), then NULL is
 * returned and *len is set to 0.
 */
const unsigned char *br_digest_OID(int digest_id, size_t *len);

/* ==================================================================== */
/*
 * DES support functions.
 */

/*
 * Apply DES Initial Permutation.
 */
void br_des_do_IP(uint32_t *xl, uint32_t *xr);

/*
 * Apply DES Final Permutation (inverse of IP).
 */
void br_des_do_invIP(uint32_t *xl, uint32_t *xr);

/*
 * Key schedule unit: for a DES key (8 bytes), compute 16 subkeys. Each
 * subkey is two 28-bit words represented as two 32-bit words; the PC-2
 * bit extration is NOT applied.
 */
void br_des_keysched_unit(uint32_t *skey, const void *key);

/*
 * Reversal of 16 DES sub-keys (for decryption).
 */
void br_des_rev_skey(uint32_t *skey);

/*
 * DES/3DES key schedule for 'des_tab' (encryption direction). Returned
 * value is the number of rounds.
 */
unsigned br_des_tab_keysched(uint32_t *skey, const void *key, size_t key_len);

/*
 * DES/3DES key schedule for 'des_ct' (encryption direction). Returned
 * value is the number of rounds.
 */
unsigned br_des_ct_keysched(uint32_t *skey, const void *key, size_t key_len);

/*
 * DES/3DES subkey decompression (from the compressed bitsliced subkeys).
 */
void br_des_ct_skey_expand(uint32_t *sk_exp,
	unsigned num_rounds, const uint32_t *skey);

/*
 * DES/3DES block encryption/decryption ('des_tab').
 */
void br_des_tab_process_block(unsigned num_rounds,
	const uint32_t *skey, void *block);

/*
 * DES/3DES block encryption/decryption ('des_ct').
 */
void br_des_ct_process_block(unsigned num_rounds,
	const uint32_t *skey, void *block);

/* ==================================================================== */
/*
 * AES support functions.
 */

/*
 * The AES S-box (256-byte table).
 */
extern const unsigned char br_aes_S[];

/*
 * AES key schedule. skey[] is filled with n+1 128-bit subkeys, where n
 * is the number of rounds (10 to 14, depending on key size). The number
 * of rounds is returned. If the key size is invalid (not 16, 24 or 32),
 * then 0 is returned.
 *
 * This implementation uses a 256-byte table and is NOT constant-time.
 */
unsigned br_aes_keysched(uint32_t *skey, const void *key, size_t key_len);

/*
 * AES key schedule for decryption ('aes_big' implementation).
 */
unsigned br_aes_big_keysched_inv(uint32_t *skey,
	const void *key, size_t key_len);

/*
 * AES block encryption with the 'aes_big' implementation (fast, but
 * not constant-time). This function encrypts a single block "in place".
 */
void br_aes_big_encrypt(unsigned num_rounds, const uint32_t *skey, void *data);

/*
 * AES block decryption with the 'aes_big' implementation (fast, but
 * not constant-time). This function decrypts a single block "in place".
 */
void br_aes_big_decrypt(unsigned num_rounds, const uint32_t *skey, void *data);

/*
 * AES block encryption with the 'aes_small' implementation (small, but
 * slow and not constant-time). This function encrypts a single block
 * "in place".
 */
void br_aes_small_encrypt(unsigned num_rounds,
	const uint32_t *skey, void *data);

/*
 * AES block decryption with the 'aes_small' implementation (small, but
 * slow and not constant-time). This function decrypts a single block
 * "in place".
 */
void br_aes_small_decrypt(unsigned num_rounds,
	const uint32_t *skey, void *data);

/*
 * The constant-time implementation is "bitsliced": the 128-bit state is
 * split over eight 32-bit words q* in the following way:
 *
 * -- Input block consists in 16 bytes:
 *    a00 a10 a20 a30 a01 a11 a21 a31 a02 a12 a22 a32 a03 a13 a23 a33
 * In the terminology of FIPS 197, this is a 4x4 matrix which is read
 * column by column.
 *
 * -- Each byte is split into eight bits which are distributed over the
 * eight words, at the same rank. Thus, for a byte x at rank k, bit 0
 * (least significant) of x will be at rank k in q0 (if that bit is b,
 * then it contributes "b << k" to the value of q0), bit 1 of x will be
 * at rank k in q1, and so on.
 *
 * -- Ranks given to bits are in "row order" and are either all even, or
 * all odd. Two independent AES states are thus interleaved, one using
 * the even ranks, the other the odd ranks. Row order means:
 *    a00 a01 a02 a03 a10 a11 a12 a13 a20 a21 a22 a23 a30 a31 a32 a33
 *
 * Converting input bytes from two AES blocks to bitslice representation
 * is done in the following way:
 * -- Decode first block into the four words q0 q2 q4 q6, in that order,
 * using little-endian convention.
 * -- Decode second block into the four words q1 q3 q5 q7, in that order,
 * using little-endian convention.
 * -- Call br_aes_ct_ortho().
 *
 * Converting back to bytes is done by using the reverse operations. Note
 * that br_aes_ct_ortho() is its own inverse.
 */

/*
 * Perform bytewise orthogonalization of eight 32-bit words. Bytes
 * of q0..q7 are spread over all words: for a byte x that occurs
 * at rank i in q[j] (byte x uses bits 8*i to 8*i+7 in q[j]), the bit
 * of rank k in x (0 <= k <= 7) goes to q[k] at rank 8*i+j.
 *
 * This operation is an involution.
 */
void br_aes_ct_ortho(uint32_t *q);

/*
 * The AES S-box, as a bitsliced constant-time version. The input array
 * consists in eight 32-bit words; 32 S-box instances are computed in
 * parallel. Bits 0 to 7 of each S-box input (bit 0 is least significant)
 * are spread over the words 0 to 7, at the same rank.
 */
void br_aes_ct_bitslice_Sbox(uint32_t *q);

/*
 * Like br_aes_bitslice_Sbox(), but for the inverse S-box.
 */
void br_aes_ct_bitslice_invSbox(uint32_t *q);

/*
 * Compute AES encryption on bitsliced data. Since input is stored on
 * eight 32-bit words, two block encryptions are actually performed
 * in parallel.
 */
void br_aes_ct_bitslice_encrypt(unsigned num_rounds,
	const uint32_t *skey, uint32_t *q);

/*
 * Compute AES decryption on bitsliced data. Since input is stored on
 * eight 32-bit words, two block decryptions are actually performed
 * in parallel.
 */
void br_aes_ct_bitslice_decrypt(unsigned num_rounds,
	const uint32_t *skey, uint32_t *q);

/*
 * AES key schedule, constant-time version. skey[] is filled with n+1
 * 128-bit subkeys, where n is the number of rounds (10 to 14, depending
 * on key size). The number of rounds is returned. If the key size is
 * invalid (not 16, 24 or 32), then 0 is returned.
 */
unsigned br_aes_ct_keysched(uint32_t *comp_skey,
	const void *key, size_t key_len);

/*
 * Expand AES subkeys as produced by br_aes_ct_keysched(), into
 * a larger array suitable for br_aes_ct_bitslice_encrypt() and
 * br_aes_ct_bitslice_decrypt().
 */
void br_aes_ct_skey_expand(uint32_t *skey,
	unsigned num_rounds, const uint32_t *comp_skey);

/*
 * For the ct64 implementation, the same bitslicing technique is used,
 * but four instances are interleaved. First instance uses bits 0, 4,
 * 8, 12,... of each word; second instance uses bits 1, 5, 9, 13,...
 * and so on.
 */

/*
 * Perform bytewise orthogonalization of eight 64-bit words. Bytes
 * of q0..q7 are spread over all words: for a byte x that occurs
 * at rank i in q[j] (byte x uses bits 8*i to 8*i+7 in q[j]), the bit
 * of rank k in x (0 <= k <= 7) goes to q[k] at rank 8*i+j.
 *
 * This operation is an involution.
 */
void br_aes_ct64_ortho(uint64_t *q);

/*
 * Interleave bytes for an AES input block. If input bytes are
 * denoted 0123456789ABCDEF, and have been decoded with little-endian
 * convention (w[0] contains 0123, with '3' being most significant;
 * w[1] contains 4567, and so on), then output word q0 will be
 * set to 08192A3B (again little-endian convention) and q1 will
 * be set to 4C5D6E7F.
 */
void br_aes_ct64_interleave_in(uint64_t *q0, uint64_t *q1, const uint32_t *w);

/*
 * Perform the opposite of br_aes_ct64_interleave_in().
 */
void br_aes_ct64_interleave_out(uint32_t *w, uint64_t q0, uint64_t q1);

/*
 * The AES S-box, as a bitsliced constant-time version. The input array
 * consists in eight 64-bit words; 64 S-box instances are computed in
 * parallel. Bits 0 to 7 of each S-box input (bit 0 is least significant)
 * are spread over the words 0 to 7, at the same rank.
 */
void br_aes_ct64_bitslice_Sbox(uint64_t *q);

/*
 * Like br_aes_bitslice_Sbox(), but for the inverse S-box.
 */
void br_aes_ct64_bitslice_invSbox(uint64_t *q);

/*
 * Compute AES encryption on bitsliced data. Since input is stored on
 * eight 64-bit words, four block encryptions are actually performed
 * in parallel.
 */
void br_aes_ct64_bitslice_encrypt(unsigned num_rounds,
	const uint64_t *skey, uint64_t *q);

/*
 * Compute AES decryption on bitsliced data. Since input is stored on
 * eight 64-bit words, four block decryptions are actually performed
 * in parallel.
 */
void br_aes_ct64_bitslice_decrypt(unsigned num_rounds,
	const uint64_t *skey, uint64_t *q);

/*
 * AES key schedule, constant-time version. skey[] is filled with n+1
 * 128-bit subkeys, where n is the number of rounds (10 to 14, depending
 * on key size). The number of rounds is returned. If the key size is
 * invalid (not 16, 24 or 32), then 0 is returned.
 */
unsigned br_aes_ct64_keysched(uint64_t *comp_skey,
	const void *key, size_t key_len);

/*
 * Expand AES subkeys as produced by br_aes_ct64_keysched(), into
 * a larger array suitable for br_aes_ct64_bitslice_encrypt() and
 * br_aes_ct64_bitslice_decrypt().
 */
void br_aes_ct64_skey_expand(uint64_t *skey,
	unsigned num_rounds, const uint64_t *comp_skey);

/*
 * Test support for AES-NI opcodes.
 */
int br_aes_x86ni_supported(void);

/*
 * AES key schedule, using x86 AES-NI instructions. This yields the
 * subkeys in the encryption direction. Number of rounds is returned.
 * Key size MUST be 16, 24 or 32 bytes; otherwise, 0 is returned.
 */
unsigned br_aes_x86ni_keysched_enc(unsigned char *skni,
	const void *key, size_t len);

/*
 * AES key schedule, using x86 AES-NI instructions. This yields the
 * subkeys in the decryption direction. Number of rounds is returned.
 * Key size MUST be 16, 24 or 32 bytes; otherwise, 0 is returned.
 */
unsigned br_aes_x86ni_keysched_dec(unsigned char *skni,
	const void *key, size_t len);

/*
 * Test support for AES POWER8 opcodes.
 */
int br_aes_pwr8_supported(void);

/*
 * AES key schedule, using POWER8 instructions. This yields the
 * subkeys in the encryption direction. Number of rounds is returned.
 * Key size MUST be 16, 24 or 32 bytes; otherwise, 0 is returned.
 */
unsigned br_aes_pwr8_keysched(unsigned char *skni,
	const void *key, size_t len);

/* ==================================================================== */
/*
 * RSA.
 */

/*
 * Apply proper PKCS#1 v1.5 padding (for signatures). 'hash_oid' is
 * the encoded hash function OID, or NULL.
 */
uint32_t br_rsa_pkcs1_sig_pad(const unsigned char *hash_oid,
	const unsigned char *hash, size_t hash_len,
	uint32_t n_bitlen, unsigned char *x);

/*
 * Check PKCS#1 v1.5 padding (for signatures). 'hash_oid' is the encoded
 * hash function OID, or NULL. The provided 'sig' value is _after_ the
 * modular exponentiation, i.e. it should be the padded hash. On
 * success, the hashed message is extracted.
 */
uint32_t br_rsa_pkcs1_sig_unpad(const unsigned char *sig, size_t sig_len,
	const unsigned char *hash_oid, size_t hash_len,
	unsigned char *hash_out);

/*
 * Apply proper PSS padding. The 'x' buffer is output only: it
 * receives the value that is to be exponentiated.
 */
uint32_t br_rsa_pss_sig_pad(const br_prng_class **rng,
	const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
	const unsigned char *hash, size_t salt_len,
	uint32_t n_bitlen, unsigned char *x);

/*
 * Check PSS padding. The provided value is the one _after_
 * the modular exponentiation; it is modified by this function.
 * This function infers the signature length from the public key
 * size, i.e. it assumes that this has already been verified (as
 * part of the exponentiation).
 */
uint32_t br_rsa_pss_sig_unpad(
	const br_hash_class *hf_data, const br_hash_class *hf_mgf1,
	const unsigned char *hash, size_t salt_len,
	const br_rsa_public_key *pk, unsigned char *x);

/*
 * Apply OAEP padding. Returned value is the actual padded string length,
 * or zero on error.
 */
size_t br_rsa_oaep_pad(const br_prng_class **rnd, const br_hash_class *dig,
	const void *label, size_t label_len, const br_rsa_public_key *pk,
	void *dst, size_t dst_nax_len, const void *src, size_t src_len);

/*
 * Unravel and check OAEP padding. If the padding is correct, then 1 is
 * returned, '*len' is adjusted to the length of the message, and the
 * data is moved to the start of the 'data' buffer. If the padding is
 * incorrect, then 0 is returned and '*len' is untouched. Either way,
 * the complete buffer contents are altered.
 */
uint32_t br_rsa_oaep_unpad(const br_hash_class *dig,
	const void *label, size_t label_len, void *data, size_t *len);

/*
 * Compute MGF1 for a given seed, and XOR the output into the provided
 * buffer.
 */
void br_mgf1_xor(void *data, size_t len,
	const br_hash_class *dig, const void *seed, size_t seed_len);

/*
 * Inner function for RSA key generation; used by the "i31" and "i62"
 * implementations.
 */
uint32_t br_rsa_i31_keygen_inner(const br_prng_class **rng,
	br_rsa_private_key *sk, void *kbuf_priv,
	br_rsa_public_key *pk, void *kbuf_pub,
	unsigned size, uint32_t pubexp, br_i31_modpow_opt_type mp31);

/* ==================================================================== */
/*
 * Elliptic curves.
 */

/*
 * Type for generic EC parameters: curve order (unsigned big-endian
 * encoding) and encoded conventional generator.
 */
typedef struct {
	int curve;
	const unsigned char *order;
	size_t order_len;
	const unsigned char *generator;
	size_t generator_len;
} br_ec_curve_def;

extern const br_ec_curve_def br_secp256r1;
extern const br_ec_curve_def br_secp384r1;
extern const br_ec_curve_def br_secp521r1;

/*
 * For Curve25519, the advertised "order" really is 2^255-1, since the
 * point multipliction function really works over arbitrary 255-bit
 * scalars. This value is only meant as a hint for ECDH key generation;
 * only ECDSA uses the exact curve order, and ECDSA is not used with
 * that specific curve.
 */
extern const br_ec_curve_def br_curve25519;

/*
 * Decode some bytes as an i31 integer, with truncation (corresponding
 * to the 'bits2int' operation in RFC 6979). The target ENCODED bit
 * length is provided as last parameter. The resulting value will have
 * this declared bit length, and consists the big-endian unsigned decoding
 * of exactly that many bits in the source (capped at the source length).
 */
void br_ecdsa_i31_bits2int(uint32_t *x,
	const void *src, size_t len, uint32_t ebitlen);

/*
 * Decode some bytes as an i15 integer, with truncation (corresponding
 * to the 'bits2int' operation in RFC 6979). The target ENCODED bit
 * length is provided as last parameter. The resulting value will have
 * this declared bit length, and consists the big-endian unsigned decoding
 * of exactly that many bits in the source (capped at the source length).
 */
void br_ecdsa_i15_bits2int(uint16_t *x,
	const void *src, size_t len, uint32_t ebitlen);

/* ==================================================================== */
/*
 * ASN.1 support functions.
 */

/*
 * A br_asn1_uint structure contains encoding information about an
 * INTEGER nonnegative value: pointer to the integer contents (unsigned
 * big-endian representation), length of the integer contents,
 * and length of the encoded value. The data shall have minimal length:
 *  - If the integer value is zero, then 'len' must be zero.
 *  - If the integer value is not zero, then data[0] must be non-zero.
 *
 * Under these conditions, 'asn1len' is necessarily equal to either len
 * or len+1.
 */
typedef struct {
	const unsigned char *data;
	size_t len;
	size_t asn1len;
} br_asn1_uint;

/*
 * Given an encoded integer (unsigned big-endian, with possible leading
 * bytes of value 0), returned the "prepared INTEGER" structure.
 */
br_asn1_uint br_asn1_uint_prepare(const void *xdata, size_t xlen);

/*
 * Encode an ASN.1 length. The length of the encoded length is returned.
 * If 'dest' is NULL, then no encoding is performed, but the length of
 * the encoded length is still computed and returned.
 */
size_t br_asn1_encode_length(void *dest, size_t len);

/*
 * Convenient macro for computing lengths of lengths.
 */
#define len_of_len(len)   br_asn1_encode_length(NULL, len)

/*
 * Encode a (prepared) ASN.1 INTEGER. The encoded length is returned.
 * If 'dest' is NULL, then no encoding is performed, but the length of
 * the encoded integer is still computed and returned.
 */
size_t br_asn1_encode_uint(void *dest, br_asn1_uint pp);

/*
 * Get the OID that identifies an elliptic curve. Returned value is
 * the DER-encoded OID, with the length (always one byte) but without
 * the tag. Thus, the first byte of the returned buffer contains the
 * number of subsequent bytes in the value. If the curve is not
 * recognised, NULL is returned.
 */
const unsigned char *br_get_curve_OID(int curve);

/*
 * Inner function for EC private key encoding. This is equivalent to
 * the API function br_encode_ec_raw_der(), except for an extra
 * parameter: if 'include_curve_oid' is zero, then the curve OID is
 * _not_ included in the output blob (this is for PKCS#8 support).
 */
size_t br_encode_ec_raw_der_inner(void *dest,
	const br_ec_private_key *sk, const br_ec_public_key *pk,
	int include_curve_oid);

/* ==================================================================== */
/*
 * SSL/TLS support functions.
 */

/*
 * Record types.
 */
#define BR_SSL_CHANGE_CIPHER_SPEC    20
#define BR_SSL_ALERT                 21
#define BR_SSL_HANDSHAKE             22
#define BR_SSL_APPLICATION_DATA      23

/*
 * Handshake message types.
 */
#define BR_SSL_HELLO_REQUEST          0
#define BR_SSL_CLIENT_HELLO           1
#define BR_SSL_SERVER_HELLO           2
#define BR_SSL_CERTIFICATE           11
#define BR_SSL_SERVER_KEY_EXCHANGE   12
#define BR_SSL_CERTIFICATE_REQUEST   13
#define BR_SSL_SERVER_HELLO_DONE     14
#define BR_SSL_CERTIFICATE_VERIFY    15
#define BR_SSL_CLIENT_KEY_EXCHANGE   16
#define BR_SSL_FINISHED              20

/*
 * Alert levels.
 */
#define BR_LEVEL_WARNING   1
#define BR_LEVEL_FATAL     2

/*
 * Low-level I/O state.
 */
#define BR_IO_FAILED   0
#define BR_IO_IN       1
#define BR_IO_OUT      2
#define BR_IO_INOUT    3

/*
 * Mark a SSL engine as failed. The provided error code is recorded if
 * the engine was not already marked as failed. If 'err' is 0, then the
 * engine is marked as closed (without error).
 */
void br_ssl_engine_fail(br_ssl_engine_context *cc, int err);

/*
 * Test whether the engine is closed (normally or as a failure).
 */
static inline int
br_ssl_engine_closed(const br_ssl_engine_context *cc)
{
	return cc->iomode == BR_IO_FAILED;
}

/*
 * Configure a new maximum fragment length. If possible, the maximum
 * length for outgoing records is immediately adjusted (if there are
 * not already too many buffered bytes for that).
 */
void br_ssl_engine_new_max_frag_len(
	br_ssl_engine_context *rc, unsigned max_frag_len);

/*
 * Test whether the current incoming record has been fully received
 * or not. This functions returns 0 only if a complete record header
 * has been received, but some of the (possibly encrypted) payload
 * has not yet been obtained.
 */
int br_ssl_engine_recvrec_finished(const br_ssl_engine_context *rc);

/*
 * Flush the current record (if not empty). This is meant to be called
 * from the handshake processor only.
 */
void br_ssl_engine_flush_record(br_ssl_engine_context *cc);

/*
 * Test whether there is some accumulated payload to send.
 */
static inline int
br_ssl_engine_has_pld_to_send(const br_ssl_engine_context *rc)
{
	return rc->oxa != rc->oxb && rc->oxa != rc->oxc;
}

/*
 * Initialize RNG in engine. Returned value is 1 on success, 0 on error.
 * This function will try to use the OS-provided RNG, if available. If
 * there is no OS-provided RNG, or if it failed, and no entropy was
 * injected by the caller, then a failure will be reported. On error,
 * the context error code is set.
 */
int br_ssl_engine_init_rand(br_ssl_engine_context *cc);

/*
 * Reset the handshake-related parts of the engine.
 */
void br_ssl_engine_hs_reset(br_ssl_engine_context *cc,
	void (*hsinit)(void *), void (*hsrun)(void *));

/*
 * Get the PRF to use for this context, for the provided PRF hash
 * function ID.
 */
br_tls_prf_impl br_ssl_engine_get_PRF(br_ssl_engine_context *cc, int prf_id);

/*
 * Consume the provided pre-master secret and compute the corresponding
 * master secret. The 'prf_id' is the ID of the hash function to use
 * with the TLS 1.2 PRF (ignored if the version is TLS 1.0 or 1.1).
 */
void br_ssl_engine_compute_master(br_ssl_engine_context *cc,
	int prf_id, const void *pms, size_t len);

/*
 * Switch to CBC decryption for incoming records.
 *    cc               the engine context
 *    is_client        non-zero for a client, zero for a server
 *    prf_id           id of hash function for PRF (ignored if not TLS 1.2+)
 *    mac_id           id of hash function for HMAC
 *    bc_impl          block cipher implementation (CBC decryption)
 *    cipher_key_len   block cipher key length (in bytes)
 */
void br_ssl_engine_switch_cbc_in(br_ssl_engine_context *cc,
	int is_client, int prf_id, int mac_id,
	const br_block_cbcdec_class *bc_impl, size_t cipher_key_len);

/*
 * Switch to CBC encryption for outgoing records.
 *    cc               the engine context
 *    is_client        non-zero for a client, zero for a server
 *    prf_id           id of hash function for PRF (ignored if not TLS 1.2+)
 *    mac_id           id of hash function for HMAC
 *    bc_impl          block cipher implementation (CBC encryption)
 *    cipher_key_len   block cipher key length (in bytes)
 */
void br_ssl_engine_switch_cbc_out(br_ssl_engine_context *cc,
	int is_client, int prf_id, int mac_id,
	const br_block_cbcenc_class *bc_impl, size_t cipher_key_len);

/*
 * Switch to GCM decryption for incoming records.
 *    cc               the engine context
 *    is_client        non-zero for a client, zero for a server
 *    prf_id           id of hash function for PRF
 *    bc_impl          block cipher implementation (CTR)
 *    cipher_key_len   block cipher key length (in bytes)
 */
void br_ssl_engine_switch_gcm_in(br_ssl_engine_context *cc,
	int is_client, int prf_id,
	const br_block_ctr_class *bc_impl, size_t cipher_key_len);

/*
 * Switch to GCM encryption for outgoing records.
 *    cc               the engine context
 *    is_client        non-zero for a client, zero for a server
 *    prf_id           id of hash function for PRF
 *    bc_impl          block cipher implementation (CTR)
 *    cipher_key_len   block cipher key length (in bytes)
 */
void br_ssl_engine_switch_gcm_out(br_ssl_engine_context *cc,
	int is_client, int prf_id,
	const br_block_ctr_class *bc_impl, size_t cipher_key_len);

/*
 * Switch to ChaCha20+Poly1305 decryption for incoming records.
 *    cc               the engine context
 *    is_client        non-zero for a client, zero for a server
 *    prf_id           id of hash function for PRF
 */
void br_ssl_engine_switch_chapol_in(br_ssl_engine_context *cc,
	int is_client, int prf_id);

/*
 * Switch to ChaCha20+Poly1305 encryption for outgoing records.
 *    cc               the engine context
 *    is_client        non-zero for a client, zero for a server
 *    prf_id           id of hash function for PRF
 */
void br_ssl_engine_switch_chapol_out(br_ssl_engine_context *cc,
	int is_client, int prf_id);

/*
 * Switch to CCM decryption for incoming records.
 *    cc               the engine context
 *    is_client        non-zero for a client, zero for a server
 *    prf_id           id of hash function for PRF
 *    bc_impl          block cipher implementation (CTR+CBC)
 *    cipher_key_len   block cipher key length (in bytes)
 *    tag_len          tag length (in bytes)
 */
void br_ssl_engine_switch_ccm_in(br_ssl_engine_context *cc,
	int is_client, int prf_id,
	const br_block_ctrcbc_class *bc_impl,
	size_t cipher_key_len, size_t tag_len);

/*
 * Switch to GCM encryption for outgoing records.
 *    cc               the engine context
 *    is_client        non-zero for a client, zero for a server
 *    prf_id           id of hash function for PRF
 *    bc_impl          block cipher implementation (CTR+CBC)
 *    cipher_key_len   block cipher key length (in bytes)
 *    tag_len          tag length (in bytes)
 */
void br_ssl_engine_switch_ccm_out(br_ssl_engine_context *cc,
	int is_client, int prf_id,
	const br_block_ctrcbc_class *bc_impl,
	size_t cipher_key_len, size_t tag_len);

/*
 * Calls to T0-generated code.
 */
void br_ssl_hs_client_init_main(void *ctx);
void br_ssl_hs_client_run(void *ctx);
void br_ssl_hs_server_init_main(void *ctx);
void br_ssl_hs_server_run(void *ctx);

/*
 * Get the hash function to use for signatures, given a bit mask of
 * supported hash functions. This implements a strict choice order
 * (namely SHA-256, SHA-384, SHA-512, SHA-224, SHA-1). If the mask
 * does not document support of any of these hash functions, then this
 * functions returns 0.
 */
int br_ssl_choose_hash(unsigned bf);

/* ==================================================================== */

/*
 * PowerPC / POWER assembly stuff. The special BR_POWER_ASM_MACROS macro
 * must be defined before including this file; this is done by source
 * files that use some inline assembly for PowerPC / POWER machines.
 */

#if BR_POWER_ASM_MACROS

#define lxvw4x(xt, ra, rb)        lxvw4x_(xt, ra, rb)
#define stxvw4x(xt, ra, rb)       stxvw4x_(xt, ra, rb)

#define bdnz(foo)                 bdnz_(foo)
#define bdz(foo)                  bdz_(foo)
#define beq(foo)                  beq_(foo)

#define li(rx, value)             li_(rx, value)
#define addi(rx, ra, imm)         addi_(rx, ra, imm)
#define cmpldi(rx, imm)           cmpldi_(rx, imm)
#define mtctr(rx)                 mtctr_(rx)
#define vspltb(vrt, vrb, uim)     vspltb_(vrt, vrb, uim)
#define vspltw(vrt, vrb, uim)     vspltw_(vrt, vrb, uim)
#define vspltisb(vrt, imm)        vspltisb_(vrt, imm)
#define vspltisw(vrt, imm)        vspltisw_(vrt, imm)
#define vrlw(vrt, vra, vrb)       vrlw_(vrt, vra, vrb)
#define vsbox(vrt, vra)           vsbox_(vrt, vra)
#define vxor(vrt, vra, vrb)       vxor_(vrt, vra, vrb)
#define vand(vrt, vra, vrb)       vand_(vrt, vra, vrb)
#define vsro(vrt, vra, vrb)       vsro_(vrt, vra, vrb)
#define vsl(vrt, vra, vrb)        vsl_(vrt, vra, vrb)
#define vsldoi(vt, va, vb, sh)    vsldoi_(vt, va, vb, sh)
#define vsr(vrt, vra, vrb)        vsr_(vrt, vra, vrb)
#define vaddcuw(vrt, vra, vrb)    vaddcuw_(vrt, vra, vrb)
#define vadduwm(vrt, vra, vrb)    vadduwm_(vrt, vra, vrb)
#define vsububm(vrt, vra, vrb)    vsububm_(vrt, vra, vrb)
#define vsubuwm(vrt, vra, vrb)    vsubuwm_(vrt, vra, vrb)
#define vsrw(vrt, vra, vrb)       vsrw_(vrt, vra, vrb)
#define vcipher(vt, va, vb)       vcipher_(vt, va, vb)
#define vcipherlast(vt, va, vb)   vcipherlast_(vt, va, vb)
#define vncipher(vt, va, vb)      vncipher_(vt, va, vb)
#define vncipherlast(vt, va, vb)  vncipherlast_(vt, va, vb)
#define vperm(vt, va, vb, vc)     vperm_(vt, va, vb, vc)
#define vpmsumd(vt, va, vb)       vpmsumd_(vt, va, vb)
#define xxpermdi(vt, va, vb, d)   xxpermdi_(vt, va, vb, d)

#define lxvw4x_(xt, ra, rb)       "\tlxvw4x\t" #xt "," #ra "," #rb "\n"
#define stxvw4x_(xt, ra, rb)      "\tstxvw4x\t" #xt "," #ra "," #rb "\n"

#define label(foo)                #foo "%=:\n"
#define bdnz_(foo)                "\tbdnz\t" #foo "%=\n"
#define bdz_(foo)                 "\tbdz\t" #foo "%=\n"
#define beq_(foo)                 "\tbeq\t" #foo "%=\n"

#define li_(rx, value)            "\tli\t" #rx "," #value "\n"
#define addi_(rx, ra, imm)        "\taddi\t" #rx "," #ra "," #imm "\n"
#define cmpldi_(rx, imm)          "\tcmpldi\t" #rx "," #imm "\n"
#define mtctr_(rx)                "\tmtctr\t" #rx "\n"
#define vspltb_(vrt, vrb, uim)    "\tvspltb\t" #vrt "," #vrb "," #uim "\n"
#define vspltw_(vrt, vrb, uim)    "\tvspltw\t" #vrt "," #vrb "," #uim "\n"
#define vspltisb_(vrt, imm)       "\tvspltisb\t" #vrt "," #imm "\n"
#define vspltisw_(vrt, imm)       "\tvspltisw\t" #vrt "," #imm "\n"
#define vrlw_(vrt, vra, vrb)      "\tvrlw\t" #vrt "," #vra "," #vrb "\n"
#define vsbox_(vrt, vra)          "\tvsbox\t" #vrt "," #vra "\n"
#define vxor_(vrt, vra, vrb)      "\tvxor\t" #vrt "," #vra "," #vrb "\n"
#define vand_(vrt, vra, vrb)      "\tvand\t" #vrt "," #vra "," #vrb "\n"
#define vsro_(vrt, vra, vrb)      "\tvsro\t" #vrt "," #vra "," #vrb "\n"
#define vsl_(vrt, vra, vrb)       "\tvsl\t" #vrt "," #vra "," #vrb "\n"
#define vsldoi_(vt, va, vb, sh)   "\tvsldoi\t" #vt "," #va "," #vb "," #sh "\n"
#define vsr_(vrt, vra, vrb)       "\tvsr\t" #vrt "," #vra "," #vrb "\n"
#define vaddcuw_(vrt, vra, vrb)   "\tvaddcuw\t" #vrt "," #vra "," #vrb "\n"
#define vadduwm_(vrt, vra, vrb)   "\tvadduwm\t" #vrt "," #vra "," #vrb "\n"
#define vsububm_(vrt, vra, vrb)   "\tvsububm\t" #vrt "," #vra "," #vrb "\n"
#define vsubuwm_(vrt, vra, vrb)   "\tvsubuwm\t" #vrt "," #vra "," #vrb "\n"
#define vsrw_(vrt, vra, vrb)      "\tvsrw\t" #vrt "," #vra "," #vrb "\n"
#define vcipher_(vt, va, vb)      "\tvcipher\t" #vt "," #va "," #vb "\n"
#define vcipherlast_(vt, va, vb)  "\tvcipherlast\t" #vt "," #va "," #vb "\n"
#define vncipher_(vt, va, vb)     "\tvncipher\t" #vt "," #va "," #vb "\n"
#define vncipherlast_(vt, va, vb) "\tvncipherlast\t" #vt "," #va "," #vb "\n"
#define vperm_(vt, va, vb, vc)    "\tvperm\t" #vt "," #va "," #vb "," #vc "\n"
#define vpmsumd_(vt, va, vb)      "\tvpmsumd\t" #vt "," #va "," #vb "\n"
#define xxpermdi_(vt, va, vb, d)  "\txxpermdi\t" #vt "," #va "," #vb "," #d "\n"

#endif

/* ==================================================================== */
/*
 * Special "activate intrinsics" code, needed for some compiler versions.
 * This is defined at the end of this file, so that it won't impact any
 * of the inline functions defined previously; and it is controlled by
 * a specific macro defined in the caller code.
 *
 * Calling code conventions:
 *
 *  - Caller must define BR_ENABLE_INTRINSICS before including "inner.h".
 *  - Functions that use intrinsics must be enclosed in an "enabled"
 *    region (between BR_TARGETS_X86_UP and BR_TARGETS_X86_DOWN).
 *  - Functions that use intrinsics must be tagged with the appropriate
 *    BR_TARGET().
 */

#if BR_ENABLE_INTRINSICS && (BR_GCC_4_4 || BR_CLANG_3_7 || BR_MSC_2005)

/*
 * x86 intrinsics (both 32-bit and 64-bit).
 */
#if BR_i386 || BR_amd64

/*
 * On GCC before version 5.0, we need to use the pragma to enable the
 * target options globally, because the 'target' function attribute
 * appears to be unreliable. Before 4.6 we must also avoid the
 * push_options / pop_options mechanism, because it tends to trigger
 * some internal compiler errors.
 */
#if BR_GCC && !BR_GCC_5_0
#if BR_GCC_4_6
#define BR_TARGETS_X86_UP \
	_Pragma("GCC push_options") \
	_Pragma("GCC target(\"sse2,ssse3,sse4.1,aes,pclmul,rdrnd\")")
#define BR_TARGETS_X86_DOWN \
	_Pragma("GCC pop_options")
#else
#define BR_TARGETS_X86_UP \
	_Pragma("GCC target(\"sse2,ssse3,sse4.1,aes,pclmul\")")
#define BR_TARGETS_X86_DOWN
#endif
#pragma GCC diagnostic ignored "-Wpsabi"
#endif

#if BR_CLANG && !BR_CLANG_3_8
#undef __SSE2__
#undef __SSE3__
#undef __SSSE3__
#undef __SSE4_1__
#undef __AES__
#undef __PCLMUL__
#undef __RDRND__
#define __SSE2__     1
#define __SSE3__     1
#define __SSSE3__    1
#define __SSE4_1__   1
#define __AES__      1
#define __PCLMUL__   1
#define __RDRND__    1
#endif

#ifndef BR_TARGETS_X86_UP
#define BR_TARGETS_X86_UP
#endif
#ifndef BR_TARGETS_X86_DOWN
#define BR_TARGETS_X86_DOWN
#endif

#if BR_GCC || BR_CLANG
BR_TARGETS_X86_UP
#include <x86intrin.h>
#include <cpuid.h>
#define br_bswap32   __builtin_bswap32
BR_TARGETS_X86_DOWN
#endif

#if BR_MSC
#include <stdlib.h>
#include <intrin.h>
#include <immintrin.h>
#define br_bswap32   _byteswap_ulong
#endif

static inline int
br_cpuid(uint32_t mask_eax, uint32_t mask_ebx,
	uint32_t mask_ecx, uint32_t mask_edx)
{
#if BR_GCC || BR_CLANG
	unsigned eax, ebx, ecx, edx;

	if (__get_cpuid(1, &eax, &ebx, &ecx, &edx)) {
		if ((eax & mask_eax) == mask_eax
			&& (ebx & mask_ebx) == mask_ebx
			&& (ecx & mask_ecx) == mask_ecx
			&& (edx & mask_edx) == mask_edx)
		{
			return 1;
		}
	}
#elif BR_MSC
	int info[4];

	__cpuid(info, 1);
	if (((uint32_t)info[0] & mask_eax) == mask_eax
		&& ((uint32_t)info[1] & mask_ebx) == mask_ebx
		&& ((uint32_t)info[2] & mask_ecx) == mask_ecx
		&& ((uint32_t)info[3] & mask_edx) == mask_edx)
	{
		return 1;
	}
#endif
	return 0;
}

#endif

#endif

/* ==================================================================== */

#endif