aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/glpk-4.65/src/bflib/luf.h
blob: 5634a753013a61022a8515aa86c4f464eb2f395c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
/* luf.h (sparse LU-factorization) */

/***********************************************************************
*  This code is part of GLPK (GNU Linear Programming Kit).
*
*  Copyright (C) 2012-2013 Andrew Makhorin, Department for Applied
*  Informatics, Moscow Aviation Institute, Moscow, Russia. All rights
*  reserved. E-mail: <mao@gnu.org>.
*
*  GLPK is free software: you can redistribute it and/or modify it
*  under the terms of the GNU General Public License as published by
*  the Free Software Foundation, either version 3 of the License, or
*  (at your option) any later version.
*
*  GLPK is distributed in the hope that it will be useful, but WITHOUT
*  ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
*  or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
*  License for more details.
*
*  You should have received a copy of the GNU General Public License
*  along with GLPK. If not, see <http://www.gnu.org/licenses/>.
***********************************************************************/

#ifndef LUF_H
#define LUF_H

#include "sva.h"

/***********************************************************************
*  The structure LUF describes sparse LU-factorization.
*
*  The LU-factorization has the following format:
*
*     A = F * V = P * L * U * Q,                                     (1)
*
*     F = P * L * P',                                                (2)
*
*     V = P * U * Q,                                                 (3)
*
*  where A is a given (unsymmetric) square matrix, F and V are matrix
*  factors actually computed, L is a lower triangular matrix with unity
*  diagonal, U is an upper triangular matrix, P and Q are permutation
*  matrices, P' is a matrix transposed to P. All the matrices have the
*  same order n.
*
*  Matrices F and V are stored in both row- and column-wise sparse
*  formats in the associated sparse vector area (SVA). Unity diagonal
*  elements of matrix F are not stored. Pivot elements of matrix V
*  (which correspond to diagonal elements of matrix U) are stored in
*  a separate ordinary array.
*
*  Permutation matrices P and Q are stored in ordinary arrays in both
*  row- and column-like formats.
*
*  Matrices L and U are completely defined by matrices F, V, P, and Q,
*  and therefore not stored explicitly. */

typedef struct LUF LUF;

struct LUF
{     /* sparse LU-factorization */
      int n;
      /* order of matrices A, F, V, P, Q */
      SVA *sva;
      /* associated sparse vector area (SVA) used to store rows and
       * columns of matrices F and V; note that different objects may
       * share the same SVA */
      /*--------------------------------------------------------------*/
      /* matrix F in row-wise format */
      /* during the factorization process this object is not used */
      int fr_ref;
      /* reference number of sparse vector in SVA, which is the first
       * row of matrix F */
#if 0 + 0
      int *fr_ptr = &sva->ptr[fr_ref-1];
      /* fr_ptr[0] is not used;
       * fr_ptr[i], 1 <= i <= n, is pointer to i-th row in SVA */
      int *fr_len = &sva->len[fr_ref-1];
      /* fr_len[0] is not used;
       * fr_len[i], 1 <= i <= n, is length of i-th row */
#endif
      /*--------------------------------------------------------------*/
      /* matrix F in column-wise format */
      /* during the factorization process this object is constructed
       * by columns */
      int fc_ref;
      /* reference number of sparse vector in SVA, which is the first
       * column of matrix F */
#if 0 + 0
      int *fc_ptr = &sva->ptr[fc_ref-1];
      /* fc_ptr[0] is not used;
       * fc_ptr[j], 1 <= j <= n, is pointer to j-th column in SVA */
      int *fc_len = &sva->len[fc_ref-1];
      /* fc_len[0] is not used;
       * fc_len[j], 1 <= j <= n, is length of j-th column */
#endif
      /*--------------------------------------------------------------*/
      /* matrix V in row-wise format */
      int vr_ref;
      /* reference number of sparse vector in SVA, which is the first
       * row of matrix V */
#if 0 + 0
      int *vr_ptr = &sva->ptr[vr_ref-1];
      /* vr_ptr[0] is not used;
       * vr_ptr[i], 1 <= i <= n, is pointer to i-th row in SVA */
      int *vr_len = &sva->len[vr_ref-1];
      /* vr_len[0] is not used;
       * vr_len[i], 1 <= i <= n, is length of i-th row */
      int *vr_cap = &sva->cap[vr_ref-1];
      /* vr_cap[0] is not used;
       * vr_cap[i], 1 <= i <= n, is capacity of i-th row */
#endif
      double *vr_piv; /* double vr_piv[1+n]; */
      /* vr_piv[0] is not used;
       * vr_piv[i], 1 <= i <= n, is pivot element of i-th row */
      /*--------------------------------------------------------------*/
      /* matrix V in column-wise format */
      /* during the factorization process this object contains only the
       * patterns (row indices) of columns of the active submatrix */
      int vc_ref;
      /* reference number of sparse vector in SVA, which is the first
       * column of matrix V */
#if 0 + 0
      int *vc_ptr = &sva->ptr[vc_ref-1];
      /* vc_ptr[0] is not used;
       * vc_ptr[j], 1 <= j <= n, is pointer to j-th column in SVA */
      int *vc_len = &sva->len[vc_ref-1];
      /* vc_len[0] is not used;
       * vc_len[j], 1 <= j <= n, is length of j-th column */
      int *vc_cap = &sva->cap[vc_ref-1];
      /* vc_cap[0] is not used;
       * vc_cap[j], 1 <= j <= n, is capacity of j-th column */
#endif
      /*--------------------------------------------------------------*/
      /* matrix P */
      int *pp_ind; /* int pp_ind[1+n]; */
      /* pp_ind[i] = j means that P[i,j] = 1 */
      int *pp_inv; /* int pp_inv[1+n]; */
      /* pp_inv[j] = i means that P[i,j] = 1 */
      /* if i-th row or column of matrix F is i'-th row or column of
       * matrix L, or if i-th row of matrix V is i'-th row of matrix U,
       * then pp_ind[i] = i' and pp_inv[i'] = i */
      /*--------------------------------------------------------------*/
      /* matrix Q */
      int *qq_ind; /* int qq_ind[1+n]; */
      /* qq_ind[i] = j means that Q[i,j] = 1 */
      int *qq_inv; /* int qq_inv[1+n]; */
      /* qq_inv[j] = i means that Q[i,j] = 1 */
      /* if j-th column of matrix V is j'-th column of matrix U, then
       * qq_ind[j'] = j and qq_inv[j] = j' */
};

#define luf_swap_u_rows(i1, i2) \
      do \
      {  int j1, j2; \
         j1 = pp_inv[i1], j2 = pp_inv[i2]; \
         pp_ind[j1] = i2, pp_inv[i2] = j1; \
         pp_ind[j2] = i1, pp_inv[i1] = j2; \
      } while (0)
/* swap rows i1 and i2 of matrix U = P'* V * Q' */

#define luf_swap_u_cols(j1, j2) \
      do \
      {  int i1, i2; \
         i1 = qq_ind[j1], i2 = qq_ind[j2]; \
         qq_ind[j1] = i2, qq_inv[i2] = j1; \
         qq_ind[j2] = i1, qq_inv[i1] = j2; \
      } while (0)
/* swap columns j1 and j2 of matrix U = P'* V * Q' */

#define luf_store_v_cols _glp_luf_store_v_cols
int luf_store_v_cols(LUF *luf, int (*col)(void *info, int j, int ind[],
      double val[]), void *info, int ind[], double val[]);
/* store matrix V = A in column-wise format */

#define luf_check_all _glp_luf_check_all
void luf_check_all(LUF *luf, int k);
/* check LU-factorization before k-th elimination step */

#define luf_build_v_rows _glp_luf_build_v_rows
void luf_build_v_rows(LUF *luf, int len[/*1+n*/]);
/* build matrix V in row-wise format */

#define luf_build_f_rows _glp_luf_build_f_rows
void luf_build_f_rows(LUF *luf, int len[/*1+n*/]);
/* build matrix F in row-wise format */

#define luf_build_v_cols _glp_luf_build_v_cols
void luf_build_v_cols(LUF *luf, int updat, int len[/*1+n*/]);
/* build matrix V in column-wise format */

#define luf_check_f_rc _glp_luf_check_f_rc
void luf_check_f_rc(LUF *luf);
/* check rows and columns of matrix F */

#define luf_check_v_rc _glp_luf_check_v_rc
void luf_check_v_rc(LUF *luf);
/* check rows and columns of matrix V */

#define luf_f_solve _glp_luf_f_solve
void luf_f_solve(LUF *luf, double x[/*1+n*/]);
/* solve system F * x = b */

#define luf_ft_solve _glp_luf_ft_solve
void luf_ft_solve(LUF *luf, double x[/*1+n*/]);
/* solve system F' * x = b */

#define luf_v_solve _glp_luf_v_solve
void luf_v_solve(LUF *luf, double b[/*1+n*/], double x[/*1+n*/]);
/* solve system V * x = b */

#define luf_vt_solve _glp_luf_vt_solve
void luf_vt_solve(LUF *luf, double b[/*1+n*/], double x[/*1+n*/]);
/* solve system V' * x = b */

#define luf_vt_solve1 _glp_luf_vt_solve1
void luf_vt_solve1(LUF *luf, double e[/*1+n*/], double y[/*1+n*/]);
/* solve system V' * y = e' to cause growth in y */

#define luf_estimate_norm _glp_luf_estimate_norm
double luf_estimate_norm(LUF *luf, double w1[/*1+n*/], double
      w2[/*1+n*/]);
/* estimate 1-norm of inv(A) */

#endif

/* eof */