aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/complex/complex_mat.c
blob: f39dccf00bca2e01f4c35f2a95a3eaf9607b6895 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
#include <stdio.h>
#include <stdbool.h>
#include <stdlib.h>
#include <inttypes.h>
#include "../clock.h"

typedef double REAL;

typedef struct {
  REAL re, im;
} COMPLEX;

static inline void COMPLEX_zero(COMPLEX *r) {
  r->re = r->im = 0.0;
}

static inline void COMPLEX_add(COMPLEX *r,
				      const COMPLEX *x,
				      const COMPLEX *y) {
  double re = x->re + y->re;
  double im = x->im + y->im;
  r->re = re;
  r->im = im;
}

static inline void COMPLEX_mul(COMPLEX *r,
				      const COMPLEX *x,
				      const COMPLEX *y) {
  double re = x->re * y->re - x->im * y->im;
  double im = x->im * y->re + x->re * y->im;
  r->re = re;
  r->im = im;
}

static inline void COMPLEX_mul_addto(COMPLEX *r,
				      const COMPLEX *x,
				      const COMPLEX *y) {
  double re = r->re + x->re * y->re - x->im * y->im;
  double im = r->im + x->im * y->re + x->re * y->im;
  r->re = re;
  r->im = im;
}

#define MACRO_COMPLEX_mul_addto(rre, rim, x, y)	\
  { \
    double xre = (x).re, xim=(x).im, \
           yre = (y).re, yim=(y).im; \
    (rre) += xre * yre - xim * yim; \
    (rim) += xim * yre + xre * yim; \
  }


void COMPLEX_mat_mul1(unsigned m, unsigned n, unsigned p,
		     COMPLEX * restrict c, unsigned stride_c,
		     const COMPLEX *a, unsigned stride_a,
		     const COMPLEX *b, unsigned stride_b) {
  for(unsigned i=0; i<m; i++) {
    for(unsigned k=0; k<p; k++) {
      COMPLEX_zero(c+i*stride_c+k);
    }
  }
  for(unsigned i=0; i<m; i++) {
    for(unsigned k=0; k<p; k++) {
      for(unsigned j=0; j<n; j++) {
	COMPLEX_mul_addto(c+i*stride_c+k, a+i*stride_a+j, b+j*stride_b+k); 
      }
    }
  }
}

#define UNROLL 4

#undef CHUNK
#define CHUNK \
  COMPLEX_mul_addto(&total, pa_i_j, pb_j_k);				\
  pa_i_j ++;								\
  pb_j_k = (COMPLEX*) ((char*) pb_j_k + stride_b_scaled);

void COMPLEX_mat_mul8(unsigned m, unsigned n, unsigned p,
		     COMPLEX * c, unsigned stride_c,
		     const COMPLEX *a, unsigned stride_a,
		     const COMPLEX *b, unsigned stride_b) {
  const COMPLEX *pa_i = a;
  COMPLEX * pc_i = c;
  size_t stride_b_scaled = sizeof(COMPLEX) * stride_b;
  for(unsigned i=0; i<m; i++) {
    for(unsigned k=0; k<p; k++) {
      const COMPLEX *pb_j_k = b+k, *pa_i_j = pa_i;
      COMPLEX total;
      COMPLEX_zero(&total);
      {
	unsigned j4=0, n4=n/UNROLL;
	if (n4 > 0) {
	  do {
            CHUNK
	    CHUNK
	    CHUNK
	    CHUNK
	    j4++;
	  } while (j4 < n4);
	}
      }
      {
	unsigned j4=0, n4=n%UNROLL;
	if (n4 > 0) {
	  do {
	    CHUNK
	    j4++;
	  } while (j4 < n4);
	}
      }
      pc_i[k] = total;
    }
    pa_i += stride_a;
    pc_i += stride_c;
  }
}

#undef CHUNK
#define CHUNK \
  MACRO_COMPLEX_mul_addto(totalre, totalim, *pa_i_j, *pb_j_k)	      	\
  pa_i_j ++;								\
  pb_j_k = (COMPLEX*) ((char*) pb_j_k + stride_b_scaled);

void COMPLEX_mat_mul9(unsigned m, unsigned n, unsigned p,
		     COMPLEX * c, unsigned stride_c,
		     const COMPLEX *a, unsigned stride_a,
		     const COMPLEX *b, unsigned stride_b) {
  const COMPLEX *pa_i = a;
  COMPLEX * pc_i = c;
  size_t stride_b_scaled = sizeof(COMPLEX) * stride_b;
  for(unsigned i=0; i<m; i++) {
    for(unsigned k=0; k<p; k++) {
      const COMPLEX *pb_j_k = b+k, *pa_i_j = pa_i;
      REAL totalre=0.0, totalim=0.0;
      {
	unsigned j4=0, n4=n/UNROLL;
	if (n4 > 0) {
	  do {
            CHUNK
	    CHUNK
	    CHUNK
	    CHUNK
	    j4++;
	  } while (j4 < n4);
	}
      }
      {
	unsigned j4=0, n4=n%UNROLL;
	if (n4 > 0) {
	  do {
	    CHUNK
	    j4++;
	  } while (j4 < n4);
	}
      }
      pc_i[k].re = totalre;
      pc_i[k].im = totalim;
    }
    pa_i += stride_a;
    pc_i += stride_c;
  }
}

bool COMPLEX_equal(const COMPLEX *a,
		   const COMPLEX *b) {
  return a->re==b->re && a->im==b->im;
}

bool COMPLEX_mat_equal(unsigned m,
		      unsigned n,
		      const COMPLEX *a, unsigned stride_a,
		      const COMPLEX *b, unsigned stride_b) {
  for(unsigned i=0; i<m; i++) {
    for(unsigned j=0; j<n; j++) {
      if (! COMPLEX_equal(a+i*stride_a + j, b+i*stride_b + j)) {
	printf("at %u,%u: (%g,%g) vs (%g,%g)\n", i, j,
	       a[i*stride_a + j].re, a[i*stride_a + j].im,
	       b[i*stride_b + j].re, b[i*stride_b + j].im);
	return false;
      }
    }
  }
  return true;
}

REAL REAL_random(void) {
  static uint64_t next = 1325997111;
  next = next * 1103515249 + 12345;
  return next % 1000;
}

void COMPLEX_mat_random(unsigned m,
		       unsigned n,
		       COMPLEX *a, unsigned stride_a) {
  for(unsigned i=0; i<m; i++) {
    for(unsigned j=0; j<n; j++) {
      a[i*stride_a + j].re = REAL_random();
      a[i*stride_a + j].im = REAL_random();
    }
  }
}


int main() {
    const unsigned m = 60, n = 31, p = 50;
  clock_prepare();
  COMPLEX *a = malloc(sizeof(COMPLEX) * m * n);
  COMPLEX_mat_random(m, n, a, n);
  COMPLEX *b = malloc(sizeof(COMPLEX) * n * p);
  COMPLEX_mat_random(n, p, b, p);
  
  COMPLEX *c1 = malloc(sizeof(COMPLEX) * m * p);
  cycle_t c1_time = get_current_cycle();
  COMPLEX_mat_mul1(m, n, p, c1, p, a, n, b, p);
  c1_time = get_current_cycle()-c1_time;
    
  COMPLEX *c8 = malloc(sizeof(COMPLEX) * m * p);
  cycle_t c8_time = get_current_cycle();
  COMPLEX_mat_mul8(m, n, p, c8, p, a, n, b, p);
  c8_time = get_current_cycle()-c8_time;
    
  COMPLEX *c9 = malloc(sizeof(COMPLEX) * m * p);
  cycle_t c9_time = get_current_cycle();
  COMPLEX_mat_mul9(m, n, p, c9, p, a, n, b, p);
  c9_time = get_current_cycle()-c9_time;
  
  printf("c1==c8: %s\n"
	 "c1==c9: %s\n"
	 "c1 cycles: %" PRIu64 "\n"
	 "c8 cycles: %" PRIu64 "\n"
	 "c9 cycles: %" PRIu64 "\n",
	
	 COMPLEX_mat_equal(m, n, c1, p, c8, p)?"true":"false",
	 COMPLEX_mat_equal(m, n, c1, p, c9, p)?"true":"false",
	 
	 c1_time,
	 c8_time,
	 c9_time);
  
  free(a);
  free(b);
  free(c1);
  free(c8);
  free(c9);
  return 0;
}