aboutsummaryrefslogtreecommitdiffstats
path: root/test/monniaux/sha-2/sha-256.c
blob: 6ac1dbd35376938562c4499372fea7e2afd263f3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
#include <stdint.h>
#include <string.h>
#if 0 /* __COMPCERT__ */
#define my_memcpy(dst, src, size) __builtin_memcpy_aligned(dst, src, size, 1)
#else
#define my_memcpy(dst, src, size) memcpy(dst, src, size)
#endif

#include "sha-256.h"

#define CHUNK_SIZE 64
#define TOTAL_LEN_LEN 8

/*
 * ABOUT bool: this file does not use bool in order to be as pre-C99 compatible as possible.
 */

/*
 * Comments from pseudo-code at https://en.wikipedia.org/wiki/SHA-2 are reproduced here.
 * When useful for clarification, portions of the pseudo-code are reproduced here too.
 */

/*
 * Initialize array of round constants:
 * (first 32 bits of the fractional parts of the cube roots of the first 64 primes 2..311):
 */
static const uint32_t k[] = {
	0x428a2f98, 0x71374491, 0xb5c0fbcf, 0xe9b5dba5, 0x3956c25b, 0x59f111f1, 0x923f82a4, 0xab1c5ed5,
	0xd807aa98, 0x12835b01, 0x243185be, 0x550c7dc3, 0x72be5d74, 0x80deb1fe, 0x9bdc06a7, 0xc19bf174,
	0xe49b69c1, 0xefbe4786, 0x0fc19dc6, 0x240ca1cc, 0x2de92c6f, 0x4a7484aa, 0x5cb0a9dc, 0x76f988da,
	0x983e5152, 0xa831c66d, 0xb00327c8, 0xbf597fc7, 0xc6e00bf3, 0xd5a79147, 0x06ca6351, 0x14292967,
	0x27b70a85, 0x2e1b2138, 0x4d2c6dfc, 0x53380d13, 0x650a7354, 0x766a0abb, 0x81c2c92e, 0x92722c85,
	0xa2bfe8a1, 0xa81a664b, 0xc24b8b70, 0xc76c51a3, 0xd192e819, 0xd6990624, 0xf40e3585, 0x106aa070,
	0x19a4c116, 0x1e376c08, 0x2748774c, 0x34b0bcb5, 0x391c0cb3, 0x4ed8aa4a, 0x5b9cca4f, 0x682e6ff3,
	0x748f82ee, 0x78a5636f, 0x84c87814, 0x8cc70208, 0x90befffa, 0xa4506ceb, 0xbef9a3f7, 0xc67178f2
};

struct buffer_state {
	const uint8_t * p;
	size_t len;
	size_t total_len;
	int single_one_delivered; /* bool */
	int total_len_delivered; /* bool */
};

static inline uint32_t right_rot(uint32_t value, unsigned int count)
{
	/*
	 * Defined behaviour in standard C for all count where 0 < count < 32,
	 * which is what we need here.
	 */
	return value >> count | value << (32 - count);
}

/* BEGIN DM */
#define DEF_ROT(n) \
static inline uint32_t right_rot##n(uint32_t value) \
{ \
	return value >> n | value << (32 - n); \
}
DEF_ROT(2)
DEF_ROT(6)
DEF_ROT(7)
DEF_ROT(11)
DEF_ROT(13)
DEF_ROT(17)
DEF_ROT(18)
DEF_ROT(19)
DEF_ROT(22)
DEF_ROT(25)
/* END DM */

static void init_buf_state(struct buffer_state * state, const void * input, size_t len)
{
	state->p = input;
	state->len = len;
	state->total_len = len;
	state->single_one_delivered = 0;
	state->total_len_delivered = 0;
}

/* Return value: bool */
static int calc_chunk(uint8_t chunk[CHUNK_SIZE], struct buffer_state * state)
{
	size_t space_in_chunk;

	if (state->total_len_delivered) {
		return 0;
	}

	if (state->len >= CHUNK_SIZE) {
		my_memcpy(chunk, state->p, CHUNK_SIZE);
		state->p += CHUNK_SIZE;
		state->len -= CHUNK_SIZE;
		return 1;
	}

	memcpy(chunk, state->p, state->len);
	chunk += state->len;
	space_in_chunk = CHUNK_SIZE - state->len;
	state->p += state->len;
	state->len = 0;

	/* If we are here, space_in_chunk is one at minimum. */
	if (!state->single_one_delivered) {
		*chunk++ = 0x80;
		space_in_chunk -= 1;
		state->single_one_delivered = 1;
	}

	/*
	 * Now:
	 * - either there is enough space left for the total length, and we can conclude,
	 * - or there is too little space left, and we have to pad the rest of this chunk with zeroes.
	 * In the latter case, we will conclude at the next invokation of this function.
	 */
	if (space_in_chunk >= TOTAL_LEN_LEN) {
		const size_t left = space_in_chunk - TOTAL_LEN_LEN;
		size_t len = state->total_len;
		int i;
		memset(chunk, 0x00, left);
		chunk += left;

		/* Storing of len * 8 as a big endian 64-bit without overflow. */
		chunk[7] = (uint8_t) (len << 3);
		len >>= 5;
		for (i = 6; i >= 0; i--) {
			chunk[i] = (uint8_t) len;
			len >>= 8;
		}
		state->total_len_delivered = 1;
	} else {
		memset(chunk, 0x00, space_in_chunk);
	}

	return 1;
}

/*
 * Limitations:
 * - Since input is a pointer in RAM, the data to hash should be in RAM, which could be a problem
 *   for large data sizes.
 * - SHA algorithms theoretically operate on bit strings. However, this implementation has no support
 *   for bit string lengths that are not multiples of eight, and it really operates on arrays of bytes.
 *   In particular, the len parameter is a number of bytes.
 */
/* #define DO_NOT_UNROLL 1 */
#define AUTOINCREMENT 1

#if USE_ORIGINAL
void calc_sha_256(uint8_t hash[32], const void * input, size_t len)
{
	/*
	 * Note 1: All integers (expect indexes) are 32-bit unsigned integers and addition is calculated modulo 2^32.
	 * Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 = i = 63
	 * Note 3: The compression function uses 8 working variables, a through h
	 * Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
	 *     and when parsing message block data from bytes to words, for example,
	 *     the first word of the input message "abc" after padding is 0x61626380
	 */

	/*
	 * Initialize hash values:
	 * (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
	 */
	uint32_t h[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
	int i, j;

	/* 512-bit chunks is what we will operate on. */
	uint8_t chunk[64];

	struct buffer_state state;

	init_buf_state(&state, input, len);

	while (calc_chunk(chunk, &state)) {
		uint32_t ah[8];
		
		/*
		 * create a 64-entry message schedule array w[0..63] of 32-bit words
		 * (The initial values in w[0..63] don't matter, so many implementations zero them here)
		 * copy chunk into first 16 words w[0..15] of the message schedule array
		 */
		uint32_t w[64];
		const uint8_t *p = chunk;

		memset(w, 0x00, sizeof w);
		for (i = 0; i < 16; i++) {
			w[i] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 |
				(uint32_t) p[2] << 8 | (uint32_t) p[3];
			p += 4;
		}

		/* Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: */
		for (i = 16; i < 64; i++) {
			const uint32_t s0 = right_rot7(w[i - 15]) ^ right_rot18(w[i - 15]) ^ (w[i - 15] >> 3);
			const uint32_t s1 = right_rot17(w[i - 2]) ^ right_rot19(w[i - 2]) ^ (w[i - 2] >> 10);
			w[i] = w[i - 16] + s0 + w[i - 7] + s1;
		}
		
		/* Initialize working variables to current hash value: */
		for (i = 0; i < 8; i++)
			ah[i] = h[i];

		/* Compression function main loop: */
		for (i = 0; i < 64; i++) {
			const uint32_t s1 = right_rot6(ah[4]) ^ right_rot11(ah[4]) ^ right_rot25(ah[4]);
			const uint32_t ch = (ah[4] & ah[5]) ^ (~ah[4] & ah[6]);
			const uint32_t temp1 = ah[7] + s1 + ch + k[i] + w[i];
			const uint32_t s0 = right_rot2(ah[0]) ^ right_rot13(ah[0]) ^ right_rot22(ah[0]);
			const uint32_t maj = (ah[0] & ah[1]) ^ (ah[0] & ah[2]) ^ (ah[1] & ah[2]);
			const uint32_t temp2 = s0 + maj;

			ah[7] = ah[6];
			ah[6] = ah[5];
			ah[5] = ah[4];
			ah[4] = ah[3] + temp1;
			ah[3] = ah[2];
			ah[2] = ah[1];
			ah[1] = ah[0];
			ah[0] = temp1 + temp2;
		}

		/* Add the compressed chunk to the current hash value: */
		for (i = 0; i < 8; i++)
			h[i] += ah[i];
	}

	/* Produce the final hash value (big-endian): */
	for (i = 0, j = 0; i < 8; i++)
	{
		hash[j++] = (uint8_t) (h[i] >> 24);
		hash[j++] = (uint8_t) (h[i] >> 16);
		hash[j++] = (uint8_t) (h[i] >> 8);
		hash[j++] = (uint8_t) h[i];
	}
}
#else
#if DO_NOT_UNROLL
/* Modified by D. Monniaux */
void calc_sha_256(uint8_t hash[32], const void * input, size_t len)
{
	/*
	 * Note 1: All integers (expect indexes) are 32-bit unsigned integers and addition is calculated modulo 2^32.
	 * Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 = i = 63
	 * Note 3: The compression function uses 8 working variables, a through h
	 * Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
	 *     and when parsing message block data from bytes to words, for example,
	 *     the first word of the input message "abc" after padding is 0x61626380
	 */

	/*
	 * Initialize hash values:
	 * (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
	 */
	uint32_t h[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
	uint32_t h0 = h[0];
	uint32_t h1 = h[1];
	uint32_t h2 = h[2];
	uint32_t h3 = h[3];
	uint32_t h4 = h[4];
	uint32_t h5 = h[5];
	uint32_t h6 = h[6];
	uint32_t h7 = h[7];
	int i, j;

	/* 512-bit chunks is what we will operate on. */
	uint8_t chunk[64];

	struct buffer_state state;

	init_buf_state(&state, input, len);

	while (calc_chunk(chunk, &state)) {
	        uint32_t ah0, ah1, ah2, ah3, ah4, ah5, ah6, ah7;
		
		/*
		 * create a 64-entry message schedule array w[0..63] of 32-bit words
		 * (The initial values in w[0..63] don't matter, so many implementations zero them here)
		 * copy chunk into first 16 words w[0..15] of the message schedule array
		 */
		uint32_t w[64];
		const uint8_t *p = chunk;

		memset(w, 0x00, sizeof w);
		for (i = 0; i < 16; i++) {
			w[i] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 |
				(uint32_t) p[2] << 8 | (uint32_t) p[3];
			p += 4;
		}

		/* Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: */
		for (i = 16; i < 64; i++) {
			const uint32_t s0 = right_rot7(w[i - 15]) ^ right_rot18(w[i - 15]) ^ (w[i - 15] >> 3);
			const uint32_t s1 = right_rot17(w[i - 2]) ^ right_rot19(w[i - 2]) ^ (w[i - 2] >> 10);
			w[i] = w[i - 16] + s0 + w[i - 7] + s1;
		}
		
		/* Initialize working variables to current hash value: */
		ah0 = h0;
		ah1 = h1;
		ah2 = h2;
		ah3 = h3;
		ah4 = h4;
		ah5 = h5;
		ah6 = h6;
		ah7 = h7;

		/* Compression function main loop: */
#if AUTOINCREMENT
		const uint32_t *ki = k, *wi = w;
#endif
		for (i = 0; i < 64; i++) {
		  const uint32_t s1 = right_rot6(ah4) ^ right_rot11(ah4) ^ right_rot25(ah4);
			const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6);
			const uint32_t temp1 = ah7 + s1 + ch +
#if AUTOINCREMENT
			  *(ki++) + *(wi++);
#else
			  k[i] + w[i];
#endif
			const uint32_t s0 = right_rot2(ah0) ^ right_rot13(ah0) ^ right_rot22(ah0);
			const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2);
			const uint32_t temp2 = s0 + maj;

			ah7 = ah6;
			ah6 = ah5;
			ah5 = ah4;
			ah4 = ah3 + temp1;
			ah3 = ah2;
			ah2 = ah1;
			ah1 = ah0;
			ah0 = temp1 + temp2;
		}

		/* Add the compressed chunk to the current hash value: */
		h0 += ah0;
		h1 += ah1;
		h2 += ah2;
		h3 += ah3;
		h4 += ah4;
		h5 += ah5;
		h6 += ah6;
		h7 += ah7;
	}
	h[0]=h0;
	h[1]=h1;
	h[2]=h2;
	h[3]=h3;
	h[4]=h4;
	h[5]=h5;
	h[6]=h6;
	h[7]=h7;
	
	/* Produce the final hash value (big-endian): */
	for (i = 0, j = 0; i < 8; i++)
	{
		hash[j++] = (uint8_t) (h[i] >> 24);
		hash[j++] = (uint8_t) (h[i] >> 16);
		hash[j++] = (uint8_t) (h[i] >> 8);
		hash[j++] = (uint8_t) h[i];
	}
}
#else
/* Modified by D. Monniaux */
void calc_sha_256(uint8_t hash[32], const void * input, size_t len)
{
	/*
	 * Note 1: All integers (expect indexes) are 32-bit unsigned integers and addition is calculated modulo 2^32.
	 * Note 2: For each round, there is one round constant k[i] and one entry in the message schedule array w[i], 0 = i = 63
	 * Note 3: The compression function uses 8 working variables, a through h
	 * Note 4: Big-endian convention is used when expressing the constants in this pseudocode,
	 *     and when parsing message block data from bytes to words, for example,
	 *     the first word of the input message "abc" after padding is 0x61626380
	 */

	/*
	 * Initialize hash values:
	 * (first 32 bits of the fractional parts of the square roots of the first 8 primes 2..19):
	 */
	uint32_t h[] = { 0x6a09e667, 0xbb67ae85, 0x3c6ef372, 0xa54ff53a, 0x510e527f, 0x9b05688c, 0x1f83d9ab, 0x5be0cd19 };
	uint32_t h0 = h[0];
	uint32_t h1 = h[1];
	uint32_t h2 = h[2];
	uint32_t h3 = h[3];
	uint32_t h4 = h[4];
	uint32_t h5 = h[5];
	uint32_t h6 = h[6];
	uint32_t h7 = h[7];
	int i, j;

	/* 512-bit chunks is what we will operate on. */
	uint8_t chunk[64];

	struct buffer_state state;

	init_buf_state(&state, input, len);

	while (calc_chunk(chunk, &state)) {
	        uint32_t ah0, ah1, ah2, ah3, ah4, ah5, ah6, ah7;
		
		/*
		 * create a 64-entry message schedule array w[0..63] of 32-bit words
		 * (The initial values in w[0..63] don't matter, so many implementations zero them here)
		 * copy chunk into first 16 words w[0..15] of the message schedule array
		 */
		uint32_t w[64];
		const uint8_t *p = chunk;

		memset(w, 0x00, sizeof w);
		for (i = 0; i < 16; i++) {
			w[i] = (uint32_t) p[0] << 24 | (uint32_t) p[1] << 16 |
				(uint32_t) p[2] << 8 | (uint32_t) p[3];
			p += 4;
		}

		/* Extend the first 16 words into the remaining 48 words w[16..63] of the message schedule array: */
		for (i = 16; i < 64; i++) {
			const uint32_t s0 = right_rot7(w[i - 15]) ^ right_rot18(w[i - 15]) ^ (w[i - 15] >> 3);
			const uint32_t s1 = right_rot17(w[i - 2]) ^ right_rot19(w[i - 2]) ^ (w[i - 2] >> 10);
			w[i] = w[i - 16] + s0 + w[i - 7] + s1;
		}
		
		/* Initialize working variables to current hash value: */
		ah0 = h0;
		ah1 = h1;
		ah2 = h2;
		ah3 = h3;
		ah4 = h4;
		ah5 = h5;
		ah6 = h6;
		ah7 = h7;

		/* Compression function main loop: */
		for (i = 0; i < 64; ) {
		  {
			const uint32_t s1 = right_rot6(ah4) ^ right_rot11(ah4) ^ right_rot25(ah4);
			const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6);
			const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i];
			const uint32_t s0 = right_rot2(ah0) ^ right_rot13(ah0) ^ right_rot22(ah0);
			const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2);
			const uint32_t temp2 = s0 + maj;

			ah7 = ah6;
			ah6 = ah5;
			ah5 = ah4;
			ah4 = ah3 + temp1;
			ah3 = ah2;
			ah2 = ah1;
			ah1 = ah0;
			ah0 = temp1 + temp2;
			i++;
		  }
		  {
			const uint32_t s1 = right_rot6(ah4) ^ right_rot11(ah4) ^ right_rot25(ah4);
			const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6);
			const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i];
			const uint32_t s0 = right_rot2(ah0) ^ right_rot13(ah0) ^ right_rot22(ah0);
			const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2);
			const uint32_t temp2 = s0 + maj;

			ah7 = ah6;
			ah6 = ah5;
			ah5 = ah4;
			ah4 = ah3 + temp1;
			ah3 = ah2;
			ah2 = ah1;
			ah1 = ah0;
			ah0 = temp1 + temp2;
			i++;
		  }
		  {
			const uint32_t s1 = right_rot6(ah4) ^ right_rot11(ah4) ^ right_rot25(ah4);
			const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6);
			const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i];
			const uint32_t s0 = right_rot2(ah0) ^ right_rot13(ah0) ^ right_rot22(ah0);
			const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2);
			const uint32_t temp2 = s0 + maj;

			ah7 = ah6;
			ah6 = ah5;
			ah5 = ah4;
			ah4 = ah3 + temp1;
			ah3 = ah2;
			ah2 = ah1;
			ah1 = ah0;
			ah0 = temp1 + temp2;
			i++;
		  }
		  {
			const uint32_t s1 = right_rot6(ah4) ^ right_rot11(ah4) ^ right_rot25(ah4);
			const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6);
			const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i];
			const uint32_t s0 = right_rot2(ah0) ^ right_rot13(ah0) ^ right_rot22(ah0);
			const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2);
			const uint32_t temp2 = s0 + maj;

			ah7 = ah6;
			ah6 = ah5;
			ah5 = ah4;
			ah4 = ah3 + temp1;
			ah3 = ah2;
			ah2 = ah1;
			ah1 = ah0;
			ah0 = temp1 + temp2;
			i++;
		  }
		  {
			const uint32_t s1 = right_rot6(ah4) ^ right_rot11(ah4) ^ right_rot25(ah4);
			const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6);
			const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i];
			const uint32_t s0 = right_rot2(ah0) ^ right_rot13(ah0) ^ right_rot22(ah0);
			const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2);
			const uint32_t temp2 = s0 + maj;

			ah7 = ah6;
			ah6 = ah5;
			ah5 = ah4;
			ah4 = ah3 + temp1;
			ah3 = ah2;
			ah2 = ah1;
			ah1 = ah0;
			ah0 = temp1 + temp2;
			i++;
		  }
		  {
			const uint32_t s1 = right_rot6(ah4) ^ right_rot11(ah4) ^ right_rot25(ah4);
			const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6);
			const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i];
			const uint32_t s0 = right_rot2(ah0) ^ right_rot13(ah0) ^ right_rot22(ah0);
			const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2);
			const uint32_t temp2 = s0 + maj;

			ah7 = ah6;
			ah6 = ah5;
			ah5 = ah4;
			ah4 = ah3 + temp1;
			ah3 = ah2;
			ah2 = ah1;
			ah1 = ah0;
			ah0 = temp1 + temp2;
			i++;
		  }
		  {
			const uint32_t s1 = right_rot6(ah4) ^ right_rot11(ah4) ^ right_rot25(ah4);
			const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6);
			const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i];
			const uint32_t s0 = right_rot2(ah0) ^ right_rot13(ah0) ^ right_rot22(ah0);
			const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2);
			const uint32_t temp2 = s0 + maj;

			ah7 = ah6;
			ah6 = ah5;
			ah5 = ah4;
			ah4 = ah3 + temp1;
			ah3 = ah2;
			ah2 = ah1;
			ah1 = ah0;
			ah0 = temp1 + temp2;
			i++;
		  }
		  {
			const uint32_t s1 = right_rot6(ah4) ^ right_rot11(ah4) ^ right_rot25(ah4);
			const uint32_t ch = (ah4 & ah5) ^ (~ah4 & ah6);
			const uint32_t temp1 = ah7 + s1 + ch + k[i] + w[i];
			const uint32_t s0 = right_rot2(ah0) ^ right_rot13(ah0) ^ right_rot22(ah0);
			const uint32_t maj = (ah0 & ah1) ^ (ah0 & ah2) ^ (ah1 & ah2);
			const uint32_t temp2 = s0 + maj;

			ah7 = ah6;
			ah6 = ah5;
			ah5 = ah4;
			ah4 = ah3 + temp1;
			ah3 = ah2;
			ah2 = ah1;
			ah1 = ah0;
			ah0 = temp1 + temp2;
			i++;
		  }
		}

		/* Add the compressed chunk to the current hash value: */
		h0 += ah0;
		h1 += ah1;
		h2 += ah2;
		h3 += ah3;
		h4 += ah4;
		h5 += ah5;
		h6 += ah6;
		h7 += ah7;
	}
	h[0]=h0;
	h[1]=h1;
	h[2]=h2;
	h[3]=h3;
	h[4]=h4;
	h[5]=h5;
	h[6]=h6;
	h[7]=h7;

	/* Produce the final hash value (big-endian): */
	for (i = 0, j = 0; i < 8; i++)
	{
		hash[j++] = (uint8_t) (h[i] >> 24);
		hash[j++] = (uint8_t) (h[i] >> 16);
		hash[j++] = (uint8_t) (h[i] >> 8);
		hash[j++] = (uint8_t) h[i];
	}
}
#endif
#endif