aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/api/maxffalg.c
blob: 0f3f9b0413a4773bcbb07f66ba59c499b26d3630 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
/* maxffalg.c (find maximal flow with Ford-Fulkerson algorithm) */

/***********************************************************************
*  This code is part of GLPK (GNU Linear Programming Kit).
*
*  Copyright (C) 2009-2016 Andrew Makhorin, Department for Applied
*  Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
*  reserved. E-mail: <mao@gnu.org>.
*
*  GLPK is free software: you can redistribute it and/or modify it
*  under the terms of the GNU General Public License as published by
*  the Free Software Foundation, either version 3 of the License, or
*  (at your option) any later version.
*
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
*  License for more details.
*
*  You should have received a copy of the GNU General Public License
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/

#include "env.h"
#include "ffalg.h"
#include "glpk.h"

int glp_maxflow_ffalg(glp_graph *G, int s, int t, int a_cap,
      double *sol, int a_x, int v_cut)
{     /* find maximal flow with Ford-Fulkerson algorithm */
      glp_vertex *v;
      glp_arc *a;
      int nv, na, i, k, flag, *tail, *head, *cap, *x, ret;
      char *cut;
      double temp;
      if (!(1 <= s && s <= G->nv))
         xerror("glp_maxflow_ffalg: s = %d; source node number out of r"
            "ange\n", s);
      if (!(1 <= t && t <= G->nv))
         xerror("glp_maxflow_ffalg: t = %d: sink node number out of ran"
            "ge\n", t);
      if (s == t)
         xerror("glp_maxflow_ffalg: s = t = %d; source and sink nodes m"
            "ust be distinct\n", s);
      if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double))
         xerror("glp_maxflow_ffalg: a_cap = %d; invalid offset\n",
            a_cap);
      if (v_cut >= 0 && v_cut > G->v_size - (int)sizeof(int))
         xerror("glp_maxflow_ffalg: v_cut = %d; invalid offset\n",
            v_cut);
      /* allocate working arrays */
      nv = G->nv;
      na = G->na;
      tail = xcalloc(1+na, sizeof(int));
      head = xcalloc(1+na, sizeof(int));
      cap = xcalloc(1+na, sizeof(int));
      x = xcalloc(1+na, sizeof(int));
      if (v_cut < 0)
         cut = NULL;
      else
         cut = xcalloc(1+nv, sizeof(char));
      /* copy the flow network */
      k = 0;
      for (i = 1; i <= G->nv; i++)
      {  v = G->v[i];
         for (a = v->out; a != NULL; a = a->t_next)
         {  k++;
            tail[k] = a->tail->i;
            head[k] = a->head->i;
            if (tail[k] == head[k])
            {  ret = GLP_EDATA;
               goto done;
            }
            if (a_cap >= 0)
               memcpy(&temp, (char *)a->data + a_cap, sizeof(double));
            else
               temp = 1.0;
            if (!(0.0 <= temp && temp <= (double)INT_MAX &&
                  temp == floor(temp)))
            {  ret = GLP_EDATA;
               goto done;
            }
            cap[k] = (int)temp;
         }
      }
      xassert(k == na);
      /* find maximal flow in the flow network */
      ffalg(nv, na, tail, head, s, t, cap, x, cut);
      ret = 0;
      /* store solution components */
      /* (objective function = total flow through the network) */
      if (sol != NULL)
      {  temp = 0.0;
         for (k = 1; k <= na; k++)
         {  if (tail[k] == s)
               temp += (double)x[k];
            else if (head[k] == s)
               temp -= (double)x[k];
         }
         *sol = temp;
      }
      /* (arc flows) */
      if (a_x >= 0)
      {  k = 0;
         for (i = 1; i <= G->nv; i++)
         {  v = G->v[i];
            for (a = v->out; a != NULL; a = a->t_next)
            {  temp = (double)x[++k];
               memcpy((char *)a->data + a_x, &temp, sizeof(double));
            }
         }
      }
      /* (node flags) */
      if (v_cut >= 0)
      {  for (i = 1; i <= G->nv; i++)
         {  v = G->v[i];
            flag = cut[i];
            memcpy((char *)v->data + v_cut, &flag, sizeof(int));
         }
      }
done: /* free working arrays */
      xfree(tail);
      xfree(head);
      xfree(cap);
      xfree(x);
      if (cut != NULL) xfree(cut);
      return ret;
}

/* eof */