aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/ocaml/byterun/floats.c
blob: 4d2494cfb5429a40095f0f8b2fe3d76e433a826d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
/**************************************************************************/
/*                                                                        */
/*                                 OCaml                                  */
/*                                                                        */
/*             Xavier Leroy, projet Cristal, INRIA Rocquencourt           */
/*                                                                        */
/*   Copyright 1996 Institut National de Recherche en Informatique et     */
/*     en Automatique.                                                    */
/*                                                                        */
/*   All rights reserved.  This file is distributed under the terms of    */
/*   the GNU Lesser General Public License version 2.1, with the          */
/*   special exception on linking described in the file LICENSE.          */
/*                                                                        */
/**************************************************************************/

#define CAML_INTERNALS

/* The interface of this file is in "caml/mlvalues.h" and "caml/alloc.h" */

#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <float.h>
#include <limits.h>

#include "caml/alloc.h"
#include "caml/fail.h"
#include "caml/memory.h"
#include "caml/mlvalues.h"
#include "caml/misc.h"
#include "caml/reverse.h"
#include "caml/stacks.h"

#ifdef _MSC_VER
#include <float.h>
#ifndef isnan
#define isnan _isnan
#endif
#ifndef isfinite
#define isfinite _finite
#endif
#endif

#ifdef ARCH_ALIGN_DOUBLE

CAMLexport double caml_Double_val(value val)
{
  union { value v[2]; double d; } buffer;

  CAMLassert(sizeof(double) == 2 * sizeof(value));
  buffer.v[0] = Field(val, 0);
  buffer.v[1] = Field(val, 1);
  return buffer.d;
}

CAMLexport void caml_Store_double_val(value val, double dbl)
{
  union { value v[2]; double d; } buffer;

  CAMLassert(sizeof(double) == 2 * sizeof(value));
  buffer.d = dbl;
  Field(val, 0) = buffer.v[0];
  Field(val, 1) = buffer.v[1];
}

#endif

CAMLexport value caml_copy_double(double d)
{
  value res;

#define Setup_for_gc
#define Restore_after_gc
  Alloc_small(res, Double_wosize, Double_tag);
#undef Setup_for_gc
#undef Restore_after_gc
  Store_double_val(res, d);
  return res;
}

#ifndef FLAT_FLOAT_ARRAY
CAMLexport void caml_Store_double_array_field(value val, mlsize_t i, double dbl)
{
  CAMLparam1 (val);
  value d = caml_copy_double (dbl);

  CAMLassert (Tag_val (val) != Double_array_tag);
  caml_modify (&Field(val, i), d);
  CAMLreturn0;
}
#endif /* ! FLAT_FLOAT_ARRAY */

CAMLprim value caml_format_float(value fmt, value arg)
{
  value res;
  double d = Double_val(arg);

#ifdef HAS_BROKEN_PRINTF
  if (isfinite(d)) {
#endif
    res = caml_alloc_sprintf(String_val(fmt), d);
#ifdef HAS_BROKEN_PRINTF
  } else {
    if (isnan(d)) {
      res = caml_copy_string("nan");
    } else {
      if (d > 0)
        res = caml_copy_string("inf");
      else
        res = caml_copy_string("-inf");
    }
  }
#endif
  return res;
}

CAMLprim value caml_hexstring_of_float(value arg, value vprec, value vstyle)
{
  union { uint64_t i; double d; } u;
  int sign, exp;
  uint64_t m;
  char buffer[64];
  char * buf, * p;
  intnat prec;
  int d;
  value res;

  /* Allocate output buffer */
  prec = Long_val(vprec);
                  /* 12 chars for sign, 0x, decimal point, exponent */
  buf = (prec + 12 <= 64 ? buffer : caml_stat_alloc(prec + 12));
  /* Extract sign, mantissa, and exponent */
  u.d = Double_val(arg);
  sign = u.i >> 63;
  exp = (u.i >> 52) & 0x7FF;
  m = u.i & (((uint64_t) 1 << 52) - 1);
  /* Put sign */
  p = buf;
  if (sign) {
    *p++ = '-';
  } else {
    switch (Int_val(vstyle)) {
    case '+': *p++ = '+'; break;
    case ' ': *p++ = ' '; break;
    }
  }
  /* Treat special cases */
  if (exp == 0x7FF) {
    char * txt;
    if (m == 0) txt = "infinity"; else txt = "nan";
    memcpy(p, txt, strlen(txt));
    p[strlen(txt)] = 0;
    res = caml_copy_string(buf);
  } else {
    /* Output "0x" prefix */
    *p++ = '0'; *p++ = 'x';
    /* Normalize exponent and mantissa */
    if (exp == 0) {
      if (m != 0) exp = -1022;    /* denormal */
    } else {
      exp = exp - 1023;
      m = m | ((uint64_t) 1 << 52);
    }
    /* If a precision is given, and is small, round mantissa accordingly */
    prec = Long_val(vprec);
    if (prec >= 0 && prec < 13) {
      int i = 52 - prec * 4;
      uint64_t unit = (uint64_t) 1 << i;
      uint64_t half = unit >> 1;
      uint64_t mask = unit - 1;
      uint64_t frac = m & mask;
      m = m & ~mask;
      /* Round to nearest, ties to even */
      if (frac > half || (frac == half && (m & unit) != 0)) {
        m += unit;
      }
    }
    /* Leading digit */
    d = m >> 52;
    *p++ = (d < 10 ? d + '0' : d - 10 + 'a');
    m = (m << 4) & (((uint64_t) 1 << 56) - 1);
    /* Fractional digits.  If a precision is given, print that number of
       digits.  Otherwise, print as many digits as needed to represent
       the mantissa exactly. */
    if (prec >= 0 ? prec > 0 : m != 0) {
      *p++ = '.';
      while (prec >= 0 ? prec > 0 : m != 0) {
        d = m >> 52;
        *p++ = (d < 10 ? d + '0' : d - 10 + 'a');
        m = (m << 4) & (((uint64_t) 1 << 56) - 1);
        prec--;
      }
    }
    *p = 0;
    /* Add exponent */
    res = caml_alloc_sprintf("%sp%+d", buf, exp);
  }
  if (buf != buffer) caml_stat_free(buf);
  return res;
}

static int caml_float_of_hex(const char * s, double * res)
{
  int64_t m = 0;                /* the mantissa - top 60 bits at most */
  int n_bits = 0;               /* total number of bits read */
  int m_bits = 0;               /* number of bits in mantissa */
  int x_bits = 0;               /* number of bits after mantissa */
  int dec_point = -1;           /* bit count corresponding to decimal point */
                                /* -1 if no decimal point seen */
  int exp = 0;                  /* exponent */
  char * p;                     /* for converting the exponent */
  double f;

  while (*s != 0) {
    char c = *s++;
    switch (c) {
    case '_':
      break;
    case '.':
      if (dec_point >= 0) return -1; /* multiple decimal points */
      dec_point = n_bits;
      break;
    case 'p': case 'P': {
      long e;
      if (*s == 0) return -1;   /* nothing after exponent mark */
      e = strtol(s, &p, 10);
      if (*p != 0) return -1;   /* ill-formed exponent */
      /* Handle exponents larger than int by returning 0/∞ directly.
	 Mind that INT_MIN/INT_MAX are included in the test so as to capture
	 the overflow case of strtol on Win64 — long and int have the same
	 size there. */
      if (e <= INT_MIN) {
        *res = 0.;
        return 0;
      }
      else if (e >= INT_MAX) {
        *res = m == 0 ? 0. : HUGE_VAL;
        return 0;
      }
      /* regular exponent value */
      exp = e;
      s = p;                    /* stop at next loop iteration */
      break;
    }
    default: {                  /* Nonzero digit */
      int d;
      if (c >= '0' && c <= '9') d = c - '0';
      else if (c >= 'A' && c <= 'F') d = c - 'A' + 10;
      else if (c >= 'a' && c <= 'f') d = c - 'a' + 10;
      else return -1;           /* bad digit */
      n_bits += 4;
      if (d == 0 && m == 0) break; /* leading zeros are skipped */
      if (m_bits < 60) {
        /* There is still room in m.  Add this digit to the mantissa. */
        m = (m << 4) + d;
        m_bits += 4;
      } else {
        /* We've already collected 60 significant bits in m.
           Now all we care about is whether there is a nonzero bit
           after. In this case, round m to odd so that the later
           rounding of m to FP produces the correct result. */
        if (d != 0) m |= 1;        /* round to odd */
        x_bits += 4;
      }
      break;
    }
    }
  }
  if (n_bits == 0) return -1;
  /* Convert mantissa to FP.  We use a signed conversion because we can
     (m has 60 bits at most) and because it is faster
     on several architectures. */
  f = (double) (int64_t) m;
  /* Adjust exponent to take decimal point and extra digits into account */
  {
    int adj = x_bits;
    if (dec_point >= 0) adj = adj + (dec_point - n_bits);
    /* saturated addition exp + adj */
    if (adj > 0 && exp > INT_MAX - adj)
      exp = INT_MAX;
    else if (adj < 0 && exp < INT_MIN - adj)
      exp = INT_MIN;
    else
      exp = exp + adj;
  }
  /* Apply exponent if needed */
  if (exp != 0) f = ldexp(f, exp);
  /* Done! */
  *res = f;
  return 0;
}

CAMLprim value caml_float_of_string(value vs)
{
  char parse_buffer[64];
  char * buf, * dst, * end;
  const char *src;
  mlsize_t len;
  int sign;
  double d;

  /* Check for hexadecimal FP constant */
  src = String_val(vs);
  sign = 1;
  if (*src == '-') { sign = -1; src++; }
  else if (*src == '+') { src++; };
  if (src[0] == '0' && (src[1] == 'x' || src[1] == 'X')) {
    if (caml_float_of_hex(src + 2, &d) == -1)
      caml_failwith("float_of_string");
    return caml_copy_double(sign < 0 ? -d : d);
  }
  /* Remove '_' characters before calling strtod () */
  len = caml_string_length(vs);
  buf = len < sizeof(parse_buffer) ? parse_buffer : caml_stat_alloc(len + 1);
  src = String_val(vs);
  dst = buf;
  while (len--) {
    char c = *src++;
    if (c != '_') *dst++ = c;
  }
  *dst = 0;
  if (dst == buf) goto error;
  /* Convert using strtod */
  d = strtod((const char *) buf, &end);
  if (end != dst) goto error;
  if (buf != parse_buffer) caml_stat_free(buf);
  return caml_copy_double(d);
 error:
  if (buf != parse_buffer) caml_stat_free(buf);
  caml_failwith("float_of_string");
  return Val_unit; /* not reached */
}

CAMLprim value caml_int_of_float(value f)
{
  return Val_long((intnat) Double_val(f));
}

CAMLprim value caml_float_of_int(value n)
{
  return caml_copy_double((double) Long_val(n));
}

CAMLprim value caml_neg_float(value f)
{
  return caml_copy_double(- Double_val(f));
}

CAMLprim value caml_abs_float(value f)
{
  return caml_copy_double(fabs(Double_val(f)));
}

CAMLprim value caml_add_float(value f, value g)
{
  return caml_copy_double(Double_val(f) + Double_val(g));
}

CAMLprim value caml_sub_float(value f, value g)
{
  return caml_copy_double(Double_val(f) - Double_val(g));
}

CAMLprim value caml_mul_float(value f, value g)
{
  return caml_copy_double(Double_val(f) * Double_val(g));
}

CAMLprim value caml_div_float(value f, value g)
{
  return caml_copy_double(Double_val(f) / Double_val(g));
}

CAMLprim value caml_exp_float(value f)
{
  return caml_copy_double(exp(Double_val(f)));
}

CAMLprim value caml_floor_float(value f)
{
  return caml_copy_double(floor(Double_val(f)));
}

CAMLprim value caml_fmod_float(value f1, value f2)
{
  return caml_copy_double(fmod(Double_val(f1), Double_val(f2)));
}

CAMLprim value caml_frexp_float(value f)
{
  CAMLparam1 (f);
  CAMLlocal2 (res, mantissa);
  int exponent;

  mantissa = caml_copy_double(frexp (Double_val(f), &exponent));
  res = caml_alloc_tuple(2);
  Field(res, 0) = mantissa;
  Field(res, 1) = Val_int(exponent);
  CAMLreturn (res);
}

// Seems dumb but intnat could not correspond to int type.
double caml_ldexp_float_unboxed(double f, intnat i)
{
  return ldexp(f, i);
}


CAMLprim value caml_ldexp_float(value f, value i)
{
  return caml_copy_double(ldexp(Double_val(f), Int_val(i)));
}

CAMLprim value caml_log_float(value f)
{
  return caml_copy_double(log(Double_val(f)));
}

CAMLprim value caml_log10_float(value f)
{
  return caml_copy_double(log10(Double_val(f)));
}

CAMLprim value caml_modf_float(value f)
{
  double frem;

  CAMLparam1 (f);
  CAMLlocal3 (res, quo, rem);

  quo = caml_copy_double(modf (Double_val(f), &frem));
  rem = caml_copy_double(frem);
  res = caml_alloc_tuple(2);
  Field(res, 0) = quo;
  Field(res, 1) = rem;
  CAMLreturn (res);
}

CAMLprim value caml_sqrt_float(value f)
{
  return caml_copy_double(sqrt(Double_val(f)));
}

CAMLprim value caml_power_float(value f, value g)
{
  return caml_copy_double(pow(Double_val(f), Double_val(g)));
}

CAMLprim value caml_sin_float(value f)
{
  return caml_copy_double(sin(Double_val(f)));
}

CAMLprim value caml_sinh_float(value f)
{
  return caml_copy_double(sinh(Double_val(f)));
}

CAMLprim value caml_cos_float(value f)
{
  return caml_copy_double(cos(Double_val(f)));
}

CAMLprim value caml_cosh_float(value f)
{
  return caml_copy_double(cosh(Double_val(f)));
}

CAMLprim value caml_tan_float(value f)
{
  return caml_copy_double(tan(Double_val(f)));
}

CAMLprim value caml_tanh_float(value f)
{
  return caml_copy_double(tanh(Double_val(f)));
}

CAMLprim value caml_asin_float(value f)
{
  return caml_copy_double(asin(Double_val(f)));
}

CAMLprim value caml_acos_float(value f)
{
  return caml_copy_double(acos(Double_val(f)));
}

CAMLprim value caml_atan_float(value f)
{
  return caml_copy_double(atan(Double_val(f)));
}

CAMLprim value caml_atan2_float(value f, value g)
{
  return caml_copy_double(atan2(Double_val(f), Double_val(g)));
}

CAMLprim value caml_ceil_float(value f)
{
  return caml_copy_double(ceil(Double_val(f)));
}

CAMLexport double caml_hypot(double x, double y)
{
#ifdef HAS_C99_FLOAT_OPS
  return hypot(x, y);
#else
  double tmp, ratio;
  x = fabs(x); y = fabs(y);
  if (x != x) /* x is NaN */
    return y > DBL_MAX ? y : x;  /* PR#6321 */
  if (y != y) /* y is NaN */
    return x > DBL_MAX ? x : y;  /* PR#6321 */
  if (x < y) { tmp = x; x = y; y = tmp; }
  if (x == 0.0) return 0.0;
  ratio = y / x;
  return x * sqrt(1.0 + ratio * ratio);
#endif
}

CAMLprim value caml_hypot_float(value f, value g)
{
  return caml_copy_double(caml_hypot(Double_val(f), Double_val(g)));
}

/* These emulations of expm1() and log1p() are due to William Kahan.
   See http://www.plunk.org/~hatch/rightway.php */
CAMLexport double caml_expm1(double x)
{
#ifdef HAS_C99_FLOAT_OPS
  return expm1(x);
#else
  double u = exp(x);
  if (u == 1.)
    return x;
  if (u - 1. == -1.)
    return -1.;
  return (u - 1.) * x / log(u);
#endif
}

CAMLexport double caml_log1p(double x)
{
#ifdef HAS_C99_FLOAT_OPS
  return log1p(x);
#else
  double u = 1. + x;
  if (u == 1.)
    return x;
  else
    return log(u) * x / (u - 1.);
#endif
}

CAMLprim value caml_expm1_float(value f)
{
  return caml_copy_double(caml_expm1(Double_val(f)));
}

CAMLprim value caml_log1p_float(value f)
{
  return caml_copy_double(caml_log1p(Double_val(f)));
}

union double_as_two_int32 {
    double d;
#if defined(ARCH_BIG_ENDIAN) || (defined(__arm__) && !defined(__ARM_EABI__))
    struct { uint32_t h; uint32_t l; } i;
#else
    struct { uint32_t l; uint32_t h; } i;
#endif
};

CAMLexport double caml_copysign(double x, double y)
{
#ifdef HAS_C99_FLOAT_OPS
  return copysign(x, y);
#else
  union double_as_two_int32 ux, uy;
  ux.d = x;
  uy.d = y;
  ux.i.h &= 0x7FFFFFFFU;
  ux.i.h |= (uy.i.h & 0x80000000U);
  return ux.d;
#endif
}

CAMLprim value caml_copysign_float(value f, value g)
{
  return caml_copy_double(caml_copysign(Double_val(f), Double_val(g)));
}

#ifdef LACKS_SANE_NAN

CAMLprim value caml_neq_float(value vf, value vg)
{
  double f = Double_val(vf);
  double g = Double_val(vg);
  return Val_bool(isnan(f) || isnan(g) || f != g);
}

#define DEFINE_NAN_CMP(op) (value vf, value vg) \
{ \
  double f = Double_val(vf); \
  double g = Double_val(vg); \
  return Val_bool(!isnan(f) && !isnan(g) && f op g); \
}

intnat caml_float_compare_unboxed(double f, double g)
{
  /* Insane => nan == everything && nan < everything && nan > everything */
  if (isnan(f) && isnan(g)) return 0;
  if (!isnan(g) && f < g) return -1;
  if (f != g) return 1;
  return 0;
}

#else

CAMLprim value caml_neq_float(value f, value g)
{
  return Val_bool(Double_val(f) != Double_val(g));
}

#define DEFINE_NAN_CMP(op) (value f, value g) \
{ \
  return Val_bool(Double_val(f) op Double_val(g)); \
}

intnat caml_float_compare_unboxed(double f, double g)
{
  /* If one or both of f and g is NaN, order according to the convention
     NaN = NaN and NaN < x for all other floats x. */
  /* This branchless implementation is from GPR#164.
     Note that [f == f] if and only if f is not NaN. */
  return (f > g) - (f < g) + (f == f) - (g == g);
}

#endif

CAMLprim value caml_eq_float DEFINE_NAN_CMP(==)
CAMLprim value caml_le_float DEFINE_NAN_CMP(<=)
CAMLprim value caml_lt_float DEFINE_NAN_CMP(<)
CAMLprim value caml_ge_float DEFINE_NAN_CMP(>=)
CAMLprim value caml_gt_float DEFINE_NAN_CMP(>)

CAMLprim value caml_float_compare(value vf, value vg)
{
  return Val_int(caml_float_compare_unboxed(Double_val(vf),Double_val(vg)));
}

enum { FP_normal, FP_subnormal, FP_zero, FP_infinite, FP_nan };

value caml_classify_float_unboxed(double vd)
{
#ifdef ARCH_SIXTYFOUR
  union { double d; uint64_t i; } u;
  uint64_t n;
  uint32_t e;

  u.d = vd;
  n = u.i << 1;                 /* shift sign bit off */
  if (n == 0) return Val_int(FP_zero);
  e = n >> 53;                  /* extract exponent */
  if (e == 0) return Val_int(FP_subnormal);
  if (e == 0x7FF) {
    if (n << 11 == 0)           /* shift exponent off */
      return Val_int(FP_infinite);
    else
      return Val_int(FP_nan);
  }
  return Val_int(FP_normal);
#else
  union double_as_two_int32 u;
  uint32_t h, l;

  u.d = vd;
  h = u.i.h;  l = u.i.l;
  l = l | (h & 0xFFFFF);
  h = h & 0x7FF00000;
  if ((h | l) == 0)
    return Val_int(FP_zero);
  if (h == 0)
    return Val_int(FP_subnormal);
  if (h == 0x7FF00000) {
    if (l == 0)
      return Val_int(FP_infinite);
    else
      return Val_int(FP_nan);
  }
  return Val_int(FP_normal);
#endif
}

CAMLprim value caml_classify_float(value vd)
{
  return caml_classify_float_unboxed(Double_val(vd));
}

/* The [caml_init_ieee_float] function should initialize floating-point hardware
   so that it behaves as much as possible like the IEEE standard.
   In particular, return special numbers like Infinity and NaN instead
   of signalling exceptions.  Currently, everyone is in IEEE mode
   at program startup, except FreeBSD prior to 4.0R. */

#ifdef __FreeBSD__
#include <osreldate.h>
#if (__FreeBSD_version < 400017)
#include <floatingpoint.h>
#endif
#endif

void caml_init_ieee_floats(void)
{
#if defined(__FreeBSD__) && (__FreeBSD_version < 400017)
  fpsetmask(0);
#endif
}