aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Tunnelingproof.v
diff options
context:
space:
mode:
Diffstat (limited to 'backend/Tunnelingproof.v')
-rw-r--r--backend/Tunnelingproof.v304
1 files changed, 223 insertions, 81 deletions
diff --git a/backend/Tunnelingproof.v b/backend/Tunnelingproof.v
index 4f95ac9b..68913fc9 100644
--- a/backend/Tunnelingproof.v
+++ b/backend/Tunnelingproof.v
@@ -12,6 +12,7 @@
(** Correctness proof for the branch tunneling optimization. *)
+Require Import FunInd.
Require Import Coqlib Maps UnionFind.
Require Import AST Linking.
Require Import Values Memory Events Globalenvs Smallstep.
@@ -29,112 +30,232 @@ Qed.
(** * Properties of the branch map computed using union-find. *)
-(** A variant of [record_goto] that also incrementally computes a measure [f: node -> nat]
- counting the number of [Lnop] instructions starting at a given [pc] that were eliminated. *)
+Section BRANCH_MAP_CORRECT.
-Definition measure_edge (u: U.t) (pc s: node) (f: node -> nat) : node -> nat :=
+Variable fn: LTL.function.
+
+Definition measure_branch (u: U.t) (pc s: node) (f: node -> nat) : node -> nat :=
fun x => if peq (U.repr u s) pc then f x
else if peq (U.repr u x) pc then (f x + f s + 1)%nat
else f x.
-Definition record_goto' (uf: U.t * (node -> nat)) (pc: node) (b: bblock) : U.t * (node -> nat) :=
- match b with
- | Lbranch s :: b' => let (u, f) := uf in (U.union u pc s, measure_edge u pc s f)
- | _ => uf
- end.
+Definition measure_cond (u: U.t) (pc s1 s2: node) (f: node -> nat) : node -> nat :=
+ fun x => if peq (U.repr u s1) pc then f x
+ else if peq (U.repr u x) pc then (f x + Nat.max (f s1) (f s2) + 1)%nat
+ else f x.
-Definition branch_map_correct (c: code) (uf: U.t * (node -> nat)): Prop :=
+Definition branch_map_correct_1 (c: code) (u: U.t) (f: node -> nat): Prop :=
forall pc,
match c!pc with
| Some(Lbranch s :: b) =>
- U.repr (fst uf) pc = pc \/ (U.repr (fst uf) pc = U.repr (fst uf) s /\ snd uf s < snd uf pc)%nat
+ U.repr u pc = pc \/ (U.repr u pc = U.repr u s /\ f s < f pc)%nat
| _ =>
- U.repr (fst uf) pc = pc
+ U.repr u pc = pc
end.
-Lemma record_gotos'_correct:
- forall c,
- branch_map_correct c (PTree.fold record_goto' c (U.empty, fun (x: node) => O)).
+Lemma record_branch_correct:
+ forall c u f pc b,
+ branch_map_correct_1 (PTree.remove pc c) u f ->
+ c!pc = Some b ->
+ { f' | branch_map_correct_1 c (record_branch u pc b) f' }.
Proof.
- intros.
- apply PTree_Properties.fold_rec with (P := fun c uf => branch_map_correct c uf).
-
-- (* extensionality *)
- intros. red; intros. rewrite <- H. apply H0.
+ intros c u f pc b BMC GET1.
+ assert (PC: U.repr u pc = pc).
+ { specialize (BMC pc). rewrite PTree.grs in BMC. auto. }
+ assert (DFL: { f | branch_map_correct_1 c u f }).
+ { exists f. intros p. destruct (peq p pc).
+ - subst p. rewrite GET1. destruct b as [ | [] b ]; auto.
+ - specialize (BMC p). rewrite PTree.gro in BMC by auto. exact BMC.
+ }
+ unfold record_branch. destruct b as [ | [] b ]; auto.
+ exists (measure_branch u pc s f). intros p. destruct (peq p pc).
++ subst p. rewrite GET1. unfold measure_branch.
+ rewrite (U.repr_union_2 u pc s); auto. rewrite U.repr_union_3.
+ destruct (peq (U.repr u s) pc); auto. rewrite PC, peq_true. right; split; auto. lia.
++ specialize (BMC p). rewrite PTree.gro in BMC by auto.
+ assert (U.repr u p = p -> U.repr (U.union u pc s) p = p).
+ { intro. rewrite <- H at 2. apply U.repr_union_1. congruence. }
+ destruct (c!p) as [ [ | [] _ ] | ]; auto.
+ destruct BMC as [A | [A B]]. auto.
+ right; split. apply U.sameclass_union_2; auto.
+ unfold measure_branch. destruct (peq (U.repr u s) pc). auto.
+ rewrite A. destruct (peq (U.repr u s0) pc); lia.
+Qed.
+Lemma record_branches_correct:
+ { f | branch_map_correct_1 fn.(fn_code) (record_branches fn) f }.
+Proof.
+ unfold record_branches. apply PTree_Properties.fold_ind.
- (* base case *)
- red; intros; simpl. rewrite PTree.gempty. apply U.repr_empty.
-
+ intros m EMPTY. exists (fun _ => O).
+ red; intros. rewrite EMPTY. apply U.repr_empty.
- (* inductive case *)
- intros m uf pc bb; intros. destruct uf as [u f].
+ intros m u pc bb GET1 GET2 [f BMC]. eapply record_branch_correct; eauto.
+Qed.
+
+Definition branch_map_correct_2 (c: code) (u: U.t) (f: node -> nat): Prop :=
+ forall pc,
+ match fn.(fn_code)!pc with
+ | Some(Lbranch s :: b) =>
+ U.repr u pc = pc \/ (U.repr u pc = U.repr u s /\ f s < f pc)%nat
+ | Some(Lcond cond args s1 s2 :: b) =>
+ U.repr u pc = pc \/ (c!pc = None /\ U.repr u pc = U.repr u s1 /\ U.repr u pc = U.repr u s2 /\ f s1 < f pc /\ f s2 < f pc)%nat
+ | _ =>
+ U.repr u pc = pc
+ end.
+
+Lemma record_cond_correct:
+ forall c u changed f pc b,
+ branch_map_correct_2 c u f ->
+ fn.(fn_code)!pc = Some b ->
+ c!pc <> None ->
+ let '(c1, u1, _) := record_cond (c, u, changed) pc b in
+ { f' | branch_map_correct_2 c1 u1 f' }.
+Proof.
+ intros c u changed f pc b BMC GET1 GET2.
+ assert (DFL: { f' | branch_map_correct_2 c u f' }).
+ { exists f; auto. }
+ unfold record_cond. destruct b as [ | [] b ]; auto.
+ destruct (peq (U.repr u s1) (U.repr u s2)); auto.
+ exists (measure_cond u pc s1 s2 f).
assert (PC: U.repr u pc = pc).
- generalize (H1 pc). rewrite H. auto.
- assert (record_goto' (u, f) pc bb = (u, f)
- \/ exists s, exists bb', bb = Lbranch s :: bb' /\ record_goto' (u, f) pc bb = (U.union u pc s, measure_edge u pc s f)).
- unfold record_goto'; simpl. destruct bb; auto. destruct i; auto. right. exists s; exists bb; auto.
- destruct H2 as [B | [s [bb' [EQ B]]]].
-
-+ (* u and f are unchanged *)
- rewrite B.
- red. intro pc'. simpl. rewrite PTree.gsspec. destruct (peq pc' pc). subst pc'.
- destruct bb; auto. destruct i; auto.
- apply H1.
+ { specialize (BMC pc). rewrite GET1 in BMC. intuition congruence. }
+ intro p. destruct (peq p pc).
+- subst p. rewrite GET1. unfold measure_cond.
+ rewrite U.repr_union_2 by auto. rewrite <- e, PC, peq_true.
+ destruct (peq (U.repr u s1) pc); auto.
+ right; repeat split.
+ + apply PTree.grs.
+ + rewrite U.repr_union_3. auto.
+ + rewrite U.repr_union_1 by congruence. auto.
+ + lia.
+ + lia.
+- assert (P: U.repr u p = p -> U.repr (U.union u pc s1) p = p).
+ { intros. rewrite U.repr_union_1 by congruence. auto. }
+ specialize (BMC p). destruct (fn_code fn)!p as [ [ | [] bb ] | ]; auto.
+ + destruct BMC as [A | (A & B)]; auto. right; split.
+ * apply U.sameclass_union_2; auto.
+ * unfold measure_cond. rewrite <- A.
+ destruct (peq (U.repr u s1) pc). auto.
+ destruct (peq (U.repr u p) pc); lia.
+ + destruct BMC as [A | (A & B & C & D & E)]; auto. right; split; [ | split; [ | split]].
+ * rewrite PTree.gro by auto. auto.
+ * apply U.sameclass_union_2; auto.
+ * apply U.sameclass_union_2; auto.
+ * unfold measure_cond. rewrite <- B, <- C.
+ destruct (peq (U.repr u s1) pc). auto.
+ destruct (peq (U.repr u p) pc); lia.
+Qed.
-+ (* b is Lbranch s, u becomes union u pc s, f becomes measure_edge u pc s f *)
- rewrite B.
- red. intro pc'. simpl. rewrite PTree.gsspec. destruct (peq pc' pc). subst pc'. rewrite EQ.
+Definition code_compat (c: code) : Prop :=
+ forall pc b, c!pc = Some b -> fn.(fn_code)!pc = Some b.
-* (* The new instruction *)
- rewrite (U.repr_union_2 u pc s); auto. rewrite U.repr_union_3.
- unfold measure_edge. destruct (peq (U.repr u s) pc). auto. right. split. auto.
- rewrite PC. rewrite peq_true. omega.
-
-* (* An old instruction *)
- assert (U.repr u pc' = pc' -> U.repr (U.union u pc s) pc' = pc').
- { intro. rewrite <- H2 at 2. apply U.repr_union_1. congruence. }
- generalize (H1 pc'). simpl. destruct (m!pc'); auto. destruct b; auto. destruct i; auto.
- intros [P | [P Q]]. left; auto. right.
- split. apply U.sameclass_union_2. auto.
- unfold measure_edge. destruct (peq (U.repr u s) pc). auto.
- rewrite P. destruct (peq (U.repr u s0) pc). omega. auto.
+Definition code_invariant (c0 c1 c2: code) : Prop :=
+ forall pc, c0!pc = None -> c1!pc = c2!pc.
+
+Lemma record_conds_1_correct:
+ forall c u f,
+ branch_map_correct_2 c u f ->
+ code_compat c ->
+ let '(c', u', _) := record_conds_1 (c, u) in
+ (code_compat c' * { f' | branch_map_correct_2 c' u' f' })%type.
+Proof.
+ intros c0 u0 f0 BMC0 COMPAT0.
+ unfold record_conds_1.
+ set (x := PTree.fold record_cond c0 (c0, u0, false)).
+ set (P := fun (cd: code) (cuc: code * U.t * bool) =>
+ (code_compat (fst (fst cuc)) *
+ code_invariant cd (fst (fst cuc)) c0 *
+ { f | branch_map_correct_2 (fst (fst cuc)) (snd (fst cuc)) f })%type).
+ assert (REC: P c0 x).
+ { unfold x; apply PTree_Properties.fold_ind.
+ - intros cd EMPTY. split; [split|]; simpl.
+ + auto.
+ + red; auto.
+ + exists f0; auto.
+ - intros cd [[c u] changed] pc b GET1 GET2 [[COMPAT INV] [f BMC]]. simpl in *.
+ split; [split|].
+ + unfold record_cond; destruct b as [ | [] b]; simpl; auto.
+ destruct (peq (U.repr u s1) (U.repr u s2)); simpl; auto.
+ red; intros. rewrite PTree.grspec in H. destruct (PTree.elt_eq pc0 pc). discriminate. auto.
+ + assert (DFL: code_invariant cd c c0).
+ { intros p GET. apply INV. rewrite PTree.gro by congruence. auto. }
+ unfold record_cond; destruct b as [ | [] b]; simpl; auto.
+ destruct (peq (U.repr u s1) (U.repr u s2)); simpl; auto.
+ intros p GET. rewrite PTree.gro by congruence. apply INV. rewrite PTree.gro by congruence. auto.
+ + assert (GET3: c!pc = Some b).
+ { rewrite <- GET2. apply INV. apply PTree.grs. }
+ assert (X: fn.(fn_code)!pc = Some b) by auto.
+ assert (Y: c!pc <> None) by congruence.
+ generalize (record_cond_correct c u changed f pc b BMC X Y).
+ destruct (record_cond (c, u, changed) pc b) as [[c1 u1] changed1]; simpl.
+ auto.
+ }
+ destruct x as [[c1 u1] changed1]; destruct REC as [[COMPAT1 INV1] BMC1]; auto.
Qed.
-Definition record_gotos' (f: function) :=
- PTree.fold record_goto' f.(fn_code) (U.empty, fun (x: node) => O).
+Definition branch_map_correct (u: U.t) (f: node -> nat): Prop :=
+ forall pc,
+ match fn.(fn_code)!pc with
+ | Some(Lbranch s :: b) =>
+ U.repr u pc = pc \/ (U.repr u pc = U.repr u s /\ f s < f pc)%nat
+ | Some(Lcond cond args s1 s2 :: b) =>
+ U.repr u pc = pc \/ (U.repr u pc = U.repr u s1 /\ U.repr u pc = U.repr u s2 /\ f s1 < f pc /\ f s2 < f pc)%nat
+ | _ =>
+ U.repr u pc = pc
+ end.
-Lemma record_gotos_gotos':
- forall f, fst (record_gotos' f) = record_gotos f.
+Lemma record_conds_correct:
+ forall cu,
+ { f | branch_map_correct_2 (fst cu) (snd cu) f } ->
+ code_compat (fst cu) ->
+ { f | branch_map_correct (record_conds cu) f }.
Proof.
- intros. unfold record_gotos', record_gotos.
- repeat rewrite PTree.fold_spec.
- generalize (PTree.elements (fn_code f)) (U.empty) (fun _ : node => O).
- induction l; intros; simpl.
- auto.
- unfold record_goto' at 2. unfold record_goto at 2.
- destruct (snd a). apply IHl. destruct i; apply IHl.
+ intros cu0. functional induction (record_conds cu0); intros.
+- destruct cu as [c u], cu' as [c' u'], H as [f BMC].
+ generalize (record_conds_1_correct c u f BMC H0).
+ rewrite e. intros [U V]. apply IHt; auto.
+- destruct cu as [c u], H as [f BMC].
+ exists f. intros pc. specialize (BMC pc); simpl in *.
+ destruct (fn_code fn)!pc as [ [ | [] b ] | ]; tauto.
Qed.
-Definition branch_target (f: function) (pc: node) : node :=
- U.repr (record_gotos f) pc.
+Lemma record_gotos_correct_1:
+ { f | branch_map_correct (record_gotos fn) f }.
+Proof.
+ apply record_conds_correct; simpl.
+- destruct record_branches_correct as [f BMC].
+ exists f. intros pc. specialize (BMC pc); simpl in *.
+ destruct (fn_code fn)!pc as [ [ | [] b ] | ]; auto.
+- red; auto.
+Qed.
-Definition count_gotos (f: function) (pc: node) : nat :=
- snd (record_gotos' f) pc.
+Definition branch_target (pc: node) : node :=
+ U.repr (record_gotos fn) pc.
+
+Definition count_gotos (pc: node) : nat :=
+ proj1_sig record_gotos_correct_1 pc.
Theorem record_gotos_correct:
- forall f pc,
- match f.(fn_code)!pc with
+ forall pc,
+ match fn.(fn_code)!pc with
| Some(Lbranch s :: b) =>
- branch_target f pc = pc \/
- (branch_target f pc = branch_target f s /\ count_gotos f s < count_gotos f pc)%nat
- | _ => branch_target f pc = pc
+ branch_target pc = pc \/
+ (branch_target pc = branch_target s /\ count_gotos s < count_gotos pc)%nat
+ | Some(Lcond cond args s1 s2 :: b) =>
+ branch_target pc = pc \/
+ (branch_target pc = branch_target s1 /\ branch_target pc = branch_target s2
+ /\ count_gotos s1 < count_gotos pc /\ count_gotos s2 < count_gotos pc)%nat
+ | _ =>
+ branch_target pc = pc
end.
Proof.
- intros.
- generalize (record_gotos'_correct f.(fn_code) pc). simpl.
- fold (record_gotos' f). unfold branch_map_correct, branch_target, count_gotos.
- rewrite record_gotos_gotos'. auto.
+ intros. unfold count_gotos. destruct record_gotos_correct_1 as [f P]; simpl.
+ apply P.
Qed.
+End BRANCH_MAP_CORRECT.
+
(** * Preservation of semantics *)
Section PRESERVATION.
@@ -226,13 +347,21 @@ Inductive match_states: state -> state -> Prop :=
(MEM: Mem.extends m tm),
match_states (Block s f sp bb ls m)
(Block ts (tunnel_function f) sp (tunneled_block f bb) tls tm)
- | match_states_interm:
+ | match_states_interm_branch:
forall s f sp pc bb ls m ts tls tm
(STK: list_forall2 match_stackframes s ts)
(LS: locmap_lessdef ls tls)
(MEM: Mem.extends m tm),
match_states (Block s f sp (Lbranch pc :: bb) ls m)
(State ts (tunnel_function f) sp (branch_target f pc) tls tm)
+ | match_states_interm_cond:
+ forall s f sp cond args pc1 pc2 bb ls m ts tls tm
+ (STK: list_forall2 match_stackframes s ts)
+ (LS: locmap_lessdef ls tls)
+ (MEM: Mem.extends m tm)
+ (SAME: branch_target f pc1 = branch_target f pc2),
+ match_states (Block s f sp (Lcond cond args pc1 pc2 :: bb) ls m)
+ (State ts (tunnel_function f) sp (branch_target f pc1) tls tm)
| match_states_call:
forall s f ls m ts tls tm
(STK: list_forall2 match_stackframes s ts)
@@ -385,6 +514,7 @@ Definition measure (st: state) : nat :=
match st with
| State s f sp pc ls m => (count_gotos f pc * 2)%nat
| Block s f sp (Lbranch pc :: _) ls m => (count_gotos f pc * 2 + 1)%nat
+ | Block s f sp (Lcond _ _ pc1 pc2 :: _) ls m => (Nat.max (count_gotos f pc1) (count_gotos f pc2) * 2 + 1)%nat
| Block s f sp bb ls m => 0%nat
| Callstate s f ls m => 0%nat
| Returnstate s ls m => 0%nat
@@ -419,10 +549,16 @@ Proof.
generalize (record_gotos_correct f pc). rewrite H.
destruct bb; auto. destruct i; auto.
++ (* Lbranch *)
intros [A | [B C]]. auto.
- right. split. simpl. omega.
+ right. split. simpl. lia.
split. auto.
rewrite B. econstructor; eauto.
++ (* Lcond *)
+ intros [A | (B & C & D & E)]. auto.
+ right. split. simpl. lia.
+ split. auto.
+ rewrite B. econstructor; eauto. congruence.
- (* Lop *)
exploit eval_operation_lessdef. apply reglist_lessdef; eauto. eauto. eauto.
@@ -487,20 +623,26 @@ Proof.
eapply exec_Lbranch; eauto.
fold (branch_target f pc). econstructor; eauto.
- (* Lbranch (eliminated) *)
- right; split. simpl. omega. split. auto. constructor; auto.
+ right; split. simpl. lia. split. auto. constructor; auto.
-- (* Lcond *)
+- (* Lcond (preserved) *)
simpl tunneled_block.
set (s1 := U.repr (record_gotos f) pc1). set (s2 := U.repr (record_gotos f) pc2).
destruct (peq s1 s2).
+ left; econstructor; split.
- eapply exec_Lbranch.
- destruct b.
-* constructor; eauto using locmap_undef_regs_lessdef_1.
-* rewrite e. constructor; eauto using locmap_undef_regs_lessdef_1.
+ eapply exec_Lbranch.
+ set (pc := if b then pc1 else pc2).
+ replace s1 with (branch_target f pc) by (unfold pc; destruct b; auto).
+ constructor; eauto using locmap_undef_regs_lessdef_1.
+ left; econstructor; split.
eapply exec_Lcond; eauto. eapply eval_condition_lessdef; eauto using reglist_lessdef.
destruct b; econstructor; eauto using locmap_undef_regs_lessdef.
+- (* Lcond (eliminated) *)
+ right; split. simpl. destruct b; lia.
+ split. auto.
+ set (pc := if b then pc1 else pc2).
+ replace (branch_target f pc1) with (branch_target f pc) by (unfold pc; destruct b; auto).
+ econstructor; eauto.
- (* Ljumptable *)
assert (tls (R arg) = Vint n).