aboutsummaryrefslogtreecommitdiffstats
path: root/x86/Asmgenproof1.v
diff options
context:
space:
mode:
authorXavier Leroy <xavier.leroy@inria.fr>2016-10-27 11:06:09 +0200
committerXavier Leroy <xavier.leroy@inria.fr>2016-10-27 11:06:09 +0200
commit883341719d7d6868f8165541e7e13ac45192a358 (patch)
tree368ad6e0f2d8e4c99c13a68da0e92c7f00408ae5 /x86/Asmgenproof1.v
parent88c717e497e0e8a2e6df12418833e46c56291724 (diff)
downloadcompcert-883341719d7d6868f8165541e7e13ac45192a358.tar.gz
compcert-883341719d7d6868f8165541e7e13ac45192a358.zip
Make Archi.ptr64 always computable, and reorganize files accordingly: ia32 -> x86/x86_32/x86_64
Having Archi.ptr64 as an opaque Parameter that is determined at run-time depending on compcert.ini is problematic for applications such as VST where functions such as Ctypes.sizeof must compute within Coq. This commit introduces two versions of the Archi.v file, one for x86 32 bits (with ptr64 := false), one for x86 64 bits (with ptr64 := true). Unlike previous approaches, no other file is duplicated between these two variants of x86. While we are at it, I renamed "ia32" into "x86" everywhere. "ia32" is Intel speak for the 32-bit architecture. It is not a good name to describe both the 32 and 64 bit architectures. Finally, .depend is no longer under version control and is regenerated when the target architecture changes. That's because the location of Archi.v differs between the ports that have 32/64 bit variants (x86 so far) and the ports that have only one bitsize (ARM and PowerPC so far).
Diffstat (limited to 'x86/Asmgenproof1.v')
-rw-r--r--x86/Asmgenproof1.v1477
1 files changed, 1477 insertions, 0 deletions
diff --git a/x86/Asmgenproof1.v b/x86/Asmgenproof1.v
new file mode 100644
index 00000000..401be7d7
--- /dev/null
+++ b/x86/Asmgenproof1.v
@@ -0,0 +1,1477 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Correctness proof for x86-64 generation: auxiliary results. *)
+
+Require Import Coqlib.
+Require Import AST Errors Integers Floats Values Memory Globalenvs.
+Require Import Op Locations Conventions Mach Asm.
+Require Import Asmgen Asmgenproof0.
+
+Open Local Scope error_monad_scope.
+
+(** * Correspondence between Mach registers and x86 registers *)
+
+Lemma agree_nextinstr_nf:
+ forall ms sp rs,
+ agree ms sp rs -> agree ms sp (nextinstr_nf rs).
+Proof.
+ intros. unfold nextinstr_nf. apply agree_nextinstr.
+ apply agree_undef_nondata_regs. auto.
+ simpl; intros. intuition (subst r; auto).
+Qed.
+
+(** Useful properties of the PC register. *)
+
+Lemma nextinstr_nf_inv:
+ forall r rs,
+ match r with PC => False | CR _ => False | _ => True end ->
+ (nextinstr_nf rs)#r = rs#r.
+Proof.
+ intros. unfold nextinstr_nf. rewrite nextinstr_inv.
+ simpl. repeat rewrite Pregmap.gso; auto;
+ red; intro; subst; contradiction.
+ red; intro; subst; contradiction.
+Qed.
+
+Lemma nextinstr_nf_inv1:
+ forall r rs,
+ data_preg r = true -> (nextinstr_nf rs)#r = rs#r.
+Proof.
+ intros. apply nextinstr_nf_inv. destruct r; auto || discriminate.
+Qed.
+
+Lemma nextinstr_nf_set_preg:
+ forall rs m v,
+ (nextinstr_nf (rs#(preg_of m) <- v))#PC = Val.offset_ptr rs#PC Ptrofs.one.
+Proof.
+ intros. unfold nextinstr_nf.
+ transitivity (nextinstr (rs#(preg_of m) <- v) PC). auto.
+ apply nextinstr_set_preg.
+Qed.
+
+(** Useful simplification tactic *)
+
+Ltac Simplif :=
+ match goal with
+ | [ |- nextinstr_nf _ _ = _ ] =>
+ ((rewrite nextinstr_nf_inv by auto with asmgen)
+ || (rewrite nextinstr_nf_inv1 by auto with asmgen)); auto
+ | [ |- nextinstr _ _ = _ ] =>
+ ((rewrite nextinstr_inv by auto with asmgen)
+ || (rewrite nextinstr_inv1 by auto with asmgen)); auto
+ | [ |- Pregmap.get ?x (Pregmap.set ?x _ _) = _ ] =>
+ rewrite Pregmap.gss; auto
+ | [ |- Pregmap.set ?x _ _ ?x = _ ] =>
+ rewrite Pregmap.gss; auto
+ | [ |- Pregmap.get _ (Pregmap.set _ _ _) = _ ] =>
+ rewrite Pregmap.gso by (auto with asmgen); auto
+ | [ |- Pregmap.set _ _ _ _ = _ ] =>
+ rewrite Pregmap.gso by (auto with asmgen); auto
+ end.
+
+Ltac Simplifs := repeat Simplif.
+
+(** * Correctness of x86-64 constructor functions *)
+
+Section CONSTRUCTORS.
+
+Variable ge: genv.
+Variable fn: function.
+
+(** Smart constructor for moves. *)
+
+Lemma mk_mov_correct:
+ forall rd rs k c rs1 m,
+ mk_mov rd rs k = OK c ->
+ exists rs2,
+ exec_straight ge fn c rs1 m k rs2 m
+ /\ rs2#rd = rs1#rs
+ /\ forall r, data_preg r = true -> r <> rd -> rs2#r = rs1#r.
+Proof.
+ unfold mk_mov; intros.
+ destruct rd; try (monadInv H); destruct rs; monadInv H.
+(* mov *)
+ econstructor. split. apply exec_straight_one. simpl. eauto. auto.
+ split. Simplifs. intros; Simplifs.
+(* movsd *)
+ econstructor. split. apply exec_straight_one. simpl. eauto. auto.
+ split. Simplifs. intros; Simplifs.
+Qed.
+
+(** Properties of division *)
+
+Lemma divu_modu_exists:
+ forall v1 v2,
+ Val.divu v1 v2 <> None \/ Val.modu v1 v2 <> None ->
+ exists n d q r,
+ v1 = Vint n /\ v2 = Vint d
+ /\ Int.divmodu2 Int.zero n d = Some(q, r)
+ /\ Val.divu v1 v2 = Some (Vint q) /\ Val.modu v1 v2 = Some (Vint r).
+Proof.
+ intros v1 v2; unfold Val.divu, Val.modu.
+ destruct v1; try (intuition discriminate).
+ destruct v2; try (intuition discriminate).
+ predSpec Int.eq Int.eq_spec i0 Int.zero ; try (intuition discriminate).
+ intros _. exists i, i0, (Int.divu i i0), (Int.modu i i0); intuition auto.
+ apply Int.divmodu2_divu_modu; auto.
+Qed.
+
+Lemma divs_mods_exists:
+ forall v1 v2,
+ Val.divs v1 v2 <> None \/ Val.mods v1 v2 <> None ->
+ exists nh nl d q r,
+ Val.shr v1 (Vint (Int.repr 31)) = Vint nh /\ v1 = Vint nl /\ v2 = Vint d
+ /\ Int.divmods2 nh nl d = Some(q, r)
+ /\ Val.divs v1 v2 = Some (Vint q) /\ Val.mods v1 v2 = Some (Vint r).
+Proof.
+ intros v1 v2; unfold Val.divs, Val.mods.
+ destruct v1; try (intuition discriminate).
+ destruct v2; try (intuition discriminate).
+ destruct (Int.eq i0 Int.zero
+ || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone) eqn:OK;
+ try (intuition discriminate).
+ intros _.
+ InvBooleans.
+ exists (Int.shr i (Int.repr 31)), i, i0, (Int.divs i i0), (Int.mods i i0); intuition auto.
+ rewrite Int.shr_lt_zero. apply Int.divmods2_divs_mods.
+ red; intros; subst i0; rewrite Int.eq_true in H; discriminate.
+ revert H0. predSpec Int.eq Int.eq_spec i (Int.repr Int.min_signed); auto.
+ predSpec Int.eq Int.eq_spec i0 Int.mone; auto.
+ discriminate.
+Qed.
+
+Lemma divlu_modlu_exists:
+ forall v1 v2,
+ Val.divlu v1 v2 <> None \/ Val.modlu v1 v2 <> None ->
+ exists n d q r,
+ v1 = Vlong n /\ v2 = Vlong d
+ /\ Int64.divmodu2 Int64.zero n d = Some(q, r)
+ /\ Val.divlu v1 v2 = Some (Vlong q) /\ Val.modlu v1 v2 = Some (Vlong r).
+Proof.
+ intros v1 v2; unfold Val.divlu, Val.modlu.
+ destruct v1; try (intuition discriminate).
+ destruct v2; try (intuition discriminate).
+ predSpec Int64.eq Int64.eq_spec i0 Int64.zero ; try (intuition discriminate).
+ intros _. exists i, i0, (Int64.divu i i0), (Int64.modu i i0); intuition auto.
+ apply Int64.divmodu2_divu_modu; auto.
+Qed.
+
+Lemma divls_modls_exists:
+ forall v1 v2,
+ Val.divls v1 v2 <> None \/ Val.modls v1 v2 <> None ->
+ exists nh nl d q r,
+ Val.shrl v1 (Vint (Int.repr 63)) = Vlong nh /\ v1 = Vlong nl /\ v2 = Vlong d
+ /\ Int64.divmods2 nh nl d = Some(q, r)
+ /\ Val.divls v1 v2 = Some (Vlong q) /\ Val.modls v1 v2 = Some (Vlong r).
+Proof.
+ intros v1 v2; unfold Val.divls, Val.modls.
+ destruct v1; try (intuition discriminate).
+ destruct v2; try (intuition discriminate).
+ destruct (Int64.eq i0 Int64.zero
+ || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone) eqn:OK;
+ try (intuition discriminate).
+ intros _.
+ InvBooleans.
+ exists (Int64.shr i (Int64.repr 63)), i, i0, (Int64.divs i i0), (Int64.mods i i0); intuition auto.
+ rewrite Int64.shr_lt_zero. apply Int64.divmods2_divs_mods.
+ red; intros; subst i0; rewrite Int64.eq_true in H; discriminate.
+ revert H0. predSpec Int64.eq Int64.eq_spec i (Int64.repr Int64.min_signed); auto.
+ predSpec Int64.eq Int64.eq_spec i0 Int64.mone; auto.
+ discriminate.
+Qed.
+
+(** Smart constructor for [shrx] *)
+
+Lemma mk_shrximm_correct:
+ forall n k c (rs1: regset) v m,
+ mk_shrximm n k = OK c ->
+ Val.shrx (rs1#RAX) (Vint n) = Some v ->
+ exists rs2,
+ exec_straight ge fn c rs1 m k rs2 m
+ /\ rs2#RAX = v
+ /\ forall r, data_preg r = true -> r <> RAX -> r <> RCX -> rs2#r = rs1#r.
+Proof.
+ unfold mk_shrximm; intros. inv H.
+ exploit Val.shrx_shr; eauto. intros [x [y [A [B C]]]].
+ inversion B; clear B; subst y; subst v; clear H0.
+ set (tnm1 := Int.sub (Int.shl Int.one n) Int.one).
+ set (x' := Int.add x tnm1).
+ set (rs2 := nextinstr (compare_ints (Vint x) (Vint Int.zero) rs1 m)).
+ set (rs3 := nextinstr (rs2#RCX <- (Vint x'))).
+ set (rs4 := nextinstr (if Int.lt x Int.zero then rs3#RAX <- (Vint x') else rs3)).
+ set (rs5 := nextinstr_nf (rs4#RAX <- (Val.shr rs4#RAX (Vint n)))).
+ assert (rs3#RAX = Vint x). unfold rs3. Simplifs.
+ assert (rs3#RCX = Vint x'). unfold rs3. Simplifs.
+ exists rs5. split.
+ apply exec_straight_step with rs2 m. simpl. rewrite A. simpl. rewrite Int.and_idem. auto. auto.
+ apply exec_straight_step with rs3 m. simpl.
+ change (rs2 RAX) with (rs1 RAX). rewrite A. simpl.
+ rewrite Int.repr_unsigned. rewrite Int.add_zero_l. auto. auto.
+ apply exec_straight_step with rs4 m. simpl.
+ rewrite Int.lt_sub_overflow. unfold rs4. destruct (Int.lt x Int.zero); simpl; auto.
+ unfold rs4. destruct (Int.lt x Int.zero); simpl; auto.
+ apply exec_straight_one. auto. auto.
+ split. unfold rs5. Simplifs. unfold rs4. rewrite nextinstr_inv; auto with asmgen.
+ destruct (Int.lt x Int.zero). rewrite Pregmap.gss. rewrite A; auto. rewrite A; rewrite H; auto.
+ intros. unfold rs5. Simplifs. unfold rs4. Simplifs.
+ transitivity (rs3#r). destruct (Int.lt x Int.zero). Simplifs. auto.
+ unfold rs3. Simplifs. unfold rs2. Simplifs.
+ unfold compare_ints. Simplifs.
+Qed.
+
+(** Smart constructor for [shrxl] *)
+
+Lemma mk_shrxlimm_correct:
+ forall n k c (rs1: regset) v m,
+ mk_shrxlimm n k = OK c ->
+ Val.shrxl (rs1#RAX) (Vint n) = Some v ->
+ exists rs2,
+ exec_straight ge fn c rs1 m k rs2 m
+ /\ rs2#RAX = v
+ /\ forall r, data_preg r = true -> r <> RAX -> r <> RDX -> rs2#r = rs1#r.
+Proof.
+ unfold mk_shrxlimm; intros. exploit Val.shrxl_shrl_2; eauto. intros EQ.
+ destruct (Int.eq n Int.zero); inv H.
+- econstructor; split. apply exec_straight_one. simpl; reflexivity. auto.
+ split. Simplifs. intros; Simplifs.
+- set (v1 := Val.shrl (rs1 RAX) (Vint (Int.repr 63))) in *.
+ set (v2 := Val.shrlu v1 (Vint (Int.sub (Int.repr 64) n))) in *.
+ set (v3 := Val.addl (rs1 RAX) v2) in *.
+ set (v4 := Val.shrl v3 (Vint n)) in *.
+ set (rs2 := nextinstr_nf (rs1#RDX <- v1)).
+ set (rs3 := nextinstr_nf (rs2#RDX <- v2)).
+ set (rs4 := nextinstr (rs3#RAX <- v3)).
+ set (rs5 := nextinstr_nf (rs4#RAX <- v4)).
+ assert (X: forall v1 v2,
+ Val.addl v1 (Val.addl v2 (Vlong Int64.zero)) = Val.addl v1 v2).
+ { intros. unfold Val.addl; destruct Archi.ptr64 eqn:SF, v0; auto; destruct v5; auto.
+ rewrite Int64.add_zero; auto.
+ rewrite Ptrofs.add_zero; auto.
+ rewrite Int64.add_zero; auto.
+ rewrite Int64.add_zero; auto. }
+ exists rs5; split.
+ eapply exec_straight_trans with (rs2 := rs3).
+ eapply exec_straight_two with (rs2 := rs2); reflexivity.
+ eapply exec_straight_two with (rs2 := rs4).
+ simpl. rewrite X. reflexivity. reflexivity. reflexivity. reflexivity.
+ split. unfold rs5; Simplifs.
+ intros. unfold rs5; Simplifs. unfold rs4; Simplifs. unfold rs3; Simplifs. unfold rs2; Simplifs.
+Qed.
+
+(** Smart constructor for integer conversions *)
+
+Lemma mk_intconv_correct:
+ forall mk sem rd rs k c rs1 m,
+ mk_intconv mk rd rs k = OK c ->
+ (forall c rd rs r m,
+ exec_instr ge c (mk rd rs) r m = Next (nextinstr (r#rd <- (sem r#rs))) m) ->
+ exists rs2,
+ exec_straight ge fn c rs1 m k rs2 m
+ /\ rs2#rd = sem rs1#rs
+ /\ forall r, data_preg r = true -> r <> rd -> r <> RAX -> rs2#r = rs1#r.
+Proof.
+ unfold mk_intconv; intros. destruct (Archi.ptr64 || low_ireg rs); monadInv H.
+ econstructor. split. apply exec_straight_one. rewrite H0. eauto. auto.
+ split. Simplifs. intros. Simplifs.
+ econstructor. split. eapply exec_straight_two.
+ simpl. eauto. apply H0. auto. auto.
+ split. Simplifs. intros. Simplifs.
+Qed.
+
+(** Smart constructor for small stores *)
+
+Lemma addressing_mentions_correct:
+ forall a r (rs1 rs2: regset),
+ (forall (r': ireg), r' <> r -> rs1 r' = rs2 r') ->
+ addressing_mentions a r = false ->
+ eval_addrmode32 ge a rs1 = eval_addrmode32 ge a rs2.
+Proof.
+ intros until rs2; intro AG. unfold addressing_mentions, eval_addrmode32.
+ destruct a. intros. destruct (orb_false_elim _ _ H). unfold proj_sumbool in *.
+ decEq. destruct base; auto. apply AG. destruct (ireg_eq r i); congruence.
+ decEq. destruct ofs as [[r' sc] | ]; auto. rewrite AG; auto. destruct (ireg_eq r r'); congruence.
+Qed.
+
+Lemma mk_storebyte_correct:
+ forall addr r k c rs1 m1 m2,
+ mk_storebyte addr r k = OK c ->
+ Mem.storev Mint8unsigned m1 (eval_addrmode ge addr rs1) (rs1 r) = Some m2 ->
+ exists rs2,
+ exec_straight ge fn c rs1 m1 k rs2 m2
+ /\ forall r, data_preg r = true -> preg_notin r (if Archi.ptr64 then nil else AX :: CX :: nil) -> rs2#r = rs1#r.
+Proof.
+ unfold mk_storebyte; intros.
+ destruct (Archi.ptr64 || low_ireg r) eqn:E.
+(* low reg *)
+ monadInv H. econstructor; split. apply exec_straight_one.
+ simpl. unfold exec_store. rewrite H0. eauto. auto.
+ intros; Simplifs.
+(* high reg *)
+ InvBooleans. rewrite H1; simpl. destruct (addressing_mentions addr RAX) eqn:E; monadInv H.
+(* RAX is mentioned. *)
+ assert (r <> RCX). { red; intros; subst r; discriminate H2. }
+ set (rs2 := nextinstr (rs1#RCX <- (eval_addrmode32 ge addr rs1))).
+ set (rs3 := nextinstr (rs2#RAX <- (rs1 r))).
+ econstructor; split.
+ apply exec_straight_three with rs2 m1 rs3 m1.
+ simpl. auto.
+ simpl. replace (rs2 r) with (rs1 r). auto. symmetry. unfold rs2; Simplifs.
+ simpl. unfold exec_store. unfold eval_addrmode; rewrite H1; simpl. rewrite Int.add_zero.
+ change (rs3 RAX) with (rs1 r).
+ change (rs3 RCX) with (eval_addrmode32 ge addr rs1).
+ replace (Val.add (eval_addrmode32 ge addr rs1) (Vint Int.zero))
+ with (eval_addrmode ge addr rs1).
+ rewrite H0. eauto.
+ unfold eval_addrmode in *; rewrite H1 in *.
+ destruct (eval_addrmode32 ge addr rs1); simpl in H0; try discriminate H0.
+ simpl. rewrite H1. rewrite Ptrofs.add_zero; auto.
+ auto. auto. auto.
+ intros. destruct H4. Simplifs. unfold rs3; Simplifs. unfold rs2; Simplifs.
+(* RAX is not mentioned *)
+ set (rs2 := nextinstr (rs1#RAX <- (rs1 r))).
+ econstructor; split.
+ apply exec_straight_two with rs2 m1.
+ simpl. auto.
+ simpl. unfold exec_store. unfold eval_addrmode in *; rewrite H1 in *.
+ rewrite (addressing_mentions_correct addr RAX rs2 rs1); auto.
+ change (rs2 RAX) with (rs1 r). rewrite H0. eauto.
+ intros. unfold rs2; Simplifs.
+ auto. auto.
+ intros. destruct H3. simpl. Simplifs. unfold rs2; Simplifs.
+Qed.
+
+(** Accessing slots in the stack frame *)
+
+Remark eval_addrmode_indexed:
+ forall (base: ireg) ofs (rs: regset),
+ match rs#base with Vptr _ _ => True | _ => False end ->
+ eval_addrmode ge (Addrmode (Some base) None (inl _ (Ptrofs.unsigned ofs))) rs = Val.offset_ptr rs#base ofs.
+Proof.
+ intros. destruct (rs#base) eqn:BASE; try contradiction.
+ intros; unfold eval_addrmode; destruct Archi.ptr64 eqn:SF; simpl; rewrite BASE; simpl; rewrite SF; simpl.
+- apply f_equal. apply f_equal. rewrite Int64.add_zero_l. rewrite <- (Ptrofs.repr_unsigned ofs) at 2. auto with ptrofs.
+- apply f_equal. apply f_equal. rewrite Int.add_zero_l. rewrite <- (Ptrofs.repr_unsigned ofs) at 2. auto with ptrofs.
+Qed.
+
+Ltac loadind_correct_solve :=
+ match goal with
+ | H: Error _ = OK _ |- _ => discriminate H
+ | H: OK _ = OK _ |- _ => inv H
+ | H: match ?x with _ => _ end = OK _ |- _ => destruct x eqn:?; loadind_correct_solve
+ | _ => idtac
+ end.
+
+Lemma loadind_correct:
+ forall (base: ireg) ofs ty dst k (rs: regset) c m v,
+ loadind base ofs ty dst k = OK c ->
+ Mem.loadv (chunk_of_type ty) m (Val.offset_ptr rs#base ofs) = Some v ->
+ exists rs',
+ exec_straight ge fn c rs m k rs' m
+ /\ rs'#(preg_of dst) = v
+ /\ forall r, data_preg r = true -> r <> preg_of dst -> rs'#r = rs#r.
+Proof.
+ unfold loadind; intros.
+ set (addr := Addrmode (Some base) None (inl (ident * ptrofs) (Ptrofs.unsigned ofs))) in *.
+ assert (eval_addrmode ge addr rs = Val.offset_ptr rs#base ofs).
+ { apply eval_addrmode_indexed. destruct (rs base); auto || discriminate. }
+ rewrite <- H1 in H0.
+ exists (nextinstr_nf (rs#(preg_of dst) <- v)); split.
+- loadind_correct_solve; apply exec_straight_one; auto; simpl in *; unfold exec_load; rewrite ?Heqb, ?H0; auto.
+- intuition Simplifs.
+Qed.
+
+Lemma storeind_correct:
+ forall (base: ireg) ofs ty src k (rs: regset) c m m',
+ storeind src base ofs ty k = OK c ->
+ Mem.storev (chunk_of_type ty) m (Val.offset_ptr rs#base ofs) (rs#(preg_of src)) = Some m' ->
+ exists rs',
+ exec_straight ge fn c rs m k rs' m'
+ /\ forall r, data_preg r = true -> preg_notin r (destroyed_by_setstack ty) -> rs'#r = rs#r.
+Proof.
+ unfold storeind; intros.
+ set (addr := Addrmode (Some base) None (inl (ident * ptrofs) (Ptrofs.unsigned ofs))) in *.
+ assert (eval_addrmode ge addr rs = Val.offset_ptr rs#base ofs).
+ { apply eval_addrmode_indexed. destruct (rs base); auto || discriminate. }
+ rewrite <- H1 in H0.
+ loadind_correct_solve; simpl in H0;
+ (econstructor; split;
+ [apply exec_straight_one; [simpl; unfold exec_store; rewrite ?Heqb, H0;eauto|auto]
+ |simpl; intros; unfold undef_regs; repeat Simplifs]).
+Qed.
+
+(** Translation of addressing modes *)
+
+Lemma transl_addressing_mode_32_correct:
+ forall addr args am (rs: regset) v,
+ transl_addressing addr args = OK am ->
+ eval_addressing32 ge (rs RSP) addr (List.map rs (List.map preg_of args)) = Some v ->
+ Val.lessdef v (eval_addrmode32 ge am rs).
+Proof.
+ assert (A: forall id ofs, Archi.ptr64 = false ->
+ Val.add (Vint Int.zero) (Genv.symbol_address ge id ofs) = Genv.symbol_address ge id ofs).
+ { intros. unfold Val.add; rewrite H. unfold Genv.symbol_address.
+ destruct (Genv.find_symbol ge id); auto. rewrite Ptrofs.add_zero; auto. }
+ assert (C: forall v i,
+ Val.lessdef (Val.mul v (Vint (Int.repr i)))
+ (if zeq i 1 then v else Val.mul v (Vint (Int.repr i)))).
+ { intros. destruct (zeq i 1); subst; auto.
+ destruct v; simpl; auto. rewrite Int.mul_one; auto. }
+ unfold transl_addressing; intros.
+ destruct addr; repeat (destruct args; try discriminate H); simpl in H0; FuncInv;
+ monadInv H; try (erewrite ! ireg_of_eq by eauto); unfold eval_addrmode32.
+- simpl; rewrite Int.add_zero_l; auto.
+- rewrite Val.add_assoc. apply Val.add_lessdef; auto.
+- rewrite Val.add_permut. apply Val.add_lessdef; auto. simpl; rewrite Int.add_zero_l; auto.
+- apply Val.add_lessdef; auto. apply Val.add_lessdef; auto.
+- rewrite ! A by auto. auto.
+- rewrite Val.add_commut. rewrite A by auto. auto.
+- rewrite Val.add_permut. rewrite Val.add_commut. apply Val.add_lessdef; auto. rewrite A; auto.
+- simpl. unfold Val.add; rewrite Heqb.
+ destruct (rs RSP); simpl; auto.
+ rewrite Int.add_zero_l. apply Val.lessdef_same; f_equal; f_equal.
+ symmetry. transitivity (Ptrofs.repr (Ptrofs.signed i)). auto with ptrofs. auto with ints.
+Qed.
+
+Lemma transl_addressing_mode_64_correct:
+ forall addr args am (rs: regset) v,
+ transl_addressing addr args = OK am ->
+ eval_addressing64 ge (rs RSP) addr (List.map rs (List.map preg_of args)) = Some v ->
+ Val.lessdef v (eval_addrmode64 ge am rs).
+Proof.
+ assert (A: forall id ofs, Archi.ptr64 = true ->
+ Val.addl (Vlong Int64.zero) (Genv.symbol_address ge id ofs) = Genv.symbol_address ge id ofs).
+ { intros. unfold Val.addl; rewrite H. unfold Genv.symbol_address.
+ destruct (Genv.find_symbol ge id); auto. rewrite Ptrofs.add_zero; auto. }
+ assert (C: forall v i,
+ Val.lessdef (Val.mull v (Vlong (Int64.repr i)))
+ (if zeq i 1 then v else Val.mull v (Vlong (Int64.repr i)))).
+ { intros. destruct (zeq i 1); subst; auto.
+ destruct v; simpl; auto. rewrite Int64.mul_one; auto. }
+ unfold transl_addressing; intros.
+ destruct addr; repeat (destruct args; try discriminate H); simpl in H0; FuncInv;
+ monadInv H; try (erewrite ! ireg_of_eq by eauto); unfold eval_addrmode64.
+- simpl; rewrite Int64.add_zero_l; auto.
+- rewrite Val.addl_assoc. apply Val.addl_lessdef; auto.
+- rewrite Val.addl_permut. apply Val.addl_lessdef; auto. simpl; rewrite Int64.add_zero_l; auto.
+- apply Val.addl_lessdef; auto. apply Val.addl_lessdef; auto.
+- rewrite ! A by auto. auto.
+- unfold Val.addl; rewrite Heqb. destruct (rs RSP); auto. simpl.
+ rewrite Int64.add_zero_l. apply Val.lessdef_same; f_equal; f_equal.
+ symmetry. transitivity (Ptrofs.repr (Ptrofs.signed i)). auto with ptrofs. auto with ints.
+Qed.
+
+Lemma transl_addressing_mode_correct:
+ forall addr args am (rs: regset) v,
+ transl_addressing addr args = OK am ->
+ eval_addressing ge (rs RSP) addr (List.map rs (List.map preg_of args)) = Some v ->
+ Val.lessdef v (eval_addrmode ge am rs).
+Proof.
+ unfold eval_addressing, eval_addrmode; intros. destruct Archi.ptr64.
+ eapply transl_addressing_mode_64_correct; eauto.
+ eapply transl_addressing_mode_32_correct; eauto.
+Qed.
+
+Lemma normalize_addrmode_32_correct:
+ forall am rs, eval_addrmode32 ge (normalize_addrmode_32 am) rs = eval_addrmode32 ge am rs.
+Proof.
+ intros; destruct am as [base ofs [n|r]]; simpl; auto. rewrite Int.repr_signed. auto.
+Qed.
+
+Lemma normalize_addrmode_64_correct:
+ forall am rs,
+ eval_addrmode64 ge am rs =
+ match normalize_addrmode_64 am with
+ | (am', None) => eval_addrmode64 ge am' rs
+ | (am', Some delta) => Val.addl (eval_addrmode64 ge am' rs) (Vlong delta)
+ end.
+Proof.
+ intros; destruct am as [base ofs [n|r]]; simpl; auto.
+ destruct (zeq (Int.signed (Int.repr n)) n); simpl; auto.
+ rewrite ! Val.addl_assoc. apply f_equal. apply f_equal. simpl. rewrite Int64.add_zero_l; auto.
+Qed.
+
+(** Processor conditions and comparisons *)
+
+Lemma compare_ints_spec:
+ forall rs v1 v2 m,
+ let rs' := nextinstr (compare_ints v1 v2 rs m) in
+ rs'#ZF = Val.cmpu (Mem.valid_pointer m) Ceq v1 v2
+ /\ rs'#CF = Val.cmpu (Mem.valid_pointer m) Clt v1 v2
+ /\ rs'#SF = Val.negative (Val.sub v1 v2)
+ /\ rs'#OF = Val.sub_overflow v1 v2
+ /\ (forall r, data_preg r = true -> rs'#r = rs#r).
+Proof.
+ intros. unfold rs'; unfold compare_ints.
+ split. auto.
+ split. auto.
+ split. auto.
+ split. auto.
+ intros. Simplifs.
+Qed.
+
+Lemma testcond_for_signed_comparison_32_correct:
+ forall c v1 v2 rs m b,
+ Val.cmp_bool c v1 v2 = Some b ->
+ eval_testcond (testcond_for_signed_comparison c)
+ (nextinstr (compare_ints v1 v2 rs m)) = Some b.
+Proof.
+ intros. generalize (compare_ints_spec rs v1 v2 m).
+ set (rs' := nextinstr (compare_ints v1 v2 rs m)).
+ intros [A [B [C [D E]]]].
+ destruct v1; destruct v2; simpl in H; inv H.
+ unfold eval_testcond. rewrite A; rewrite B; rewrite C; rewrite D.
+ simpl. unfold Val.cmp, Val.cmpu.
+ rewrite Int.lt_sub_overflow.
+ destruct c; simpl.
+ destruct (Int.eq i i0); auto.
+ destruct (Int.eq i i0); auto.
+ destruct (Int.lt i i0); auto.
+ rewrite Int.not_lt. destruct (Int.lt i i0); simpl; destruct (Int.eq i i0); auto.
+ rewrite (Int.lt_not i i0). destruct (Int.lt i i0); destruct (Int.eq i i0); reflexivity.
+ destruct (Int.lt i i0); reflexivity.
+Qed.
+
+Lemma testcond_for_unsigned_comparison_32_correct:
+ forall c v1 v2 rs m b,
+ Val.cmpu_bool (Mem.valid_pointer m) c v1 v2 = Some b ->
+ eval_testcond (testcond_for_unsigned_comparison c)
+ (nextinstr (compare_ints v1 v2 rs m)) = Some b.
+Proof.
+ intros. generalize (compare_ints_spec rs v1 v2 m).
+ set (rs' := nextinstr (compare_ints v1 v2 rs m)).
+ intros [A [B [C [D E]]]].
+ unfold eval_testcond. rewrite A; rewrite B. unfold Val.cmpu, Val.cmp.
+ destruct v1; destruct v2; simpl in H; FuncInv; subst.
+- (* int int *)
+ destruct c; simpl; auto.
+ destruct (Int.eq i i0); reflexivity.
+ destruct (Int.eq i i0); auto.
+ destruct (Int.ltu i i0); auto.
+ rewrite Int.not_ltu. destruct (Int.ltu i i0); simpl; destruct (Int.eq i i0); auto.
+ rewrite (Int.ltu_not i i0). destruct (Int.ltu i i0); destruct (Int.eq i i0); reflexivity.
+ destruct (Int.ltu i i0); reflexivity.
+- (* int ptr *)
+ unfold Val.cmpu_bool; rewrite Heqb1.
+ destruct (Int.eq i Int.zero &&
+ (Mem.valid_pointer m b0 (Ptrofs.unsigned i0) || Mem.valid_pointer m b0 (Ptrofs.unsigned i0 - 1))); try discriminate H.
+ destruct c; simpl in *; inv H; reflexivity.
+- (* ptr int *)
+ unfold Val.cmpu_bool; rewrite Heqb1.
+ destruct (Int.eq i0 Int.zero &&
+ (Mem.valid_pointer m b0 (Ptrofs.unsigned i) || Mem.valid_pointer m b0 (Ptrofs.unsigned i - 1))); try discriminate H.
+ destruct c; simpl in *; inv H; reflexivity.
+- (* ptr ptr *)
+ unfold Val.cmpu_bool; rewrite Heqb2.
+ fold (Mem.weak_valid_pointer m b0 (Ptrofs.unsigned i)) in *.
+ fold (Mem.weak_valid_pointer m b1 (Ptrofs.unsigned i0)) in *.
+ destruct (eq_block b0 b1).
+ destruct (Mem.weak_valid_pointer m b0 (Ptrofs.unsigned i) &&
+ Mem.weak_valid_pointer m b1 (Ptrofs.unsigned i0)); inv H.
+ destruct c; simpl; auto.
+ destruct (Ptrofs.eq i i0); auto.
+ destruct (Ptrofs.eq i i0); auto.
+ destruct (Ptrofs.ltu i i0); auto.
+ rewrite Ptrofs.not_ltu. destruct (Ptrofs.ltu i i0); simpl; destruct (Ptrofs.eq i i0); auto.
+ rewrite (Ptrofs.ltu_not i i0). destruct (Ptrofs.ltu i i0); destruct (Ptrofs.eq i i0); reflexivity.
+ destruct (Ptrofs.ltu i i0); reflexivity.
+ destruct (Mem.valid_pointer m b0 (Ptrofs.unsigned i) &&
+ Mem.valid_pointer m b1 (Ptrofs.unsigned i0)); try discriminate H.
+ destruct c; simpl in *; inv H; reflexivity.
+Qed.
+
+Lemma compare_longs_spec:
+ forall rs v1 v2 m,
+ let rs' := nextinstr (compare_longs v1 v2 rs m) in
+ rs'#ZF = Val.maketotal (Val.cmplu (Mem.valid_pointer m) Ceq v1 v2)
+ /\ rs'#CF = Val.maketotal (Val.cmplu (Mem.valid_pointer m) Clt v1 v2)
+ /\ rs'#SF = Val.negativel (Val.subl v1 v2)
+ /\ rs'#OF = Val.subl_overflow v1 v2
+ /\ (forall r, data_preg r = true -> rs'#r = rs#r).
+Proof.
+ intros. unfold rs'; unfold compare_longs.
+ split. auto.
+ split. auto.
+ split. auto.
+ split. auto.
+ intros. Simplifs.
+Qed.
+
+Lemma int64_sub_overflow:
+ forall x y,
+ Int.xor (Int.repr (Int64.unsigned (Int64.sub_overflow x y Int64.zero)))
+ (Int.repr (Int64.unsigned (Int64.negative (Int64.sub x y)))) =
+ (if Int64.lt x y then Int.one else Int.zero).
+Proof.
+ intros.
+ transitivity (Int.repr (Int64.unsigned (if Int64.lt x y then Int64.one else Int64.zero))).
+ rewrite <- (Int64.lt_sub_overflow x y).
+ unfold Int64.sub_overflow, Int64.negative.
+ set (s := Int64.signed x - Int64.signed y - Int64.signed Int64.zero).
+ destruct (zle Int64.min_signed s && zle s Int64.max_signed);
+ destruct (Int64.lt (Int64.sub x y) Int64.zero);
+ auto.
+ destruct (Int64.lt x y); auto.
+Qed.
+
+Lemma testcond_for_signed_comparison_64_correct:
+ forall c v1 v2 rs m b,
+ Val.cmpl_bool c v1 v2 = Some b ->
+ eval_testcond (testcond_for_signed_comparison c)
+ (nextinstr (compare_longs v1 v2 rs m)) = Some b.
+Proof.
+ intros. generalize (compare_longs_spec rs v1 v2 m).
+ set (rs' := nextinstr (compare_longs v1 v2 rs m)).
+ intros [A [B [C [D E]]]].
+ destruct v1; destruct v2; simpl in H; inv H.
+ unfold eval_testcond. rewrite A; rewrite B; rewrite C; rewrite D.
+ simpl; rewrite int64_sub_overflow.
+ destruct c; simpl.
+ destruct (Int64.eq i i0); auto.
+ destruct (Int64.eq i i0); auto.
+ destruct (Int64.lt i i0); auto.
+ rewrite Int64.not_lt. destruct (Int64.lt i i0); simpl; destruct (Int64.eq i i0); auto.
+ rewrite (Int64.lt_not i i0). destruct (Int64.lt i i0); destruct (Int64.eq i i0); reflexivity.
+ destruct (Int64.lt i i0); reflexivity.
+Qed.
+
+Lemma testcond_for_unsigned_comparison_64_correct:
+ forall c v1 v2 rs m b,
+ Val.cmplu_bool (Mem.valid_pointer m) c v1 v2 = Some b ->
+ eval_testcond (testcond_for_unsigned_comparison c)
+ (nextinstr (compare_longs v1 v2 rs m)) = Some b.
+Proof.
+ intros. generalize (compare_longs_spec rs v1 v2 m).
+ set (rs' := nextinstr (compare_longs v1 v2 rs m)).
+ intros [A [B [C [D E]]]].
+ unfold eval_testcond. rewrite A; rewrite B.
+ destruct v1; destruct v2; simpl in H; FuncInv; subst.
+- (* int int *)
+ destruct c; simpl; auto.
+ destruct (Int64.eq i i0); reflexivity.
+ destruct (Int64.eq i i0); auto.
+ destruct (Int64.ltu i i0); auto.
+ rewrite Int64.not_ltu. destruct (Int64.ltu i i0); simpl; destruct (Int64.eq i i0); auto.
+ rewrite (Int64.ltu_not i i0). destruct (Int64.ltu i i0); destruct (Int64.eq i i0); reflexivity.
+ destruct (Int64.ltu i i0); reflexivity.
+- (* int ptr *)
+ unfold Val.cmplu; simpl; destruct Archi.ptr64; try discriminate.
+ destruct (Int64.eq i Int64.zero &&
+ (Mem.valid_pointer m b0 (Ptrofs.unsigned i0) || Mem.valid_pointer m b0 (Ptrofs.unsigned i0 - 1))) eqn:?; try discriminate H.
+ destruct c; simpl in *; inv H; auto.
+- (* ptr int *)
+ unfold Val.cmplu; simpl; destruct Archi.ptr64; try discriminate.
+ destruct (Int64.eq i0 Int64.zero &&
+ (Mem.valid_pointer m b0 (Ptrofs.unsigned i) || Mem.valid_pointer m b0 (Ptrofs.unsigned i - 1))) eqn:?; try discriminate H.
+ destruct c; simpl in *; inv H; auto.
+- (* ptr ptr *)
+ unfold Val.cmplu; simpl; destruct Archi.ptr64; try discriminate H.
+ fold (Mem.weak_valid_pointer m b0 (Ptrofs.unsigned i)) in *.
+ fold (Mem.weak_valid_pointer m b1 (Ptrofs.unsigned i0)) in *.
+ destruct (eq_block b0 b1).
+ destruct (Mem.weak_valid_pointer m b0 (Ptrofs.unsigned i) &&
+ Mem.weak_valid_pointer m b1 (Ptrofs.unsigned i0)); inv H.
+ destruct c; simpl; auto.
+ destruct (Ptrofs.eq i i0); auto.
+ destruct (Ptrofs.eq i i0); auto.
+ destruct (Ptrofs.ltu i i0); auto.
+ rewrite Ptrofs.not_ltu. destruct (Ptrofs.ltu i i0); simpl; destruct (Ptrofs.eq i i0); auto.
+ rewrite (Ptrofs.ltu_not i i0). destruct (Ptrofs.ltu i i0); destruct (Ptrofs.eq i i0); reflexivity.
+ destruct (Ptrofs.ltu i i0); reflexivity.
+ destruct (Mem.valid_pointer m b0 (Ptrofs.unsigned i) &&
+ Mem.valid_pointer m b1 (Ptrofs.unsigned i0)); try discriminate H.
+ destruct c; simpl in *; inv H; reflexivity.
+Qed.
+
+Lemma compare_floats_spec:
+ forall rs n1 n2,
+ let rs' := nextinstr (compare_floats (Vfloat n1) (Vfloat n2) rs) in
+ rs'#ZF = Val.of_bool (negb (Float.cmp Cne n1 n2))
+ /\ rs'#CF = Val.of_bool (negb (Float.cmp Cge n1 n2))
+ /\ rs'#PF = Val.of_bool (negb (Float.cmp Ceq n1 n2 || Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2))
+ /\ (forall r, data_preg r = true -> rs'#r = rs#r).
+Proof.
+ intros. unfold rs'; unfold compare_floats.
+ split. auto.
+ split. auto.
+ split. auto.
+ intros. Simplifs.
+Qed.
+
+Lemma compare_floats32_spec:
+ forall rs n1 n2,
+ let rs' := nextinstr (compare_floats32 (Vsingle n1) (Vsingle n2) rs) in
+ rs'#ZF = Val.of_bool (negb (Float32.cmp Cne n1 n2))
+ /\ rs'#CF = Val.of_bool (negb (Float32.cmp Cge n1 n2))
+ /\ rs'#PF = Val.of_bool (negb (Float32.cmp Ceq n1 n2 || Float32.cmp Clt n1 n2 || Float32.cmp Cgt n1 n2))
+ /\ (forall r, data_preg r = true -> rs'#r = rs#r).
+Proof.
+ intros. unfold rs'; unfold compare_floats32.
+ split. auto.
+ split. auto.
+ split. auto.
+ intros. Simplifs.
+Qed.
+
+Definition eval_extcond (xc: extcond) (rs: regset) : option bool :=
+ match xc with
+ | Cond_base c =>
+ eval_testcond c rs
+ | Cond_and c1 c2 =>
+ match eval_testcond c1 rs, eval_testcond c2 rs with
+ | Some b1, Some b2 => Some (b1 && b2)
+ | _, _ => None
+ end
+ | Cond_or c1 c2 =>
+ match eval_testcond c1 rs, eval_testcond c2 rs with
+ | Some b1, Some b2 => Some (b1 || b2)
+ | _, _ => None
+ end
+ end.
+
+Definition swap_floats {A: Type} (c: comparison) (n1 n2: A) : A :=
+ match c with
+ | Clt | Cle => n2
+ | Ceq | Cne | Cgt | Cge => n1
+ end.
+
+Lemma testcond_for_float_comparison_correct:
+ forall c n1 n2 rs,
+ eval_extcond (testcond_for_condition (Ccompf c))
+ (nextinstr (compare_floats (Vfloat (swap_floats c n1 n2))
+ (Vfloat (swap_floats c n2 n1)) rs)) =
+ Some(Float.cmp c n1 n2).
+Proof.
+ intros.
+ generalize (compare_floats_spec rs (swap_floats c n1 n2) (swap_floats c n2 n1)).
+ set (rs' := nextinstr (compare_floats (Vfloat (swap_floats c n1 n2))
+ (Vfloat (swap_floats c n2 n1)) rs)).
+ intros [A [B [C D]]].
+ unfold eval_extcond, eval_testcond. rewrite A; rewrite B; rewrite C.
+ destruct c; simpl.
+(* eq *)
+ rewrite Float.cmp_ne_eq.
+ caseEq (Float.cmp Ceq n1 n2); intros.
+ auto.
+ simpl. destruct (Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2); auto.
+(* ne *)
+ rewrite Float.cmp_ne_eq.
+ caseEq (Float.cmp Ceq n1 n2); intros.
+ auto.
+ simpl. destruct (Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2); auto.
+(* lt *)
+ rewrite <- (Float.cmp_swap Cge n1 n2).
+ rewrite <- (Float.cmp_swap Cne n1 n2).
+ simpl.
+ rewrite Float.cmp_ne_eq. rewrite Float.cmp_le_lt_eq.
+ caseEq (Float.cmp Clt n1 n2); intros; simpl.
+ caseEq (Float.cmp Ceq n1 n2); intros; simpl.
+ elimtype False. eapply Float.cmp_lt_eq_false; eauto.
+ auto.
+ destruct (Float.cmp Ceq n1 n2); auto.
+(* le *)
+ rewrite <- (Float.cmp_swap Cge n1 n2). simpl.
+ destruct (Float.cmp Cle n1 n2); auto.
+(* gt *)
+ rewrite Float.cmp_ne_eq. rewrite Float.cmp_ge_gt_eq.
+ caseEq (Float.cmp Cgt n1 n2); intros; simpl.
+ caseEq (Float.cmp Ceq n1 n2); intros; simpl.
+ elimtype False. eapply Float.cmp_gt_eq_false; eauto.
+ auto.
+ destruct (Float.cmp Ceq n1 n2); auto.
+(* ge *)
+ destruct (Float.cmp Cge n1 n2); auto.
+Qed.
+
+Lemma testcond_for_neg_float_comparison_correct:
+ forall c n1 n2 rs,
+ eval_extcond (testcond_for_condition (Cnotcompf c))
+ (nextinstr (compare_floats (Vfloat (swap_floats c n1 n2))
+ (Vfloat (swap_floats c n2 n1)) rs)) =
+ Some(negb(Float.cmp c n1 n2)).
+Proof.
+ intros.
+ generalize (compare_floats_spec rs (swap_floats c n1 n2) (swap_floats c n2 n1)).
+ set (rs' := nextinstr (compare_floats (Vfloat (swap_floats c n1 n2))
+ (Vfloat (swap_floats c n2 n1)) rs)).
+ intros [A [B [C D]]].
+ unfold eval_extcond, eval_testcond. rewrite A; rewrite B; rewrite C.
+ destruct c; simpl.
+(* eq *)
+ rewrite Float.cmp_ne_eq.
+ caseEq (Float.cmp Ceq n1 n2); intros.
+ auto.
+ simpl. destruct (Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2); auto.
+(* ne *)
+ rewrite Float.cmp_ne_eq.
+ caseEq (Float.cmp Ceq n1 n2); intros.
+ auto.
+ simpl. destruct (Float.cmp Clt n1 n2 || Float.cmp Cgt n1 n2); auto.
+(* lt *)
+ rewrite <- (Float.cmp_swap Cge n1 n2).
+ rewrite <- (Float.cmp_swap Cne n1 n2).
+ simpl.
+ rewrite Float.cmp_ne_eq. rewrite Float.cmp_le_lt_eq.
+ caseEq (Float.cmp Clt n1 n2); intros; simpl.
+ caseEq (Float.cmp Ceq n1 n2); intros; simpl.
+ elimtype False. eapply Float.cmp_lt_eq_false; eauto.
+ auto.
+ destruct (Float.cmp Ceq n1 n2); auto.
+(* le *)
+ rewrite <- (Float.cmp_swap Cge n1 n2). simpl.
+ destruct (Float.cmp Cle n1 n2); auto.
+(* gt *)
+ rewrite Float.cmp_ne_eq. rewrite Float.cmp_ge_gt_eq.
+ caseEq (Float.cmp Cgt n1 n2); intros; simpl.
+ caseEq (Float.cmp Ceq n1 n2); intros; simpl.
+ elimtype False. eapply Float.cmp_gt_eq_false; eauto.
+ auto.
+ destruct (Float.cmp Ceq n1 n2); auto.
+(* ge *)
+ destruct (Float.cmp Cge n1 n2); auto.
+Qed.
+
+Lemma testcond_for_float32_comparison_correct:
+ forall c n1 n2 rs,
+ eval_extcond (testcond_for_condition (Ccompfs c))
+ (nextinstr (compare_floats32 (Vsingle (swap_floats c n1 n2))
+ (Vsingle (swap_floats c n2 n1)) rs)) =
+ Some(Float32.cmp c n1 n2).
+Proof.
+ intros.
+ generalize (compare_floats32_spec rs (swap_floats c n1 n2) (swap_floats c n2 n1)).
+ set (rs' := nextinstr (compare_floats32 (Vsingle (swap_floats c n1 n2))
+ (Vsingle (swap_floats c n2 n1)) rs)).
+ intros [A [B [C D]]].
+ unfold eval_extcond, eval_testcond. rewrite A; rewrite B; rewrite C.
+ destruct c; simpl.
+(* eq *)
+ rewrite Float32.cmp_ne_eq.
+ caseEq (Float32.cmp Ceq n1 n2); intros.
+ auto.
+ simpl. destruct (Float32.cmp Clt n1 n2 || Float32.cmp Cgt n1 n2); auto.
+(* ne *)
+ rewrite Float32.cmp_ne_eq.
+ caseEq (Float32.cmp Ceq n1 n2); intros.
+ auto.
+ simpl. destruct (Float32.cmp Clt n1 n2 || Float32.cmp Cgt n1 n2); auto.
+(* lt *)
+ rewrite <- (Float32.cmp_swap Cge n1 n2).
+ rewrite <- (Float32.cmp_swap Cne n1 n2).
+ simpl.
+ rewrite Float32.cmp_ne_eq. rewrite Float32.cmp_le_lt_eq.
+ caseEq (Float32.cmp Clt n1 n2); intros; simpl.
+ caseEq (Float32.cmp Ceq n1 n2); intros; simpl.
+ elimtype False. eapply Float32.cmp_lt_eq_false; eauto.
+ auto.
+ destruct (Float32.cmp Ceq n1 n2); auto.
+(* le *)
+ rewrite <- (Float32.cmp_swap Cge n1 n2). simpl.
+ destruct (Float32.cmp Cle n1 n2); auto.
+(* gt *)
+ rewrite Float32.cmp_ne_eq. rewrite Float32.cmp_ge_gt_eq.
+ caseEq (Float32.cmp Cgt n1 n2); intros; simpl.
+ caseEq (Float32.cmp Ceq n1 n2); intros; simpl.
+ elimtype False. eapply Float32.cmp_gt_eq_false; eauto.
+ auto.
+ destruct (Float32.cmp Ceq n1 n2); auto.
+(* ge *)
+ destruct (Float32.cmp Cge n1 n2); auto.
+Qed.
+
+Lemma testcond_for_neg_float32_comparison_correct:
+ forall c n1 n2 rs,
+ eval_extcond (testcond_for_condition (Cnotcompfs c))
+ (nextinstr (compare_floats32 (Vsingle (swap_floats c n1 n2))
+ (Vsingle (swap_floats c n2 n1)) rs)) =
+ Some(negb(Float32.cmp c n1 n2)).
+Proof.
+ intros.
+ generalize (compare_floats32_spec rs (swap_floats c n1 n2) (swap_floats c n2 n1)).
+ set (rs' := nextinstr (compare_floats32 (Vsingle (swap_floats c n1 n2))
+ (Vsingle (swap_floats c n2 n1)) rs)).
+ intros [A [B [C D]]].
+ unfold eval_extcond, eval_testcond. rewrite A; rewrite B; rewrite C.
+ destruct c; simpl.
+(* eq *)
+ rewrite Float32.cmp_ne_eq.
+ caseEq (Float32.cmp Ceq n1 n2); intros.
+ auto.
+ simpl. destruct (Float32.cmp Clt n1 n2 || Float32.cmp Cgt n1 n2); auto.
+(* ne *)
+ rewrite Float32.cmp_ne_eq.
+ caseEq (Float32.cmp Ceq n1 n2); intros.
+ auto.
+ simpl. destruct (Float32.cmp Clt n1 n2 || Float32.cmp Cgt n1 n2); auto.
+(* lt *)
+ rewrite <- (Float32.cmp_swap Cge n1 n2).
+ rewrite <- (Float32.cmp_swap Cne n1 n2).
+ simpl.
+ rewrite Float32.cmp_ne_eq. rewrite Float32.cmp_le_lt_eq.
+ caseEq (Float32.cmp Clt n1 n2); intros; simpl.
+ caseEq (Float32.cmp Ceq n1 n2); intros; simpl.
+ elimtype False. eapply Float32.cmp_lt_eq_false; eauto.
+ auto.
+ destruct (Float32.cmp Ceq n1 n2); auto.
+(* le *)
+ rewrite <- (Float32.cmp_swap Cge n1 n2). simpl.
+ destruct (Float32.cmp Cle n1 n2); auto.
+(* gt *)
+ rewrite Float32.cmp_ne_eq. rewrite Float32.cmp_ge_gt_eq.
+ caseEq (Float32.cmp Cgt n1 n2); intros; simpl.
+ caseEq (Float32.cmp Ceq n1 n2); intros; simpl.
+ elimtype False. eapply Float32.cmp_gt_eq_false; eauto.
+ auto.
+ destruct (Float32.cmp Ceq n1 n2); auto.
+(* ge *)
+ destruct (Float32.cmp Cge n1 n2); auto.
+Qed.
+
+Remark swap_floats_commut:
+ forall (A B: Type) c (f: A -> B) x y, swap_floats c (f x) (f y) = f (swap_floats c x y).
+Proof.
+ intros. destruct c; auto.
+Qed.
+
+Remark compare_floats_inv:
+ forall vx vy rs r,
+ r <> CR ZF -> r <> CR CF -> r <> CR PF -> r <> CR SF -> r <> CR OF ->
+ compare_floats vx vy rs r = rs r.
+Proof.
+ intros.
+ assert (DFL: undef_regs (CR ZF :: CR CF :: CR PF :: CR SF :: CR OF :: nil) rs r = rs r).
+ simpl. Simplifs.
+ unfold compare_floats; destruct vx; destruct vy; auto. Simplifs.
+Qed.
+
+Remark compare_floats32_inv:
+ forall vx vy rs r,
+ r <> CR ZF -> r <> CR CF -> r <> CR PF -> r <> CR SF -> r <> CR OF ->
+ compare_floats32 vx vy rs r = rs r.
+Proof.
+ intros.
+ assert (DFL: undef_regs (CR ZF :: CR CF :: CR PF :: CR SF :: CR OF :: nil) rs r = rs r).
+ simpl. Simplifs.
+ unfold compare_floats32; destruct vx; destruct vy; auto. Simplifs.
+Qed.
+
+Lemma transl_cond_correct:
+ forall cond args k c rs m,
+ transl_cond cond args k = OK c ->
+ exists rs',
+ exec_straight ge fn c rs m k rs' m
+ /\ match eval_condition cond (map rs (map preg_of args)) m with
+ | None => True
+ | Some b => eval_extcond (testcond_for_condition cond) rs' = Some b
+ end
+ /\ forall r, data_preg r = true -> rs'#r = rs r.
+Proof.
+ unfold transl_cond; intros.
+ destruct cond; repeat (destruct args; try discriminate); monadInv H.
+- (* comp *)
+ simpl. rewrite (ireg_of_eq _ _ EQ). rewrite (ireg_of_eq _ _ EQ1).
+ econstructor. split. apply exec_straight_one. simpl. eauto. auto.
+ split. destruct (Val.cmp_bool c0 (rs x) (rs x0)) eqn:?; auto.
+ eapply testcond_for_signed_comparison_32_correct; eauto.
+ intros. unfold compare_ints. Simplifs.
+- (* compu *)
+ simpl. rewrite (ireg_of_eq _ _ EQ). rewrite (ireg_of_eq _ _ EQ1).
+ econstructor. split. apply exec_straight_one. simpl. eauto. auto.
+ split. destruct (Val.cmpu_bool (Mem.valid_pointer m) c0 (rs x) (rs x0)) eqn:?; auto.
+ eapply testcond_for_unsigned_comparison_32_correct; eauto.
+ intros. unfold compare_ints. Simplifs.
+- (* compimm *)
+ simpl. rewrite (ireg_of_eq _ _ EQ). destruct (Int.eq_dec n Int.zero).
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
+ split. destruct (rs x); simpl; auto. subst. rewrite Int.and_idem.
+ eapply testcond_for_signed_comparison_32_correct; eauto.
+ intros. unfold compare_ints. Simplifs.
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
+ split. destruct (Val.cmp_bool c0 (rs x) (Vint n)) eqn:?; auto.
+ eapply testcond_for_signed_comparison_32_correct; eauto.
+ intros. unfold compare_ints. Simplifs.
+- (* compuimm *)
+ simpl. rewrite (ireg_of_eq _ _ EQ).
+ econstructor. split. apply exec_straight_one. simpl. eauto. auto.
+ split. destruct (Val.cmpu_bool (Mem.valid_pointer m) c0 (rs x) (Vint n)) eqn:?; auto.
+ eapply testcond_for_unsigned_comparison_32_correct; eauto.
+ intros. unfold compare_ints. Simplifs.
+- (* compl *)
+ simpl. rewrite (ireg_of_eq _ _ EQ). rewrite (ireg_of_eq _ _ EQ1).
+ econstructor. split. apply exec_straight_one. simpl. eauto. auto.
+ split. destruct (Val.cmpl_bool c0 (rs x) (rs x0)) eqn:?; auto.
+ eapply testcond_for_signed_comparison_64_correct; eauto.
+ intros. unfold compare_longs. Simplifs.
+- (* complu *)
+ simpl. rewrite (ireg_of_eq _ _ EQ). rewrite (ireg_of_eq _ _ EQ1).
+ econstructor. split. apply exec_straight_one. simpl. eauto. auto.
+ split. destruct (Val.cmplu_bool (Mem.valid_pointer m) c0 (rs x) (rs x0)) eqn:?; auto.
+ eapply testcond_for_unsigned_comparison_64_correct; eauto.
+ intros. unfold compare_longs. Simplifs.
+- (* compimm *)
+ simpl. rewrite (ireg_of_eq _ _ EQ). destruct (Int64.eq_dec n Int64.zero).
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
+ split. destruct (rs x); simpl; auto. subst. rewrite Int64.and_idem.
+ eapply testcond_for_signed_comparison_64_correct; eauto.
+ intros. unfold compare_longs. Simplifs.
+ econstructor; split. apply exec_straight_one. simpl; eauto. auto.
+ split. destruct (Val.cmpl_bool c0 (rs x) (Vlong n)) eqn:?; auto.
+ eapply testcond_for_signed_comparison_64_correct; eauto.
+ intros. unfold compare_longs. Simplifs.
+- (* compuimm *)
+ simpl. rewrite (ireg_of_eq _ _ EQ).
+ econstructor. split. apply exec_straight_one. simpl. eauto. auto.
+ split. destruct (Val.cmplu_bool (Mem.valid_pointer m) c0 (rs x) (Vlong n)) eqn:?; auto.
+ eapply testcond_for_unsigned_comparison_64_correct; eauto.
+ intros. unfold compare_longs. Simplifs.
+- (* compf *)
+ simpl. rewrite (freg_of_eq _ _ EQ). rewrite (freg_of_eq _ _ EQ1).
+ exists (nextinstr (compare_floats (swap_floats c0 (rs x) (rs x0)) (swap_floats c0 (rs x0) (rs x)) rs)).
+ split. apply exec_straight_one.
+ destruct c0; simpl; auto.
+ unfold nextinstr. rewrite Pregmap.gss. rewrite compare_floats_inv; auto with asmgen.
+ split. destruct (rs x); destruct (rs x0); simpl; auto.
+ repeat rewrite swap_floats_commut. apply testcond_for_float_comparison_correct.
+ intros. Simplifs. apply compare_floats_inv; auto with asmgen.
+- (* notcompf *)
+ simpl. rewrite (freg_of_eq _ _ EQ). rewrite (freg_of_eq _ _ EQ1).
+ exists (nextinstr (compare_floats (swap_floats c0 (rs x) (rs x0)) (swap_floats c0 (rs x0) (rs x)) rs)).
+ split. apply exec_straight_one.
+ destruct c0; simpl; auto.
+ unfold nextinstr. rewrite Pregmap.gss. rewrite compare_floats_inv; auto with asmgen.
+ split. destruct (rs x); destruct (rs x0); simpl; auto.
+ repeat rewrite swap_floats_commut. apply testcond_for_neg_float_comparison_correct.
+ intros. Simplifs. apply compare_floats_inv; auto with asmgen.
+- (* compfs *)
+ simpl. rewrite (freg_of_eq _ _ EQ). rewrite (freg_of_eq _ _ EQ1).
+ exists (nextinstr (compare_floats32 (swap_floats c0 (rs x) (rs x0)) (swap_floats c0 (rs x0) (rs x)) rs)).
+ split. apply exec_straight_one.
+ destruct c0; simpl; auto.
+ unfold nextinstr. rewrite Pregmap.gss. rewrite compare_floats32_inv; auto with asmgen.
+ split. destruct (rs x); destruct (rs x0); simpl; auto.
+ repeat rewrite swap_floats_commut. apply testcond_for_float32_comparison_correct.
+ intros. Simplifs. apply compare_floats32_inv; auto with asmgen.
+- (* notcompfs *)
+ simpl. rewrite (freg_of_eq _ _ EQ). rewrite (freg_of_eq _ _ EQ1).
+ exists (nextinstr (compare_floats32 (swap_floats c0 (rs x) (rs x0)) (swap_floats c0 (rs x0) (rs x)) rs)).
+ split. apply exec_straight_one.
+ destruct c0; simpl; auto.
+ unfold nextinstr. rewrite Pregmap.gss. rewrite compare_floats32_inv; auto with asmgen.
+ split. destruct (rs x); destruct (rs x0); simpl; auto.
+ repeat rewrite swap_floats_commut. apply testcond_for_neg_float32_comparison_correct.
+ intros. Simplifs. apply compare_floats32_inv; auto with asmgen.
+- (* maskzero *)
+ simpl. rewrite (ireg_of_eq _ _ EQ).
+ econstructor. split. apply exec_straight_one. simpl; eauto. auto.
+ split. destruct (rs x); simpl; auto.
+ generalize (compare_ints_spec rs (Vint (Int.and i n)) Vzero m).
+ intros [A B]. rewrite A. unfold Val.cmpu; simpl. destruct (Int.eq (Int.and i n) Int.zero); auto.
+ intros. unfold compare_ints. Simplifs.
+- (* masknotzero *)
+ simpl. rewrite (ireg_of_eq _ _ EQ).
+ econstructor. split. apply exec_straight_one. simpl; eauto. auto.
+ split. destruct (rs x); simpl; auto.
+ generalize (compare_ints_spec rs (Vint (Int.and i n)) Vzero m).
+ intros [A B]. rewrite A. unfold Val.cmpu; simpl. destruct (Int.eq (Int.and i n) Int.zero); auto.
+ intros. unfold compare_ints. Simplifs.
+Qed.
+
+Remark eval_testcond_nextinstr:
+ forall c rs, eval_testcond c (nextinstr rs) = eval_testcond c rs.
+Proof.
+ intros. unfold eval_testcond. repeat rewrite nextinstr_inv; auto with asmgen.
+Qed.
+
+Remark eval_testcond_set_ireg:
+ forall c rs r v, eval_testcond c (rs#(IR r) <- v) = eval_testcond c rs.
+Proof.
+ intros. unfold eval_testcond. repeat rewrite Pregmap.gso; auto with asmgen.
+Qed.
+
+Lemma mk_setcc_base_correct:
+ forall cond rd k rs1 m,
+ exists rs2,
+ exec_straight ge fn (mk_setcc_base cond rd k) rs1 m k rs2 m
+ /\ rs2#rd = Val.of_optbool(eval_extcond cond rs1)
+ /\ forall r, data_preg r = true -> r <> RAX /\ r <> RCX -> r <> rd -> rs2#r = rs1#r.
+Proof.
+ intros. destruct cond; simpl in *.
+- (* base *)
+ econstructor; split.
+ apply exec_straight_one. simpl; eauto. auto.
+ split. Simplifs. intros; Simplifs.
+- (* or *)
+ assert (Val.of_optbool
+ match eval_testcond c1 rs1 with
+ | Some b1 =>
+ match eval_testcond c2 rs1 with
+ | Some b2 => Some (b1 || b2)
+ | None => None
+ end
+ | None => None
+ end =
+ Val.or (Val.of_optbool (eval_testcond c1 rs1)) (Val.of_optbool (eval_testcond c2 rs1))).
+ destruct (eval_testcond c1 rs1). destruct (eval_testcond c2 rs1).
+ destruct b; destruct b0; auto.
+ destruct b; auto.
+ auto.
+ rewrite H; clear H.
+ destruct (ireg_eq rd RAX).
+ subst rd. econstructor; split.
+ eapply exec_straight_three.
+ simpl; eauto.
+ simpl. rewrite eval_testcond_nextinstr. repeat rewrite eval_testcond_set_ireg. eauto.
+ simpl; eauto.
+ auto. auto. auto.
+ intuition Simplifs.
+ econstructor; split.
+ eapply exec_straight_three.
+ simpl; eauto.
+ simpl. rewrite eval_testcond_nextinstr. repeat rewrite eval_testcond_set_ireg. eauto.
+ simpl. eauto.
+ auto. auto. auto.
+ split. Simplifs. rewrite Val.or_commut. decEq; Simplifs.
+ intros. destruct H0; Simplifs.
+- (* and *)
+ assert (Val.of_optbool
+ match eval_testcond c1 rs1 with
+ | Some b1 =>
+ match eval_testcond c2 rs1 with
+ | Some b2 => Some (b1 && b2)
+ | None => None
+ end
+ | None => None
+ end =
+ Val.and (Val.of_optbool (eval_testcond c1 rs1)) (Val.of_optbool (eval_testcond c2 rs1))).
+ {
+ destruct (eval_testcond c1 rs1). destruct (eval_testcond c2 rs1).
+ destruct b; destruct b0; auto.
+ destruct b; auto.
+ auto.
+ }
+ rewrite H; clear H.
+ destruct (ireg_eq rd RAX).
+ subst rd. econstructor; split.
+ eapply exec_straight_three.
+ simpl; eauto.
+ simpl. rewrite eval_testcond_nextinstr. repeat rewrite eval_testcond_set_ireg. eauto.
+ simpl; eauto.
+ auto. auto. auto.
+ intuition Simplifs.
+ econstructor; split.
+ eapply exec_straight_three.
+ simpl; eauto.
+ simpl. rewrite eval_testcond_nextinstr. repeat rewrite eval_testcond_set_ireg. eauto.
+ simpl. eauto.
+ auto. auto. auto.
+ split. Simplifs. rewrite Val.and_commut. decEq; Simplifs.
+ intros. destruct H0; Simplifs.
+Qed.
+
+Lemma mk_setcc_correct:
+ forall cond rd k rs1 m,
+ exists rs2,
+ exec_straight ge fn (mk_setcc cond rd k) rs1 m k rs2 m
+ /\ rs2#rd = Val.of_optbool(eval_extcond cond rs1)
+ /\ forall r, data_preg r = true -> r <> RAX /\ r <> RCX -> r <> rd -> rs2#r = rs1#r.
+Proof.
+ intros. unfold mk_setcc. destruct (Archi.ptr64 || low_ireg rd).
+- apply mk_setcc_base_correct.
+- exploit mk_setcc_base_correct. intros [rs2 [A [B C]]].
+ econstructor; split. eapply exec_straight_trans. eexact A. apply exec_straight_one.
+ simpl. eauto. simpl. auto.
+ intuition Simplifs.
+Qed.
+
+(** Translation of arithmetic operations. *)
+
+Ltac ArgsInv :=
+ match goal with
+ | [ H: Error _ = OK _ |- _ ] => discriminate
+ | [ H: match ?args with nil => _ | _ :: _ => _ end = OK _ |- _ ] => destruct args; ArgsInv
+ | [ H: bind _ _ = OK _ |- _ ] => monadInv H; ArgsInv
+ | [ H: match _ with left _ => _ | right _ => assertion_failed end = OK _ |- _ ] => monadInv H; ArgsInv
+ | [ H: match _ with true => _ | false => assertion_failed end = OK _ |- _ ] => monadInv H; ArgsInv
+ | [ H: ireg_of _ = OK _ |- _ ] => simpl in *; rewrite (ireg_of_eq _ _ H) in *; clear H; ArgsInv
+ | [ H: freg_of _ = OK _ |- _ ] => simpl in *; rewrite (freg_of_eq _ _ H) in *; clear H; ArgsInv
+ | _ => idtac
+ end.
+
+Ltac TranslOp :=
+ econstructor; split;
+ [ apply exec_straight_one; [ simpl; eauto | auto ]
+ | split; [ Simplifs | intros; Simplifs ]].
+
+Lemma transl_op_correct:
+ forall op args res k c (rs: regset) m v,
+ transl_op op args res k = OK c ->
+ eval_operation ge (rs#RSP) op (map rs (map preg_of args)) m = Some v ->
+ exists rs',
+ exec_straight ge fn c rs m k rs' m
+ /\ Val.lessdef v rs'#(preg_of res)
+ /\ forall r, data_preg r = true -> r <> preg_of res -> preg_notin r (destroyed_by_op op) -> rs' r = rs r.
+Proof.
+Transparent destroyed_by_op.
+ intros until v; intros TR EV.
+ assert (SAME:
+ (exists rs',
+ exec_straight ge fn c rs m k rs' m
+ /\ rs'#(preg_of res) = v
+ /\ forall r, data_preg r = true -> r <> preg_of res -> preg_notin r (destroyed_by_op op) -> rs' r = rs r) ->
+ exists rs',
+ exec_straight ge fn c rs m k rs' m
+ /\ Val.lessdef v rs'#(preg_of res)
+ /\ forall r, data_preg r = true -> r <> preg_of res -> preg_notin r (destroyed_by_op op) -> rs' r = rs r).
+ {
+ intros [rs' [A [B C]]]. subst v. exists rs'; auto.
+ }
+
+ destruct op; simpl in TR; ArgsInv; simpl in EV; try (inv EV); try (apply SAME; TranslOp; fail).
+(* move *)
+ exploit mk_mov_correct; eauto. intros [rs2 [A [B C]]].
+ apply SAME. exists rs2. eauto.
+(* intconst *)
+ apply SAME. destruct (Int.eq_dec n Int.zero). subst n. TranslOp. TranslOp.
+(* longconst *)
+ apply SAME. destruct (Int64.eq_dec n Int64.zero). subst n. TranslOp. TranslOp.
+(* floatconst *)
+ apply SAME. destruct (Float.eq_dec n Float.zero). subst n. TranslOp. TranslOp.
+(* singleconst *)
+ apply SAME. destruct (Float32.eq_dec n Float32.zero). subst n. TranslOp. TranslOp.
+(* cast8signed *)
+ apply SAME. eapply mk_intconv_correct; eauto.
+(* cast8unsigned *)
+ apply SAME. eapply mk_intconv_correct; eauto.
+(* mulhs *)
+ apply SAME. TranslOp. destruct H1. Simplifs.
+(* mulhu *)
+ apply SAME. TranslOp. destruct H1. Simplifs.
+(* div *)
+ apply SAME.
+ exploit (divs_mods_exists (rs RAX) (rs RCX)). left; congruence.
+ intros (nh & nl & d & q & r & A & B & C & D & E & F).
+ set (rs1 := nextinstr_nf (rs#RDX <- (Vint nh))).
+ econstructor; split.
+ eapply exec_straight_two with (rs2 := rs1). simpl. rewrite A. reflexivity.
+ simpl. change (rs1 RAX) with (rs RAX); rewrite B.
+ change (rs1 RCX) with (rs RCX); rewrite C.
+ rewrite D. reflexivity. auto. auto.
+ split. change (Vint q = v). congruence.
+ simpl; intros. destruct H2. unfold rs1; Simplifs.
+(* divu *)
+ apply SAME.
+ exploit (divu_modu_exists (rs RAX) (rs RCX)). left; congruence.
+ intros (n & d & q & r & B & C & D & E & F).
+ set (rs1 := nextinstr_nf (rs#RDX <- Vzero)).
+ econstructor; split.
+ eapply exec_straight_two with (rs2 := rs1). reflexivity.
+ simpl. change (rs1 RAX) with (rs RAX); rewrite B.
+ change (rs1 RCX) with (rs RCX); rewrite C.
+ rewrite D. reflexivity. auto. auto.
+ split. change (Vint q = v). congruence.
+ simpl; intros. destruct H2. unfold rs1; Simplifs.
+(* mod *)
+ apply SAME.
+ exploit (divs_mods_exists (rs RAX) (rs RCX)). right; congruence.
+ intros (nh & nl & d & q & r & A & B & C & D & E & F).
+ set (rs1 := nextinstr_nf (rs#RDX <- (Vint nh))).
+ econstructor; split.
+ eapply exec_straight_two with (rs2 := rs1). simpl. rewrite A. reflexivity.
+ simpl. change (rs1 RAX) with (rs RAX); rewrite B.
+ change (rs1 RCX) with (rs RCX); rewrite C.
+ rewrite D. reflexivity. auto. auto.
+ split. change (Vint r = v). congruence.
+ simpl; intros. destruct H2. unfold rs1; Simplifs.
+(* modu *)
+ apply SAME.
+ exploit (divu_modu_exists (rs RAX) (rs RCX)). right; congruence.
+ intros (n & d & q & r & B & C & D & E & F).
+ set (rs1 := nextinstr_nf (rs#RDX <- Vzero)).
+ econstructor; split.
+ eapply exec_straight_two with (rs2 := rs1). reflexivity.
+ simpl. change (rs1 RAX) with (rs RAX); rewrite B.
+ change (rs1 RCX) with (rs RCX); rewrite C.
+ rewrite D. reflexivity. auto. auto.
+ split. change (Vint r = v). congruence.
+ simpl; intros. destruct H2. unfold rs1; Simplifs.
+(* shrximm *)
+ apply SAME. eapply mk_shrximm_correct; eauto.
+(* lea *)
+ exploit transl_addressing_mode_32_correct; eauto. intros EA.
+ TranslOp. rewrite nextinstr_inv; auto with asmgen. rewrite Pregmap.gss. rewrite normalize_addrmode_32_correct; auto.
+(* mullhs *)
+ apply SAME. TranslOp. destruct H1. Simplifs.
+(* mullhu *)
+ apply SAME. TranslOp. destruct H1. Simplifs.
+(* divl *)
+ apply SAME.
+ exploit (divls_modls_exists (rs RAX) (rs RCX)). left; congruence.
+ intros (nh & nl & d & q & r & A & B & C & D & E & F).
+ set (rs1 := nextinstr_nf (rs#RDX <- (Vlong nh))).
+ econstructor; split.
+ eapply exec_straight_two with (rs2 := rs1). simpl. rewrite A. reflexivity.
+ simpl. change (rs1 RAX) with (rs RAX); rewrite B.
+ change (rs1 RCX) with (rs RCX); rewrite C.
+ rewrite D. reflexivity. auto. auto.
+ split. change (Vlong q = v). congruence.
+ simpl; intros. destruct H2. unfold rs1; Simplifs.
+(* divlu *)
+ apply SAME.
+ exploit (divlu_modlu_exists (rs RAX) (rs RCX)). left; congruence.
+ intros (n & d & q & r & B & C & D & E & F).
+ set (rs1 := nextinstr_nf (rs#RDX <- (Vlong Int64.zero))).
+ econstructor; split.
+ eapply exec_straight_two with (rs2 := rs1). reflexivity.
+ simpl. change (rs1 RAX) with (rs RAX); rewrite B.
+ change (rs1 RCX) with (rs RCX); rewrite C.
+ rewrite D. reflexivity. auto. auto.
+ split. change (Vlong q = v). congruence.
+ simpl; intros. destruct H2. unfold rs1; Simplifs.
+(* modl *)
+ apply SAME.
+ exploit (divls_modls_exists (rs RAX) (rs RCX)). right; congruence.
+ intros (nh & nl & d & q & r & A & B & C & D & E & F).
+ set (rs1 := nextinstr_nf (rs#RDX <- (Vlong nh))).
+ econstructor; split.
+ eapply exec_straight_two with (rs2 := rs1). simpl. rewrite A. reflexivity.
+ simpl. change (rs1 RAX) with (rs RAX); rewrite B.
+ change (rs1 RCX) with (rs RCX); rewrite C.
+ rewrite D. reflexivity. auto. auto.
+ split. change (Vlong r = v). congruence.
+ simpl; intros. destruct H2. unfold rs1; Simplifs.
+(* modlu *)
+ apply SAME.
+ exploit (divlu_modlu_exists (rs RAX) (rs RCX)). right; congruence.
+ intros (n & d & q & r & B & C & D & E & F).
+ set (rs1 := nextinstr_nf (rs#RDX <- (Vlong Int64.zero))).
+ econstructor; split.
+ eapply exec_straight_two with (rs2 := rs1). reflexivity.
+ simpl. change (rs1 RAX) with (rs RAX); rewrite B.
+ change (rs1 RCX) with (rs RCX); rewrite C.
+ rewrite D. reflexivity. auto. auto.
+ split. change (Vlong r = v). congruence.
+ simpl; intros. destruct H2. unfold rs1; Simplifs.
+(* shrxlimm *)
+ apply SAME. eapply mk_shrxlimm_correct; eauto.
+(* leal *)
+ exploit transl_addressing_mode_64_correct; eauto. intros EA.
+ generalize (normalize_addrmode_64_correct x rs). destruct (normalize_addrmode_64 x) as [am' [delta|]]; intros EV.
+ econstructor; split. eapply exec_straight_two.
+ simpl. reflexivity. simpl. reflexivity. auto. auto.
+ split. rewrite nextinstr_nf_inv by auto. rewrite Pregmap.gss. rewrite nextinstr_inv by auto with asmgen.
+ rewrite Pregmap.gss. rewrite <- EV; auto.
+ intros; Simplifs.
+ TranslOp. rewrite nextinstr_inv; auto with asmgen. rewrite Pregmap.gss; auto. rewrite <- EV; auto.
+(* intoffloat *)
+ apply SAME. TranslOp. rewrite H0; auto.
+(* floatofint *)
+ apply SAME. TranslOp. rewrite H0; auto.
+(* intofsingle *)
+ apply SAME. TranslOp. rewrite H0; auto.
+(* singleofint *)
+ apply SAME. TranslOp. rewrite H0; auto.
+(* longoffloat *)
+ apply SAME. TranslOp. rewrite H0; auto.
+(* floatoflong *)
+ apply SAME. TranslOp. rewrite H0; auto.
+(* longofsingle *)
+ apply SAME. TranslOp. rewrite H0; auto.
+(* singleoflong *)
+ apply SAME. TranslOp. rewrite H0; auto.
+(* condition *)
+ exploit transl_cond_correct; eauto. intros [rs2 [P [Q R]]].
+ exploit mk_setcc_correct; eauto. intros [rs3 [S [T U]]].
+ exists rs3.
+ split. eapply exec_straight_trans. eexact P. eexact S.
+ split. rewrite T. destruct (eval_condition cond rs ## (preg_of ## args) m).
+ rewrite Q. auto.
+ simpl; auto.
+ intros. transitivity (rs2 r); auto.
+Qed.
+
+(** Translation of memory loads. *)
+
+Lemma transl_load_correct:
+ forall chunk addr args dest k c (rs: regset) m a v,
+ transl_load chunk addr args dest k = OK c ->
+ eval_addressing ge (rs#RSP) addr (map rs (map preg_of args)) = Some a ->
+ Mem.loadv chunk m a = Some v ->
+ exists rs',
+ exec_straight ge fn c rs m k rs' m
+ /\ rs'#(preg_of dest) = v
+ /\ forall r, data_preg r = true -> r <> preg_of dest -> rs'#r = rs#r.
+Proof.
+ unfold transl_load; intros. monadInv H.
+ exploit transl_addressing_mode_correct; eauto. intro EA.
+ assert (EA': eval_addrmode ge x rs = a). destruct a; simpl in H1; try discriminate; inv EA; auto.
+ set (rs2 := nextinstr_nf (rs#(preg_of dest) <- v)).
+ assert (exec_load ge chunk m x rs (preg_of dest) = Next rs2 m).
+ unfold exec_load. rewrite EA'. rewrite H1. auto.
+ assert (rs2 PC = Val.offset_ptr (rs PC) Ptrofs.one).
+ transitivity (Val.offset_ptr ((rs#(preg_of dest) <- v) PC) Ptrofs.one).
+ auto. decEq. apply Pregmap.gso; auto with asmgen.
+ exists rs2. split.
+ destruct chunk; ArgsInv; apply exec_straight_one; auto.
+ split. unfold rs2. rewrite nextinstr_nf_inv1. Simplifs. apply preg_of_data.
+ intros. unfold rs2. Simplifs.
+Qed.
+
+Lemma transl_store_correct:
+ forall chunk addr args src k c (rs: regset) m a m',
+ transl_store chunk addr args src k = OK c ->
+ eval_addressing ge (rs#RSP) addr (map rs (map preg_of args)) = Some a ->
+ Mem.storev chunk m a (rs (preg_of src)) = Some m' ->
+ exists rs',
+ exec_straight ge fn c rs m k rs' m'
+ /\ forall r, data_preg r = true -> preg_notin r (destroyed_by_store chunk addr) -> rs'#r = rs#r.
+Proof.
+ unfold transl_store; intros. monadInv H.
+ exploit transl_addressing_mode_correct; eauto. intro EA.
+ assert (EA': eval_addrmode ge x rs = a). destruct a; simpl in H1; try discriminate; inv EA; auto.
+ rewrite <- EA' in H1. destruct chunk; ArgsInv.
+(* int8signed *)
+ eapply mk_storebyte_correct; eauto.
+ destruct (eval_addrmode ge x rs); simpl; auto. rewrite <- Mem.store_signed_unsigned_8; auto.
+(* int8unsigned *)
+ eapply mk_storebyte_correct; eauto.
+(* int16signed *)
+ econstructor; split.
+ apply exec_straight_one. simpl. unfold exec_store.
+ replace (Mem.storev Mint16unsigned m (eval_addrmode ge x rs) (rs x0))
+ with (Mem.storev Mint16signed m (eval_addrmode ge x rs) (rs x0)).
+ rewrite H1. eauto.
+ destruct (eval_addrmode ge x rs); simpl; auto. rewrite Mem.store_signed_unsigned_16; auto.
+ auto.
+ intros. Simplifs.
+(* int16unsigned *)
+ econstructor; split.
+ apply exec_straight_one. simpl. unfold exec_store. rewrite H1. eauto. auto.
+ intros. Simplifs.
+(* int32 *)
+ econstructor; split.
+ apply exec_straight_one. simpl. unfold exec_store. rewrite H1. eauto. auto.
+ intros. Simplifs.
+(* int64 *)
+ econstructor; split.
+ apply exec_straight_one. simpl. unfold exec_store. rewrite H1. eauto. auto.
+ intros. Simplifs.
+(* float32 *)
+ econstructor; split.
+ apply exec_straight_one. simpl. unfold exec_store. rewrite H1. eauto. auto.
+ intros. Transparent destroyed_by_store. simpl in H2. simpl. Simplifs.
+(* float64 *)
+ econstructor; split.
+ apply exec_straight_one. simpl. unfold exec_store. rewrite H1. eauto. auto.
+ intros. Simplifs.
+Qed.
+
+End CONSTRUCTORS.