aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/api/rmfgen.c
blob: a1ba27bb63072a3ab025215ae5992d2ace117dfb (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
/* rmfgen.c (Goldfarb's maximum flow problem generator) */

/***********************************************************************
*  This code is part of GLPK (GNU Linear Programming Kit).
*
*  This code is a modified version of the program RMFGEN, a maxflow
*  problem generator developed by D.Goldfarb and M.Grigoriadis, and
*  originally implemented by Tamas Badics <badics@rutcor.rutgers.edu>.
*  The original code is publically available on the DIMACS ftp site at:
*  <ftp://dimacs.rutgers.edu/pub/netflow/generators/network/genrmf>.
*
*  All changes concern only the program interface, so this modified
*  version produces exactly the same instances as the original version.
*
*  Changes were made by Andrew Makhorin <mao@gnu.org>.
*
*  GLPK is free software: you can redistribute it and/or modify it
*  under the terms of the GNU General Public License as published by
*  the Free Software Foundation, either version 3 of the License, or
*  (at your option) any later version.
*
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
*  License for more details.
*
*  You should have received a copy of the GNU General Public License
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/

#include "env.h"
#include "glpk.h"
#include "rng.h"

/***********************************************************************
*  NAME
*
*  glp_rmfgen - Goldfarb's maximum flow problem generator
*
*  SYNOPSIS
*
*  int glp_rmfgen(glp_graph *G, int *s, int *t, int a_cap,
*     const int parm[1+5]);
*
*  DESCRIPTION
*
*  The routine glp_rmfgen is a maximum flow problem generator developed
*  by D.Goldfarb and M.Grigoriadis.
*
*  The parameter G specifies the graph object, to which the generated
*  problem data have to be stored. Note that on entry the graph object
*  is erased with the routine glp_erase_graph.
*
*  The pointer s specifies a location, to which the routine stores the
*  source node number. If s is NULL, the node number is not stored.
*
*  The pointer t specifies a location, to which the routine stores the
*  sink node number. If t is NULL, the node number is not stored.
*
*  The parameter a_cap specifies an offset of the field of type double
*  in the arc data block, to which the routine stores the arc capacity.
*  If a_cap < 0, the capacity is not stored.
*
*  The array parm contains description of the network to be generated:
*
*  parm[0]  not used
*  parm[1]  (seed)   random number seed (a positive integer)
*  parm[2]  (a)      frame size
*  parm[3]  (b)      depth
*  parm[4]  (c1)     minimal arc capacity
*  parm[5]  (c2)     maximal arc capacity
*
*  RETURNS
*
*  If the instance was successfully generated, the routine glp_netgen
*  returns zero; otherwise, if specified parameters are inconsistent,
*  the routine returns a non-zero error code.
*
*  COMMENTS
*
*  The generated network is as follows. It has b pieces of frames of
*  size a * a. (So alltogether the number of vertices is a * a * b)
*
*  In each frame all the vertices are connected with their neighbours
*  (forth and back). In addition the vertices of a frame are connected
*  one to one with the vertices of next frame using a random permutation
*  of those vertices.
*
*  The source is the lower left vertex of the first frame, the sink is
*  the upper right vertex of the b'th frame.
*
*                    t
*           +-------+
*           |      .|
*           |     . |
*        /  |    /  |
*       +-------+/ -+ b
*       |    |  |/.
*     a |   -v- |/
*       |    |  |/
*       +-------+ 1
*      s    a
*
*  The capacities are randomly chosen integers from the range of [c1,c2]
*  in the case of interconnecting edges, and c2 * a * a for the in-frame
*  edges.
*
*  REFERENCES
*
*  D.Goldfarb and M.D.Grigoriadis, "A computational comparison of the
*  Dinic and network simplex methods for maximum flow." Annals of Op.
*  Res. 13 (1988), pp. 83-123.
*
*  U.Derigs and W.Meier, "Implementing Goldberg's max-flow algorithm:
*  A computational investigation." Zeitschrift fuer Operations Research
*  33 (1989), pp. 383-403. */

typedef struct VERTEX
{     struct EDGE **edgelist;
      /* Pointer to the list of pointers to the adjacent edges.
         (No matter that to or from edges) */
      struct EDGE **current;
      /* Pointer to the current edge */
      int degree;
      /* Number of adjacent edges (both direction) */
      int index;
} vertex;

typedef struct EDGE
{     int from;
      int to;
      int cap;
      /* Capacity */
} edge;

typedef struct NETWORK
{     struct NETWORK *next, *prev;
      int vertnum;
      int edgenum;
      vertex *verts;
      /* Vertex array[1..vertnum] */
      edge *edges;
      /* Edge array[1..edgenum] */
      int source;
      /* Pointer to the source */
      int sink;
      /* Pointer to the sink */
} network;

struct csa
{     /* common storage area */
      glp_graph *G;
      int *s, *t, a_cap;
      RNG *rand;
      network *N;
      int *Parr;
      int A, AA, C2AA, Ec;
};

#define G      (csa->G)
#define s      (csa->s)
#define t      (csa->t)
#define a_cap  (csa->a_cap)
#define N      (csa->N)
#define Parr   (csa->Parr)
#define A      (csa->A)
#define AA     (csa->AA)
#define C2AA   (csa->C2AA)
#define Ec     (csa->Ec)

#undef random
#define random(A) (int)(rng_unif_01(csa->rand) * (double)(A))
#define RANDOM(A, B) (int)(random((B) - (A) + 1) + (A))
#define sgn(A) (((A) > 0) ? 1 : ((A) == 0) ? 0 : -1)

static void make_edge(struct csa *csa, int from, int to, int c1, int c2)
{     Ec++;
      N->edges[Ec].from = from;
      N->edges[Ec].to = to;
      N->edges[Ec].cap = RANDOM(c1, c2);
      return;
}

static void permute(struct csa *csa)
{     int i, j, tmp;
      for (i = 1; i < AA; i++)
      {  j = RANDOM(i, AA);
         tmp = Parr[i];
         Parr[i] = Parr[j];
         Parr[j] = tmp;
      }
      return;
}

static void connect(struct csa *csa, int offset, int cv, int x1, int y1)
{     int cv1;
      cv1 = offset + (x1 - 1) * A + y1;
      Ec++;
      N->edges[Ec].from = cv;
      N->edges[Ec].to = cv1;
      N->edges[Ec].cap = C2AA;
      return;
}

static network *gen_rmf(struct csa *csa, int a, int b, int c1, int c2)
{     /* generates a network with a*a*b nodes and 6a*a*b-4ab-2a*a edges
         random_frame network:
         Derigs & Meier, Methods & Models of OR (1989), 33:383-403 */
      int x, y, z, offset, cv;
      A = a;
      AA = a * a;
      C2AA = c2 * AA;
      Ec = 0;
      N = (network *)xmalloc(sizeof(network));
      N->vertnum = AA * b;
      N->edgenum = 5 * AA * b - 4 * A * b - AA;
      N->edges = (edge *)xcalloc(N->edgenum + 1, sizeof(edge));
      N->source = 1;
      N->sink = N->vertnum;
      Parr = (int *)xcalloc(AA + 1, sizeof(int));
      for (x = 1; x <= AA; x++)
         Parr[x] = x;
      for (z = 1; z <= b; z++)
      {  offset = AA * (z - 1);
         if (z != b)
            permute(csa);
         for (x = 1; x <= A; x++)
         {  for (y = 1; y <= A; y++)
            {  cv = offset + (x - 1) * A + y;
               if (z != b)
                  make_edge(csa, cv, offset + AA + Parr[cv - offset],
                     c1, c2); /* the intermediate edges */
               if (y < A)
                  connect(csa, offset, cv, x, y + 1);
               if (y > 1)
                  connect(csa, offset, cv, x, y - 1);
               if (x < A)
                  connect(csa, offset, cv, x + 1, y);
               if (x > 1)
                  connect(csa, offset, cv, x - 1, y);
            }
         }
      }
      xfree(Parr);
      return N;
}

static void print_max_format(struct csa *csa, network *n, char *comm[],
      int dim)
{     /* prints a network heading with dim lines of comments (no \n
         needs at the ends) */
      int i, vnum, e_num;
      edge *e;
      vnum = n->vertnum;
      e_num = n->edgenum;
      if (G == NULL)
      {  for (i = 0; i < dim; i++)
            xprintf("c %s\n", comm[i]);
         xprintf("p max %7d %10d\n", vnum, e_num);
         xprintf("n %7d s\n", n->source);
         xprintf("n %7d t\n", n->sink);
      }
      else
      {  glp_add_vertices(G, vnum);
         if (s != NULL) *s = n->source;
         if (t != NULL) *t = n->sink;
      }
      for (i = 1; i <= e_num; i++)
      {  e = &n->edges[i];
         if (G == NULL)
            xprintf("a %7d %7d %10d\n", e->from, e->to, (int)e->cap);
         else
         {  glp_arc *a = glp_add_arc(G, e->from, e->to);
            if (a_cap >= 0)
            {  double temp = (double)e->cap;
               memcpy((char *)a->data + a_cap, &temp, sizeof(double));
            }
         }
      }
      return;
}

static void gen_free_net(network *n)
{     xfree(n->edges);
      xfree(n);
      return;
}

int glp_rmfgen(glp_graph *G_, int *_s, int *_t, int _a_cap,
      const int parm[1+5])
{     struct csa _csa, *csa = &_csa;
      network *n;
      char comm[10][80], *com1[10];
      int seed, a, b, c1, c2, ret;
      G = G_;
      s = _s;
      t = _t;
      a_cap = _a_cap;
      if (G != NULL)
      {  if (a_cap >= 0 && a_cap > G->a_size - (int)sizeof(double))
           xerror("glp_rmfgen: a_cap = %d; invalid offset\n", a_cap);
      }
      seed = parm[1];
      a = parm[2];
      b = parm[3];
      c1 = parm[4];
      c2 = parm[5];
      if (!(seed > 0 && 1 <= a && a <= 1000 && 1 <= b && b <= 1000 &&
            0 <= c1 && c1 <= c2 && c2 <= 1000))
      {  ret = 1;
         goto done;
      }
      if (G != NULL)
      {  glp_erase_graph(G, G->v_size, G->a_size);
         glp_set_graph_name(G, "RMFGEN");
      }
      csa->rand = rng_create_rand();
      rng_init_rand(csa->rand, seed);
      n = gen_rmf(csa, a, b, c1, c2);
      sprintf(comm[0], "This file was generated by genrmf.");
      sprintf(comm[1], "The parameters are: a: %d b: %d c1: %d c2: %d",
         a, b, c1, c2);
      com1[0] = comm[0];
      com1[1] = comm[1];
      print_max_format(csa, n, com1, 2);
      gen_free_net(n);
      rng_delete_rand(csa->rand);
      ret = 0;
done: return ret;
}

/**********************************************************************/

#if 0
int main(int argc, char *argv[])
{     int seed, a, b, c1, c2, i, parm[1+5];
      seed = 123;
      a = b = c1 = c2 = -1;
      for (i = 1; i < argc; i++)
      {  if (strcmp(argv[i], "-seed") == 0)
            seed = atoi(argv[++i]);
         else if (strcmp(argv[i], "-a") == 0)
            a = atoi(argv[++i]);
         else if (strcmp(argv[i], "-b") == 0)
            b = atoi(argv[++i]);
         else if (strcmp(argv[i], "-c1") == 0)
            c1 = atoi(argv[++i]);
         else if (strcmp(argv[i], "-c2") == 0)
            c2 = atoi(argv[++i]);
      }
      if (a < 0 || b < 0 || c1 < 0 || c2 < 0)
      {  xprintf("Usage:\n");
         xprintf("genrmf [-seed seed] -a frame_size -b depth\n");
         xprintf("        -c1 cap_range1 -c2 cap_range2\n");
      }
      else
      {  parm[1] = seed;
         parm[2] = a;
         parm[3] = b;
         parm[4] = c1;
         parm[5] = c2;
         glp_rmfgen(NULL, NULL, NULL, 0, parm);
      }
      return 0;
}
#endif

/* eof */