aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/IEEE754/Binary.v
diff options
context:
space:
mode:
Diffstat (limited to 'flocq/IEEE754/Binary.v')
-rw-r--r--flocq/IEEE754/Binary.v2722
1 files changed, 582 insertions, 2140 deletions
diff --git a/flocq/IEEE754/Binary.v b/flocq/IEEE754/Binary.v
index 4516f0a0..335d9b38 100644
--- a/flocq/IEEE754/Binary.v
+++ b/flocq/IEEE754/Binary.v
@@ -18,8 +18,17 @@ COPYING file for more details.
*)
(** * IEEE-754 arithmetic *)
-Require Import Core Digits Round Bracket Operations Div Sqrt Relative.
-Require Import Psatz.
+
+From Coq Require Import ZArith Reals Psatz SpecFloat.
+
+Require Import Core Round Bracket Operations Div Sqrt Relative BinarySingleNaN.
+
+Module BSN := BinarySingleNaN.
+
+Arguments BSN.B754_zero {prec emax}.
+Arguments BSN.B754_infinity {prec emax}.
+Arguments BSN.B754_nan {prec emax}.
+Arguments BSN.B754_finite {prec emax}.
Section AnyRadix.
@@ -29,12 +38,106 @@ Inductive full_float :=
| F754_nan (s : bool) (m : positive)
| F754_finite (s : bool) (m : positive) (e : Z).
+Definition FF2SF x :=
+ match x with
+ | F754_zero s => S754_zero s
+ | F754_infinity s => S754_infinity s
+ | F754_nan _ _ => S754_nan
+ | F754_finite s m e => S754_finite s m e
+ end.
+
Definition FF2R beta x :=
match x with
| F754_finite s m e => F2R (Float beta (cond_Zopp s (Zpos m)) e)
| _ => 0%R
end.
+Lemma SF2R_FF2SF :
+ forall beta x,
+ SF2R beta (FF2SF x) = FF2R beta x.
+Proof.
+now intros beta [s|s|s m|s m e].
+Qed.
+
+Definition SF2FF x :=
+ match x with
+ | S754_zero s => F754_zero s
+ | S754_infinity s => F754_infinity s
+ | S754_nan => F754_nan false xH
+ | S754_finite s m e => F754_finite s m e
+ end.
+
+Lemma FF2SF_SF2FF :
+ forall x,
+ FF2SF (SF2FF x) = x.
+Proof.
+now intros [s|s| |s m e].
+Qed.
+
+Lemma FF2R_SF2FF :
+ forall beta x,
+ FF2R beta (SF2FF x) = SF2R beta x.
+Proof.
+now intros beta [s|s| |s m e].
+Qed.
+
+Definition is_nan_FF f :=
+ match f with
+ | F754_nan _ _ => true
+ | _ => false
+ end.
+
+Lemma is_nan_SF2FF :
+ forall x,
+ is_nan_FF (SF2FF x) = is_nan_SF x.
+Proof.
+now intros [s|s| |s m e].
+Qed.
+
+Lemma is_nan_FF2SF :
+ forall x,
+ is_nan_SF (FF2SF x) = is_nan_FF x.
+Proof.
+now intros [s|s|s m|s m e].
+Qed.
+
+Lemma SF2FF_FF2SF :
+ forall x,
+ is_nan_FF x = false ->
+ SF2FF (FF2SF x) = x.
+Proof.
+now intros [s|s|s m|s m e] H.
+Qed.
+
+Definition sign_FF x :=
+ match x with
+ | F754_nan s _ => s
+ | F754_zero s => s
+ | F754_infinity s => s
+ | F754_finite s _ _ => s
+ end.
+
+Definition is_finite_FF f :=
+ match f with
+ | F754_finite _ _ _ => true
+ | F754_zero _ => true
+ | _ => false
+ end.
+
+Lemma is_finite_SF2FF :
+ forall x,
+ is_finite_FF (SF2FF x) = is_finite_SF x.
+Proof.
+now intros [| | |].
+Qed.
+
+Lemma sign_SF2FF :
+ forall x,
+ sign_FF (SF2FF x) = sign_SF x.
+Proof.
+now intros [| | |].
+Qed.
+
End AnyRadix.
Section Binary.
@@ -46,22 +149,22 @@ Arguments exist {A} {P}.
For instance, binary32 is defined by [prec = 24] and [emax = 128]. *)
Variable prec emax : Z.
Context (prec_gt_0_ : Prec_gt_0 prec).
-Hypothesis Hmax : (prec < emax)%Z.
+Context (prec_lt_emax_ : Prec_lt_emax prec emax).
-Let emin := (3 - emax - prec)%Z.
-Let fexp := FLT_exp emin prec.
+Notation emin := (emin prec emax) (only parsing).
+Notation fexp := (fexp prec emax) (only parsing).
Instance fexp_correct : Valid_exp fexp := FLT_exp_valid emin prec.
Instance fexp_monotone : Monotone_exp fexp := FLT_exp_monotone emin prec.
-Definition canonical_mantissa m e :=
- Zeq_bool (fexp (Zpos (digits2_pos m) + e)) e.
+Notation canonical_mantissa := (canonical_mantissa prec emax).
-Definition bounded m e :=
- andb (canonical_mantissa m e) (Zle_bool e (emax - prec)).
+Notation bounded := (SpecFloat.bounded prec emax).
Definition nan_pl pl :=
Zlt_bool (Zpos (digits2_pos pl)) prec.
+Notation valid_binary_SF := (valid_binary prec emax).
+
Definition valid_binary x :=
match x with
| F754_finite _ m e => bounded m e
@@ -69,6 +172,14 @@ Definition valid_binary x :=
| _ => true
end.
+Lemma valid_binary_SF2FF :
+ forall x,
+ is_nan_SF x = false ->
+ valid_binary (SF2FF x) = valid_binary_SF x.
+Proof.
+now intros [sx|sx| |sx mx ex] H.
+Qed.
+
(** Basic type used for representing binary FP numbers.
Note that there is exactly one such object per FP datum. *)
@@ -80,6 +191,14 @@ Inductive binary_float :=
| B754_finite (s : bool) (m : positive) (e : Z) :
bounded m e = true -> binary_float.
+Definition B2BSN (x : binary_float) : BSN.binary_float prec emax :=
+ match x with
+ | B754_zero s => BSN.B754_zero s
+ | B754_infinity s => BSN.B754_infinity s
+ | B754_nan _ _ _ => BSN.B754_nan
+ | B754_finite s m e H => BSN.B754_finite s m e H
+ end.
+
Definition FF2B x :=
match x as x return valid_binary x = true -> binary_float with
| F754_finite s m e => B754_finite s m e
@@ -102,6 +221,42 @@ Definition B2R f :=
| _ => 0%R
end.
+Definition B2SF (x : binary_float) :=
+ match x with
+ | B754_finite s m e _ => S754_finite s m e
+ | B754_infinity s => S754_infinity s
+ | B754_zero s => S754_zero s
+ | B754_nan _ _ _ => S754_nan
+ end.
+
+Lemma B2SF_B2BSN :
+ forall x,
+ BSN.B2SF (B2BSN x) = B2SF x.
+Proof.
+now intros [sx|sx|sx px Px|sx mx ex Bx].
+Qed.
+
+Lemma B2SF_FF2B :
+ forall x Bx,
+ B2SF (FF2B x Bx) = FF2SF x.
+Proof.
+now intros [sx|sx|sx px|sx mx ex] Bx.
+Qed.
+
+Lemma B2R_B2BSN :
+ forall x, BSN.B2R (B2BSN x) = B2R x.
+Proof.
+intros x.
+now destruct x.
+Qed.
+
+Lemma FF2SF_B2FF :
+ forall x,
+ FF2SF (B2FF x) = B2SF x.
+Proof.
+now intros [sx|sx|sx plx|sx mx ex].
+Qed.
+
Theorem FF2R_B2FF :
forall x,
FF2R radix2 (B2FF x) = B2R x.
@@ -239,6 +394,13 @@ Definition is_finite_strict f :=
| _ => false
end.
+Lemma is_finite_strict_B2BSN :
+ forall x, BSN.is_finite_strict (B2BSN x) = is_finite_strict x.
+Proof.
+intros x.
+now destruct x.
+Qed.
+
Theorem B2R_inj:
forall x y : binary_float,
is_finite_strict x = true ->
@@ -287,14 +449,6 @@ Definition Bsign x :=
| B754_finite s _ _ _ => s
end.
-Definition sign_FF x :=
- match x with
- | F754_nan s _ => s
- | F754_zero s => s
- | F754_infinity s => s
- | F754_finite s _ _ => s
- end.
-
Theorem Bsign_FF2B :
forall x H,
Bsign (FF2B x H) = sign_FF x.
@@ -309,12 +463,12 @@ Definition is_finite f :=
| _ => false
end.
-Definition is_finite_FF f :=
- match f with
- | F754_finite _ _ _ => true
- | F754_zero _ => true
- | _ => false
- end.
+Lemma is_finite_B2BSN :
+ forall x, BSN.is_finite (B2BSN x) = is_finite x.
+Proof.
+intros x.
+now destruct x.
+Qed.
Theorem is_finite_FF2B :
forall x Hx,
@@ -323,11 +477,11 @@ Proof.
now intros [| | |].
Qed.
-Theorem is_finite_FF_B2FF :
+Theorem is_finite_B2FF :
forall x,
is_finite_FF (B2FF x) = is_finite x.
Proof.
-now intros [| |? []|].
+now intros [| | |].
Qed.
Theorem B2R_Bsign_inj:
@@ -356,11 +510,12 @@ Definition is_nan f :=
| _ => false
end.
-Definition is_nan_FF f :=
- match f with
- | F754_nan _ _ => true
- | _ => false
- end.
+Lemma is_nan_B2BSN :
+ forall x,
+ BSN.is_nan (B2BSN x) = is_nan x.
+Proof.
+now intros [s|s|s p H|s m e H].
+Qed.
Theorem is_nan_FF2B :
forall x Hx,
@@ -369,7 +524,7 @@ Proof.
now intros [| | |].
Qed.
-Theorem is_nan_FF_B2FF :
+Theorem is_nan_B2FF :
forall x,
is_nan_FF (B2FF x) = is_nan x.
Proof.
@@ -383,12 +538,12 @@ Definition build_nan (x : { x | is_nan x = true }) : binary_float.
Proof.
apply (B754_nan (Bsign (proj1_sig x)) (get_nan_pl (proj1_sig x))).
destruct x as [x H].
+assert (K: false = true -> nan_pl 1 = true) by (intros K ; now elim Bool.diff_false_true).
simpl.
revert H.
-assert (H: false = true -> nan_pl 1 = true) by now destruct (nan_pl 1).
-destruct x; try apply H.
+destruct x as [sx|sx|sx px Px|sx mx ex Bx]; try apply K.
intros _.
-apply e.
+apply Px.
Defined.
Theorem build_nan_correct :
@@ -417,6 +572,103 @@ Proof.
easy.
Qed.
+Definition BSN2B (nan : {x : binary_float | is_nan x = true }) (x : BSN.binary_float prec emax) : binary_float :=
+ match x with
+ | BSN.B754_nan => build_nan nan
+ | BSN.B754_zero s => B754_zero s
+ | BSN.B754_infinity s => B754_infinity s
+ | BSN.B754_finite s m e H => B754_finite s m e H
+ end.
+
+Lemma B2BSN_BSN2B :
+ forall nan x,
+ B2BSN (BSN2B nan x) = x.
+Proof.
+now intros nan [s|s| |s m e H].
+Qed.
+
+Lemma B2R_BSN2B :
+ forall nan x, B2R (BSN2B nan x) = BSN.B2R x.
+Proof.
+now intros nan [s|s| |s m e H].
+Qed.
+
+Lemma is_finite_BSN2B :
+ forall nan x, is_finite (BSN2B nan x) = BSN.is_finite x.
+Proof.
+now intros nan [s|s| |s m e H].
+Qed.
+
+Lemma is_nan_BSN2B :
+ forall nan x, is_nan (BSN2B nan x) = BSN.is_nan x.
+Proof.
+now intros nan [s|s| |s m e H].
+Qed.
+
+Lemma Bsign_B2BSN :
+ forall x, is_nan x = false -> BSN.Bsign (B2BSN x) = Bsign x.
+Proof.
+now intros [s|s| |s m e H].
+Qed.
+
+Lemma Bsign_BSN2B :
+ forall nan x, BSN.is_nan x = false ->
+ Bsign (BSN2B nan x) = BSN.Bsign x.
+Proof.
+now intros nan [s|s| |s m e H].
+Qed.
+
+Definition BSN2B' (x : BSN.binary_float prec emax) : BSN.is_nan x = false -> binary_float.
+Proof.
+destruct x as [sx|sx| |sx mx ex Bx] ; intros H.
+exact (B754_zero sx).
+exact (B754_infinity sx).
+now elim Bool.diff_true_false.
+exact (B754_finite sx mx ex Bx).
+Defined.
+
+Lemma B2BSN_BSN2B' :
+ forall x Nx,
+ B2BSN (BSN2B' x Nx) = x.
+Proof.
+now intros [s|s| |s m e H] Nx.
+Qed.
+
+Lemma B2R_BSN2B' :
+ forall x Nx,
+ B2R (BSN2B' x Nx) = BSN.B2R x.
+Proof.
+now intros [sx|sx| |sx mx ex Bx] Nx.
+Qed.
+
+Lemma B2FF_BSN2B' :
+ forall x Nx,
+ B2FF (BSN2B' x Nx) = SF2FF (BSN.B2SF x).
+Proof.
+now intros [sx|sx| |sx mx ex Bx] Nx.
+Qed.
+
+Lemma Bsign_BSN2B' :
+ forall x Nx,
+ Bsign (BSN2B' x Nx) = BSN.Bsign x.
+Proof.
+now intros [sx|sx| |sx mx ex Bx] Nx.
+Qed.
+
+Lemma is_finite_BSN2B' :
+ forall x Nx,
+ is_finite (BSN2B' x Nx) = BSN.is_finite x.
+Proof.
+now intros [sx|sx| |sx mx ex Bx] Nx.
+Qed.
+
+Lemma is_nan_BSN2B' :
+ forall x Nx,
+ is_nan (BSN2B' x Nx) = false.
+Proof.
+now intros [sx|sx| |sx mx ex Bx] Nx.
+Qed.
+
Definition erase (x : binary_float) : binary_float.
Proof.
destruct x as [s|s|s pl H|s m e H].
@@ -533,85 +785,19 @@ Qed.
[Some c] means ordered as per [c]; [None] means unordered. *)
Definition Bcompare (f1 f2 : binary_float) : option comparison :=
- match f1, f2 with
- | B754_nan _ _ _,_ | _,B754_nan _ _ _ => None
- | B754_infinity s1, B754_infinity s2 =>
- Some match s1, s2 with
- | true, true => Eq
- | false, false => Eq
- | true, false => Lt
- | false, true => Gt
- end
- | B754_infinity s, _ => Some (if s then Lt else Gt)
- | _, B754_infinity s => Some (if s then Gt else Lt)
- | B754_finite s _ _ _, B754_zero _ => Some (if s then Lt else Gt)
- | B754_zero _, B754_finite s _ _ _ => Some (if s then Gt else Lt)
- | B754_zero _, B754_zero _ => Some Eq
- | B754_finite s1 m1 e1 _, B754_finite s2 m2 e2 _ =>
- Some match s1, s2 with
- | true, false => Lt
- | false, true => Gt
- | false, false =>
- match Z.compare e1 e2 with
- | Lt => Lt
- | Gt => Gt
- | Eq => Pcompare m1 m2 Eq
- end
- | true, true =>
- match Z.compare e1 e2 with
- | Lt => Gt
- | Gt => Lt
- | Eq => CompOpp (Pcompare m1 m2 Eq)
- end
- end
- end.
+ BSN.Bcompare (B2BSN f1) (B2BSN f2).
Theorem Bcompare_correct :
forall f1 f2,
is_finite f1 = true -> is_finite f2 = true ->
Bcompare f1 f2 = Some (Rcompare (B2R f1) (B2R f2)).
Proof.
- Ltac apply_Rcompare :=
- match goal with
- | [ |- Lt = Rcompare _ _ ] => symmetry; apply Rcompare_Lt
- | [ |- Eq = Rcompare _ _ ] => symmetry; apply Rcompare_Eq
- | [ |- Gt = Rcompare _ _ ] => symmetry; apply Rcompare_Gt
- end.
- unfold Bcompare; intros f1 f2 H1 H2.
- destruct f1, f2; try easy; apply f_equal; clear H1 H2.
- now rewrite Rcompare_Eq.
- destruct s0 ; apply_Rcompare.
- now apply F2R_lt_0.
- now apply F2R_gt_0.
- destruct s ; apply_Rcompare.
- now apply F2R_lt_0.
- now apply F2R_gt_0.
- simpl.
- apply andb_prop in e0; destruct e0; apply (canonical_canonical_mantissa false) in H.
- apply andb_prop in e2; destruct e2; apply (canonical_canonical_mantissa false) in H1.
- pose proof (Zcompare_spec e e1); unfold canonical, Fexp in H1, H.
- assert (forall m1 m2 e1 e2,
- let x := (IZR (Zpos m1) * bpow radix2 e1)%R in
- let y := (IZR (Zpos m2) * bpow radix2 e2)%R in
- (cexp radix2 fexp x < cexp radix2 fexp y)%Z -> (x < y)%R).
- {
- intros; apply Rnot_le_lt; intro; apply (mag_le radix2) in H5.
- apply Zlt_not_le with (1 := H4).
- now apply fexp_monotone.
- now apply (F2R_gt_0 _ (Float radix2 (Zpos m2) e2)).
- }
- assert (forall m1 m2 e1 e2, (IZR (- Zpos m1) * bpow radix2 e1 < IZR (Zpos m2) * bpow radix2 e2)%R).
- {
- intros; apply (Rlt_trans _ 0%R).
- now apply (F2R_lt_0 _ (Float radix2 (Zneg m1) e0)).
- now apply (F2R_gt_0 _ (Float radix2 (Zpos m2) e2)).
- }
- unfold F2R, Fnum, Fexp.
- destruct s, s0; try (now apply_Rcompare; apply H5); inversion H3;
- try (apply_Rcompare; apply H4; rewrite H, H1 in H7; assumption);
- try (apply_Rcompare; do 2 rewrite opp_IZR, Ropp_mult_distr_l_reverse;
- apply Ropp_lt_contravar; apply H4; rewrite H, H1 in H7; assumption);
- rewrite H7, Rcompare_mult_r, Rcompare_IZR by (apply bpow_gt_0); reflexivity.
+ intros f1 f2 H1 H2.
+ unfold Bcompare.
+ rewrite BSN.Bcompare_correct.
+ now rewrite 2!B2R_B2BSN.
+ now rewrite is_finite_B2BSN.
+ now rewrite is_finite_B2BSN.
Qed.
Theorem Bcompare_swap :
@@ -619,12 +805,7 @@ Theorem Bcompare_swap :
Bcompare y x = match Bcompare x y with Some c => Some (CompOpp c) | None => None end.
Proof.
intros.
- destruct x as [ ? | [] | ? ? | [] mx ex Bx ];
- destruct y as [ ? | [] | ? ? | [] my ey By ]; simpl; try easy.
-- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
- now rewrite (Pcompare_antisym mx my).
-- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
- now rewrite Pcompare_antisym.
+ apply BSN.Bcompare_swap.
Qed.
Theorem bounded_le_emax_minus_prec :
@@ -633,44 +814,7 @@ Theorem bounded_le_emax_minus_prec :
(F2R (Float radix2 (Zpos mx) ex)
<= bpow radix2 emax - bpow radix2 (emax - prec))%R.
Proof.
-intros mx ex Hx.
-destruct (andb_prop _ _ Hx) as (H1,H2).
-generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
-generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
-generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex).
-destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
-unfold mag_val.
-intros H.
-elim Ex; [|now apply Rgt_not_eq, F2R_gt_0]; intros _.
-rewrite <-F2R_Zabs; simpl; clear Ex; intros Ex.
-generalize (Rmult_lt_compat_r (bpow radix2 (-ex)) _ _ (bpow_gt_0 _ _) Ex).
-unfold F2R; simpl; rewrite Rmult_assoc, <-!bpow_plus.
-rewrite H; [|intro H'; discriminate H'].
-rewrite <-Z.add_assoc, Z.add_opp_diag_r, Z.add_0_r, Rmult_1_r.
-rewrite <-(IZR_Zpower _ _ (Zdigits_ge_0 _ _)); clear Ex; intro Ex.
-generalize (Zlt_le_succ _ _ (lt_IZR _ _ Ex)); clear Ex; intro Ex.
-generalize (IZR_le _ _ Ex).
-rewrite succ_IZR; clear Ex; intro Ex.
-generalize (Rplus_le_compat_r (-1) _ _ Ex); clear Ex; intro Ex.
-ring_simplify in Ex; revert Ex.
-rewrite (IZR_Zpower _ _ (Zdigits_ge_0 _ _)); intro Ex.
-generalize (Rmult_le_compat_r (bpow radix2 ex) _ _ (bpow_ge_0 _ _) Ex).
-intro H'; apply (Rle_trans _ _ _ H').
-rewrite Rmult_minus_distr_r, Rmult_1_l, <-bpow_plus.
-revert H1; unfold fexp, FLT_exp; intro H1.
-generalize (Z.le_max_l (Z.pos (digits2_pos mx) + ex - prec) emin).
-rewrite H1; intro H1'.
-generalize (proj1 (Z.le_sub_le_add_r _ _ _) H1').
-rewrite Zpos_digits2_pos; clear H1'; intro H1'.
-apply (Rle_trans _ _ _ (Rplus_le_compat_r _ _ _ (bpow_le _ _ _ H1'))).
-replace emax with (emax - prec - ex + (ex + prec))%Z at 1 by ring.
-replace (emax - prec)%Z with (emax - prec - ex + ex)%Z at 2 by ring.
-do 2 rewrite (bpow_plus _ (emax - prec - ex)).
-rewrite <-Rmult_minus_distr_l.
-rewrite <-(Rmult_1_l (_ + _)).
-apply Rmult_le_compat_r.
-{ apply Rle_0_minus, bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia. }
-change 1%R with (bpow radix2 0); apply bpow_le; lia.
+now apply BSN.bounded_le_emax_minus_prec.
Qed.
Theorem bounded_lt_emax :
@@ -678,26 +822,7 @@ Theorem bounded_lt_emax :
bounded mx ex = true ->
(F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R.
Proof.
-intros mx ex Hx.
-destruct (andb_prop _ _ Hx) as (H1,H2).
-generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
-generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
-generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex).
-destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
-unfold mag_val.
-intros H.
-apply Rlt_le_trans with (bpow radix2 e').
-change (Zpos mx) with (Z.abs (Zpos mx)).
-rewrite F2R_Zabs.
-apply Ex.
-apply Rgt_not_eq.
-now apply F2R_gt_0.
-apply bpow_le.
-rewrite H. 2: discriminate.
-revert H1. clear -H2.
-rewrite Zpos_digits2_pos.
-unfold fexp, FLT_exp.
-intros ; zify ; lia.
+now apply bounded_lt_emax.
Qed.
Theorem bounded_ge_emin :
@@ -705,47 +830,25 @@ Theorem bounded_ge_emin :
bounded mx ex = true ->
(bpow radix2 emin <= F2R (Float radix2 (Zpos mx) ex))%R.
Proof.
-intros mx ex Hx.
-destruct (andb_prop _ _ Hx) as [H1 _].
-apply Zeq_bool_eq in H1.
-generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex).
-destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as [e' Ex].
-unfold mag_val.
-intros H.
-assert (H0 : Zpos mx <> 0%Z) by easy.
-rewrite Rabs_pos_eq in Ex by now apply F2R_ge_0.
-refine (Rle_trans _ _ _ _ (proj1 (Ex _))).
-2: now apply F2R_neq_0.
-apply bpow_le.
-rewrite H by easy.
-revert H1.
-rewrite Zpos_digits2_pos.
-generalize (Zdigits radix2 (Zpos mx)) (Zdigits_gt_0 radix2 (Zpos mx) H0).
-unfold fexp, FLT_exp.
-clear -prec_gt_0_.
-unfold Prec_gt_0 in prec_gt_0_.
-clearbody emin.
-intros ; zify ; lia.
+now apply bounded_ge_emin.
Qed.
Theorem abs_B2R_le_emax_minus_prec :
forall x,
(Rabs (B2R x) <= bpow radix2 emax - bpow radix2 (emax - prec))%R.
Proof.
-intros [sx|sx|sx plx Hx|sx mx ex Hx] ; simpl ;
- [rewrite Rabs_R0 ; apply Rle_0_minus, bpow_le ;
- revert prec_gt_0_; unfold Prec_gt_0; lia..|].
-rewrite <- F2R_Zabs, abs_cond_Zopp.
-now apply bounded_le_emax_minus_prec.
+intros x.
+rewrite <- B2R_B2BSN.
+now apply abs_B2R_le_emax_minus_prec.
Qed.
Theorem abs_B2R_lt_emax :
forall x,
(Rabs (B2R x) < bpow radix2 emax)%R.
Proof.
-intros [sx|sx|sx plx Hx|sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ).
-rewrite <- F2R_Zabs, abs_cond_Zopp.
-now apply bounded_lt_emax.
+intros x.
+rewrite <- B2R_B2BSN.
+now apply abs_B2R_lt_emax.
Qed.
Theorem abs_B2R_ge_emin :
@@ -753,14 +856,10 @@ Theorem abs_B2R_ge_emin :
is_finite_strict x = true ->
(bpow radix2 emin <= Rabs (B2R x))%R.
Proof.
-intros [sx|sx|sx plx Hx|sx mx ex Hx] ; simpl ; try discriminate.
-intros; case sx; simpl.
-- unfold F2R; simpl; rewrite Rabs_mult, <-abs_IZR; simpl.
- rewrite Rabs_pos_eq; [|apply bpow_ge_0].
- now apply bounded_ge_emin.
-- unfold F2R; simpl; rewrite Rabs_mult, <-abs_IZR; simpl.
- rewrite Rabs_pos_eq; [|apply bpow_ge_0].
- now apply bounded_ge_emin.
+intros x.
+rewrite <- is_finite_strict_B2BSN.
+rewrite <- B2R_B2BSN.
+now apply abs_B2R_ge_emin.
Qed.
Theorem bounded_canonical_lt_emax :
@@ -769,160 +868,13 @@ Theorem bounded_canonical_lt_emax :
(F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R ->
bounded mx ex = true.
Proof.
-intros mx ex Cx Bx.
-apply andb_true_intro.
-split.
-unfold canonical_mantissa.
-unfold canonical, Fexp in Cx.
-rewrite Cx at 2.
-rewrite Zpos_digits2_pos.
-unfold cexp.
-rewrite mag_F2R_Zdigits. 2: discriminate.
-now apply -> Zeq_is_eq_bool.
-apply Zle_bool_true.
-unfold canonical, Fexp in Cx.
-rewrite Cx.
-unfold cexp, fexp, FLT_exp.
-destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl.
-apply Z.max_lub.
-cut (e' - 1 < emax)%Z. clear ; lia.
-apply lt_bpow with radix2.
-apply Rle_lt_trans with (2 := Bx).
-change (Zpos mx) with (Z.abs (Zpos mx)).
-rewrite F2R_Zabs.
-apply Ex.
-apply Rgt_not_eq.
-now apply F2R_gt_0.
-unfold emin.
-generalize (prec_gt_0 prec).
-clear -Hmax ; lia.
+intros mx ex.
+now apply bounded_canonical_lt_emax.
Qed.
(** Truncation *)
-Record shr_record := { shr_m : Z ; shr_r : bool ; shr_s : bool }.
-
-Definition shr_1 mrs :=
- let '(Build_shr_record m r s) := mrs in
- let s := orb r s in
- match m with
- | Z0 => Build_shr_record Z0 false s
- | Zpos xH => Build_shr_record Z0 true s
- | Zpos (xO p) => Build_shr_record (Zpos p) false s
- | Zpos (xI p) => Build_shr_record (Zpos p) true s
- | Zneg xH => Build_shr_record Z0 true s
- | Zneg (xO p) => Build_shr_record (Zneg p) false s
- | Zneg (xI p) => Build_shr_record (Zneg p) true s
- end.
-
-Definition loc_of_shr_record mrs :=
- match mrs with
- | Build_shr_record _ false false => loc_Exact
- | Build_shr_record _ false true => loc_Inexact Lt
- | Build_shr_record _ true false => loc_Inexact Eq
- | Build_shr_record _ true true => loc_Inexact Gt
- end.
-
-Definition shr_record_of_loc m l :=
- match l with
- | loc_Exact => Build_shr_record m false false
- | loc_Inexact Lt => Build_shr_record m false true
- | loc_Inexact Eq => Build_shr_record m true false
- | loc_Inexact Gt => Build_shr_record m true true
- end.
-
-Theorem shr_m_shr_record_of_loc :
- forall m l,
- shr_m (shr_record_of_loc m l) = m.
-Proof.
-now intros m [|[| |]].
-Qed.
-
-Theorem loc_of_shr_record_of_loc :
- forall m l,
- loc_of_shr_record (shr_record_of_loc m l) = l.
-Proof.
-now intros m [|[| |]].
-Qed.
-
-Definition shr mrs e n :=
- match n with
- | Zpos p => (iter_pos shr_1 p mrs, (e + n)%Z)
- | _ => (mrs, e)
- end.
-
-Lemma inbetween_shr_1 :
- forall x mrs e,
- (0 <= shr_m mrs)%Z ->
- inbetween_float radix2 (shr_m mrs) e x (loc_of_shr_record mrs) ->
- inbetween_float radix2 (shr_m (shr_1 mrs)) (e + 1) x (loc_of_shr_record (shr_1 mrs)).
-Proof.
-intros x mrs e Hm Hl.
-refine (_ (new_location_even_correct (F2R (Float radix2 (shr_m (shr_1 mrs)) (e + 1))) (bpow radix2 e) 2 _ _ _ x (if shr_r (shr_1 mrs) then 1 else 0) (loc_of_shr_record mrs) _ _)) ; try easy.
-2: apply bpow_gt_0.
-2: now case (shr_r (shr_1 mrs)) ; split.
-change 2%R with (bpow radix2 1).
-rewrite <- bpow_plus.
-rewrite (Zplus_comm 1), <- (F2R_bpow radix2 (e + 1)).
-unfold inbetween_float, F2R. simpl.
-rewrite plus_IZR, Rmult_plus_distr_r.
-replace (new_location_even 2 (if shr_r (shr_1 mrs) then 1%Z else 0%Z) (loc_of_shr_record mrs)) with (loc_of_shr_record (shr_1 mrs)).
-easy.
-clear -Hm.
-destruct mrs as (m, r, s).
-now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
-rewrite (F2R_change_exp radix2 e).
-2: apply Zle_succ.
-unfold F2R. simpl.
-rewrite <- 2!Rmult_plus_distr_r, <- 2!plus_IZR.
-rewrite Zplus_assoc.
-replace (shr_m (shr_1 mrs) * 2 ^ (e + 1 - e) + (if shr_r (shr_1 mrs) then 1%Z else 0%Z))%Z with (shr_m mrs).
-exact Hl.
-ring_simplify (e + 1 - e)%Z.
-change (2^1)%Z with 2%Z.
-rewrite Zmult_comm.
-clear -Hm.
-destruct mrs as (m, r, s).
-now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
-Qed.
-
-Theorem inbetween_shr :
- forall x m e l n,
- (0 <= m)%Z ->
- inbetween_float radix2 m e x l ->
- let '(mrs, e') := shr (shr_record_of_loc m l) e n in
- inbetween_float radix2 (shr_m mrs) e' x (loc_of_shr_record mrs).
-Proof.
-intros x m e l n Hm Hl.
-destruct n as [|n|n].
-now destruct l as [|[| |]].
-2: now destruct l as [|[| |]].
-unfold shr.
-rewrite iter_pos_nat.
-rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
-induction (nat_of_P n).
-simpl.
-rewrite Zplus_0_r.
-now destruct l as [|[| |]].
-rewrite iter_nat_S.
-rewrite inj_S.
-unfold Z.succ.
-rewrite Zplus_assoc.
-revert IHn0.
-apply inbetween_shr_1.
-clear -Hm.
-induction n0.
-now destruct l as [|[| |]].
-rewrite iter_nat_S.
-revert IHn0.
-generalize (iter_nat shr_1 n0 (shr_record_of_loc m l)).
-clear.
-intros (m, r, s) Hm.
-now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
-Qed.
-
-Definition shr_fexp m e l :=
- shr (shr_record_of_loc m l) e (fexp (Zdigits2 m + e) - e).
+Notation shr_fexp := (shr_fexp prec emax) (only parsing).
Theorem shr_truncate :
forall m e l,
@@ -930,103 +882,30 @@ Theorem shr_truncate :
shr_fexp m e l =
let '(m', e', l') := truncate radix2 fexp (m, e, l) in (shr_record_of_loc m' l', e').
Proof.
-intros m e l Hm.
-case_eq (truncate radix2 fexp (m, e, l)).
-intros (m', e') l'.
-unfold shr_fexp.
-rewrite Zdigits2_Zdigits.
-case_eq (fexp (Zdigits radix2 m + e) - e)%Z.
-(* *)
-intros He.
-unfold truncate.
-rewrite He.
-simpl.
-intros H.
-now inversion H.
-(* *)
-intros p Hp.
-assert (He: (e <= fexp (Zdigits radix2 m + e))%Z).
-clear -Hp ; zify ; lia.
-destruct (inbetween_float_ex radix2 m e l) as (x, Hx).
-generalize (inbetween_shr x m e l (fexp (Zdigits radix2 m + e) - e) Hm Hx).
-assert (Hx0 : (0 <= x)%R).
-apply Rle_trans with (F2R (Float radix2 m e)).
-now apply F2R_ge_0.
-exact (proj1 (inbetween_float_bounds _ _ _ _ _ Hx)).
-case_eq (shr (shr_record_of_loc m l) e (fexp (Zdigits radix2 m + e) - e)).
-intros mrs e'' H3 H4 H1.
-generalize (truncate_correct radix2 _ x m e l Hx0 Hx (or_introl _ He)).
-rewrite H1.
-intros (H2,_).
-rewrite <- Hp, H3.
-assert (e'' = e').
-change (snd (mrs, e'') = snd (fst (m',e',l'))).
-rewrite <- H1, <- H3.
-unfold truncate.
-now rewrite Hp.
-rewrite H in H4 |- *.
-apply (f_equal (fun v => (v, _))).
-destruct (inbetween_float_unique _ _ _ _ _ _ _ H2 H4) as (H5, H6).
-rewrite H5, H6.
-case mrs.
-now intros m0 [|] [|].
-(* *)
-intros p Hp.
-unfold truncate.
-rewrite Hp.
-simpl.
-intros H.
-now inversion H.
+intros m e l.
+now apply shr_truncate.
Qed.
(** Rounding modes *)
-Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA.
-
-Definition round_mode m :=
- match m with
- | mode_NE => ZnearestE
- | mode_ZR => Ztrunc
- | mode_DN => Zfloor
- | mode_UP => Zceil
- | mode_NA => ZnearestA
- end.
-
-Definition choice_mode m sx mx lx :=
- match m with
- | mode_NE => cond_incr (round_N (negb (Z.even mx)) lx) mx
- | mode_ZR => mx
- | mode_DN => cond_incr (round_sign_DN sx lx) mx
- | mode_UP => cond_incr (round_sign_UP sx lx) mx
- | mode_NA => cond_incr (round_N true lx) mx
- end.
+Definition binary_overflow m s :=
+ SF2FF (binary_overflow prec emax m s).
-Global Instance valid_rnd_round_mode : forall m, Valid_rnd (round_mode m).
+Lemma eq_binary_overflow_FF2SF :
+ forall x m s,
+ FF2SF x = BSN.binary_overflow prec emax m s ->
+ x = binary_overflow m s.
Proof.
-destruct m ; unfold round_mode ; auto with typeclass_instances.
+intros x m s H.
+unfold binary_overflow.
+rewrite <- H.
+apply eq_sym, SF2FF_FF2SF.
+rewrite <- is_nan_FF2SF, H.
+apply is_nan_binary_overflow.
Qed.
-Definition overflow_to_inf m s :=
- match m with
- | mode_NE => true
- | mode_NA => true
- | mode_ZR => false
- | mode_UP => negb s
- | mode_DN => s
- end.
-
-Definition binary_overflow m s :=
- if overflow_to_inf m s then F754_infinity s
- else F754_finite s (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end) (emax - prec).
-
Definition binary_round_aux mode sx mx ex lx :=
- let '(mrs', e') := shr_fexp mx ex lx in
- let '(mrs'', e'') := shr_fexp (choice_mode mode sx (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in
- match shr_m mrs'' with
- | Z0 => F754_zero sx
- | Zpos m => if Zle_bool e'' (emax - prec) then F754_finite sx m e'' else binary_overflow mode sx
- | _ => F754_nan false xH (* dummy *)
- end.
+ SF2FF (binary_round_aux prec emax mode sx mx ex lx).
Theorem binary_round_aux_correct' :
forall mode x mx ex lx,
@@ -1040,174 +919,17 @@ Theorem binary_round_aux_correct' :
is_finite_FF z = true /\ sign_FF z = Rlt_bool x 0
else
z = binary_overflow mode (Rlt_bool x 0).
-Proof with auto with typeclass_instances.
-intros m x mx ex lx Px Bx Ex z.
-unfold binary_round_aux in z.
-revert z.
-rewrite shr_truncate.
-refine (_ (round_trunc_sign_any_correct' _ _ (round_mode m) (choice_mode m) _ x mx ex lx Bx (or_introl _ Ex))).
-rewrite <- cexp_abs in Ex.
-refine (_ (truncate_correct_partial' _ fexp _ _ _ _ _ Bx Ex)).
-destruct (truncate radix2 fexp (mx, ex, lx)) as ((m1, e1), l1).
-rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
-set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
-intros (H1a,H1b) H1c.
-rewrite H1c.
-assert (Hm: (m1 <= m1')%Z).
-(* . *)
-unfold m1', choice_mode, cond_incr.
-case m ;
- try apply Z.le_refl ;
- match goal with |- (m1 <= if ?b then _ else _)%Z =>
- case b ; [ apply Zle_succ | apply Z.le_refl ] end.
-assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
-(* . *)
-rewrite <- (Z.abs_eq m1').
-replace (Z.abs m1') with (Z.abs (cond_Zopp (Rlt_bool x 0) m1')).
-rewrite F2R_Zabs.
-now apply f_equal.
-apply abs_cond_Zopp.
-apply Z.le_trans with (2 := Hm).
-apply Zlt_succ_le.
-apply gt_0_F2R with radix2 e1.
-apply Rle_lt_trans with (1 := Rabs_pos x).
-exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
-(* . *)
-assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
-now apply inbetween_Exact.
-destruct m1' as [|m1'|m1'].
-(* . m1' = 0 *)
-rewrite shr_truncate. 2: apply Z.le_refl.
-generalize (truncate_0 radix2 fexp e1 loc_Exact).
-destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
-rewrite shr_m_shr_record_of_loc.
-intros Hm2.
-rewrite Hm2.
-repeat split.
-rewrite Rlt_bool_true.
-repeat split.
-apply sym_eq.
-case Rlt_bool ; apply F2R_0.
-rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
-apply bpow_gt_0.
-(* . 0 < m1' *)
-assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
-rewrite <- mag_F2R_Zdigits, <- Hr, mag_abs.
-2: discriminate.
-rewrite H1b.
-rewrite cexp_abs.
-fold (cexp radix2 fexp (round radix2 fexp (round_mode m) x)).
-apply cexp_round_ge...
-rewrite H1c.
-case (Rlt_bool x 0).
-apply Rlt_not_eq.
-now apply F2R_lt_0.
-apply Rgt_not_eq.
-now apply F2R_gt_0.
-refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
-2: now rewrite Hr ; apply F2R_gt_0.
-refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
-2: discriminate.
-rewrite shr_truncate. 2: easy.
-destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
-rewrite shr_m_shr_record_of_loc.
-intros (H3,H4) (H2,_).
-destruct m2 as [|m2|m2].
-elim Rgt_not_eq with (2 := H3).
-rewrite F2R_0.
-now apply F2R_gt_0.
-rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, <- F2R_abs.
-simpl Z.abs.
-case_eq (Zle_bool e2 (emax - prec)) ; intros He2.
-assert (bounded m2 e2 = true).
-apply andb_true_intro.
-split.
-unfold canonical_mantissa.
-apply Zeq_bool_true.
-rewrite Zpos_digits2_pos.
-rewrite <- mag_F2R_Zdigits.
-apply sym_eq.
-now rewrite H3 in H4.
-discriminate.
-exact He2.
-apply (conj H).
-rewrite Rlt_bool_true.
-repeat split.
-apply F2R_cond_Zopp.
-now apply bounded_lt_emax.
-rewrite (Rlt_bool_false _ (bpow radix2 emax)).
-refine (conj _ (refl_equal _)).
-unfold binary_overflow.
-case overflow_to_inf.
-apply refl_equal.
-unfold valid_binary, bounded.
-rewrite Zle_bool_refl.
-rewrite Bool.andb_true_r.
-apply Zeq_bool_true.
-rewrite Zpos_digits2_pos.
-replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec.
-unfold fexp, FLT_exp, emin.
-generalize (prec_gt_0 prec).
-clear -Hmax ; zify ; lia.
-change 2%Z with (radix_val radix2).
-case_eq (Zpower radix2 prec - 1)%Z.
-simpl Zdigits.
-generalize (Zpower_gt_1 radix2 prec (prec_gt_0 prec)).
-clear ; lia.
-intros p Hp.
-apply Zle_antisym.
-cut (prec - 1 < Zdigits radix2 (Zpos p))%Z. clear ; lia.
-apply Zdigits_gt_Zpower.
-simpl Z.abs. rewrite <- Hp.
-cut (Zpower radix2 (prec - 1) < Zpower radix2 prec)%Z. clear ; lia.
-apply lt_IZR.
-rewrite 2!IZR_Zpower. 2: now apply Zlt_le_weak.
-apply bpow_lt.
-apply Zlt_pred.
-now apply Zlt_0_le_0_pred.
-apply Zdigits_le_Zpower.
-simpl Z.abs. rewrite <- Hp.
-apply Zlt_pred.
-intros p Hp.
-generalize (Zpower_gt_1 radix2 _ (prec_gt_0 prec)).
-clear -Hp ; zify ; lia.
-apply Rnot_lt_le.
-intros Hx.
-generalize (refl_equal (bounded m2 e2)).
-unfold bounded at 2.
-rewrite He2.
-rewrite Bool.andb_false_r.
-rewrite bounded_canonical_lt_emax with (2 := Hx).
-discriminate.
-unfold canonical.
-now rewrite <- H3.
-elim Rgt_not_eq with (2 := H3).
-apply Rlt_trans with R0.
-now apply F2R_lt_0.
-now apply F2R_gt_0.
-rewrite <- Hr.
-apply generic_format_abs...
-apply generic_format_round...
-(* . not m1' < 0 *)
-elim Rgt_not_eq with (2 := Hr).
-apply Rlt_le_trans with R0.
-now apply F2R_lt_0.
-apply Rabs_pos.
-(* *)
-now apply Rabs_pos_lt.
-(* all the modes are valid *)
-clear. case m.
-exact inbetween_int_NE_sign.
-exact inbetween_int_ZR_sign.
-exact inbetween_int_DN_sign.
-exact inbetween_int_UP_sign.
-exact inbetween_int_NA_sign.
-(* *)
-apply inbetween_float_bounds in Bx.
-apply Zlt_succ_le.
-eapply gt_0_F2R.
-apply Rle_lt_trans with (2 := proj2 Bx).
-apply Rabs_pos.
+Proof.
+intros mode x mx ex lx Px Bx Ex.
+generalize (binary_round_aux_correct' prec emax _ _ mode x mx ex lx Px Bx Ex).
+unfold binary_round_aux.
+destruct (Rlt_bool (Rabs _) _).
+- now destruct BSN.binary_round_aux as [sz|sz| |sz mz ez].
+- intros [_ ->].
+ split.
+ rewrite valid_binary_SF2FF by apply is_nan_binary_overflow.
+ now apply binary_overflow_correct.
+ easy.
Qed.
Theorem binary_round_aux_correct :
@@ -1221,239 +943,23 @@ Theorem binary_round_aux_correct :
is_finite_FF z = true /\ sign_FF z = Rlt_bool x 0
else
z = binary_overflow mode (Rlt_bool x 0).
-Proof with auto with typeclass_instances.
-intros m x mx ex lx Bx Ex z.
-unfold binary_round_aux in z.
-revert z.
-rewrite shr_truncate. 2: easy.
-refine (_ (round_trunc_sign_any_correct _ _ (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))).
-refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Bx Ex)).
-destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1).
-rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
-set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
-intros (H1a,H1b) H1c.
-rewrite H1c.
-assert (Hm: (m1 <= m1')%Z).
-(* . *)
-unfold m1', choice_mode, cond_incr.
-case m ;
- try apply Z.le_refl ;
- match goal with |- (m1 <= if ?b then _ else _)%Z =>
- case b ; [ apply Zle_succ | apply Z.le_refl ] end.
-assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
-(* . *)
-rewrite <- (Z.abs_eq m1').
-replace (Z.abs m1') with (Z.abs (cond_Zopp (Rlt_bool x 0) m1')).
-rewrite F2R_Zabs.
-now apply f_equal.
-apply abs_cond_Zopp.
-apply Z.le_trans with (2 := Hm).
-apply Zlt_succ_le.
-apply gt_0_F2R with radix2 e1.
-apply Rle_lt_trans with (1 := Rabs_pos x).
-exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
-(* . *)
-assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
-now apply inbetween_Exact.
-destruct m1' as [|m1'|m1'].
-(* . m1' = 0 *)
-rewrite shr_truncate. 2: apply Z.le_refl.
-generalize (truncate_0 radix2 fexp e1 loc_Exact).
-destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
-rewrite shr_m_shr_record_of_loc.
-intros Hm2.
-rewrite Hm2.
-repeat split.
-rewrite Rlt_bool_true.
-repeat split.
-apply sym_eq.
-case Rlt_bool ; apply F2R_0.
-rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
-apply bpow_gt_0.
-(* . 0 < m1' *)
-assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
-rewrite <- mag_F2R_Zdigits, <- Hr, mag_abs.
-2: discriminate.
-rewrite H1b.
-rewrite cexp_abs.
-fold (cexp radix2 fexp (round radix2 fexp (round_mode m) x)).
-apply cexp_round_ge...
-rewrite H1c.
-case (Rlt_bool x 0).
-apply Rlt_not_eq.
-now apply F2R_lt_0.
-apply Rgt_not_eq.
-now apply F2R_gt_0.
-refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
-2: now rewrite Hr ; apply F2R_gt_0.
-refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
-2: discriminate.
-rewrite shr_truncate. 2: easy.
-destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
-rewrite shr_m_shr_record_of_loc.
-intros (H3,H4) (H2,_).
-destruct m2 as [|m2|m2].
-elim Rgt_not_eq with (2 := H3).
-rewrite F2R_0.
-now apply F2R_gt_0.
-rewrite F2R_cond_Zopp, H3, abs_cond_Ropp, <- F2R_abs.
-simpl Z.abs.
-case_eq (Zle_bool e2 (emax - prec)) ; intros He2.
-assert (bounded m2 e2 = true).
-apply andb_true_intro.
-split.
-unfold canonical_mantissa.
-apply Zeq_bool_true.
-rewrite Zpos_digits2_pos.
-rewrite <- mag_F2R_Zdigits.
-apply sym_eq.
-now rewrite H3 in H4.
-discriminate.
-exact He2.
-apply (conj H).
-rewrite Rlt_bool_true.
-repeat split.
-apply F2R_cond_Zopp.
-now apply bounded_lt_emax.
-rewrite (Rlt_bool_false _ (bpow radix2 emax)).
-refine (conj _ (refl_equal _)).
-unfold binary_overflow.
-case overflow_to_inf.
-apply refl_equal.
-unfold valid_binary, bounded.
-rewrite Zle_bool_refl.
-rewrite Bool.andb_true_r.
-apply Zeq_bool_true.
-rewrite Zpos_digits2_pos.
-replace (Zdigits radix2 (Zpos (match (Zpower 2 prec - 1)%Z with Zpos p => p | _ => xH end))) with prec.
-unfold fexp, FLT_exp, emin.
-generalize (prec_gt_0 prec).
-clear -Hmax ; zify ; lia.
-change 2%Z with (radix_val radix2).
-case_eq (Zpower radix2 prec - 1)%Z.
-simpl Zdigits.
-generalize (Zpower_gt_1 radix2 prec (prec_gt_0 prec)).
-clear ; lia.
-intros p Hp.
-apply Zle_antisym.
-cut (prec - 1 < Zdigits radix2 (Zpos p))%Z. clear ; lia.
-apply Zdigits_gt_Zpower.
-simpl Z.abs. rewrite <- Hp.
-cut (Zpower radix2 (prec - 1) < Zpower radix2 prec)%Z. clear ; lia.
-apply lt_IZR.
-rewrite 2!IZR_Zpower. 2: now apply Zlt_le_weak.
-apply bpow_lt.
-apply Zlt_pred.
-now apply Zlt_0_le_0_pred.
-apply Zdigits_le_Zpower.
-simpl Z.abs. rewrite <- Hp.
-apply Zlt_pred.
-intros p Hp.
-generalize (Zpower_gt_1 radix2 _ (prec_gt_0 prec)).
-clear -Hp ; zify ; lia.
-apply Rnot_lt_le.
-intros Hx.
-generalize (refl_equal (bounded m2 e2)).
-unfold bounded at 2.
-rewrite He2.
-rewrite Bool.andb_false_r.
-rewrite bounded_canonical_lt_emax with (2 := Hx).
-discriminate.
-unfold canonical.
-now rewrite <- H3.
-elim Rgt_not_eq with (2 := H3).
-apply Rlt_trans with R0.
-now apply F2R_lt_0.
-now apply F2R_gt_0.
-rewrite <- Hr.
-apply generic_format_abs...
-apply generic_format_round...
-(* . not m1' < 0 *)
-elim Rgt_not_eq with (2 := Hr).
-apply Rlt_le_trans with R0.
-now apply F2R_lt_0.
-apply Rabs_pos.
-(* *)
-apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)).
-now apply F2R_gt_0.
-(* all the modes are valid *)
-clear. case m.
-exact inbetween_int_NE_sign.
-exact inbetween_int_ZR_sign.
-exact inbetween_int_DN_sign.
-exact inbetween_int_UP_sign.
-exact inbetween_int_NA_sign.
+Proof.
+intros mode x mx ex lx Bx Ex.
+generalize (binary_round_aux_correct prec emax _ _ mode x mx ex lx Bx Ex).
+unfold binary_round_aux.
+destruct (Rlt_bool (Rabs _) _).
+- now destruct BSN.binary_round_aux as [sz|sz| |sz mz ez].
+- intros [_ ->].
+ split.
+ rewrite valid_binary_SF2FF by apply is_nan_binary_overflow.
+ now apply binary_overflow_correct.
+ easy.
Qed.
(** Multiplication *)
-Lemma Bmult_correct_aux :
- forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
- let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
- let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
- let z := binary_round_aux m (xorb sx sy) (Zpos (mx * my)) (ex + ey) loc_Exact in
- valid_binary z = true /\
- if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x * y))) (bpow radix2 emax) then
- FF2R radix2 z = round radix2 fexp (round_mode m) (x * y) /\
- is_finite_FF z = true /\ sign_FF z = xorb sx sy
- else
- z = binary_overflow m (xorb sx sy).
-Proof.
-intros m sx mx ex Hx sy my ey Hy x y.
-unfold x, y.
-rewrite <- F2R_mult.
-simpl.
-replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0).
-apply binary_round_aux_correct.
-constructor.
-rewrite <- F2R_abs.
-apply F2R_eq.
-rewrite Zabs_Zmult.
-now rewrite 2!abs_cond_Zopp.
-(* *)
-change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z.
-assert (forall m e, bounded m e = true -> fexp (Zdigits radix2 (Zpos m) + e) = e)%Z.
-clear. intros m e Hb.
-destruct (andb_prop _ _ Hb) as (H,_).
-apply Zeq_bool_eq.
-now rewrite <- Zpos_digits2_pos.
-generalize (H _ _ Hx) (H _ _ Hy).
-clear x y sx sy Hx Hy H.
-unfold fexp, FLT_exp.
-refine (_ (Zdigits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate.
-refine (_ (Zdigits_gt_0 radix2 (Zpos mx) _) (Zdigits_gt_0 radix2 (Zpos my) _)) ; try discriminate.
-generalize (Zdigits radix2 (Zpos mx)) (Zdigits radix2 (Zpos my)) (Zdigits radix2 (Zpos mx * Zpos my)).
-clear -Hmax.
-unfold emin.
-intros dx dy dxy Hx Hy Hxy.
-zify ; intros ; subst.
-lia.
-(* *)
-case sx ; case sy.
-apply Rlt_bool_false.
-now apply F2R_ge_0.
-apply Rlt_bool_true.
-now apply F2R_lt_0.
-apply Rlt_bool_true.
-now apply F2R_lt_0.
-apply Rlt_bool_false.
-now apply F2R_ge_0.
-Qed.
-
Definition Bmult mult_nan m x y :=
- match x, y with
- | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (mult_nan x y)
- | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy)
- | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
- | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
- | B754_infinity _, B754_zero _ => build_nan (mult_nan x y)
- | B754_zero _, B754_infinity _ => build_nan (mult_nan x y)
- | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy)
- | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
- | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy)
- | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
- FF2B _ (proj1 (Bmult_correct_aux m sx mx ex Hx sy my ey Hy))
- end.
+ BSN2B (mult_nan x y) (Bmult m (B2BSN x) (B2BSN y)).
Theorem Bmult_correct :
forall mult_nan m x y,
@@ -1465,106 +971,39 @@ Theorem Bmult_correct :
else
B2FF (Bmult mult_nan m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
Proof.
-intros mult_nan m [sx|sx|sx plx Hplx|sx mx ex Hx] [sy|sy|sy ply Hply|sy my ey Hy] ;
- try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | now auto with typeclass_instances ] ).
-simpl.
-case Bmult_correct_aux.
-intros H1.
-case Rlt_bool.
-intros (H2, (H3, H4)).
-split.
-now rewrite B2R_FF2B.
-split.
-now rewrite is_finite_FF2B.
-rewrite Bsign_FF2B. auto.
-intros H2.
-now rewrite B2FF_FF2B.
+intros mult_nan mode x y.
+generalize (Bmult_correct prec emax _ _ mode (B2BSN x) (B2BSN y)).
+replace (BSN.Bmult _ _ _) with (B2BSN (Bmult mult_nan mode x y)) by apply B2BSN_BSN2B.
+intros H.
+destruct x as [sx|sx|sx plx Hplx|sx mx ex Hx] ;
+ destruct y as [sy|sy|sy ply Hply|sy my ey Hy] ;
+ try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ try easy | apply bpow_gt_0 | now auto with typeclass_instances ]).
+revert H.
+rewrite 2!B2R_B2BSN.
+destruct Rlt_bool.
+- now destruct Bmult.
+- intros H.
+ apply eq_binary_overflow_FF2SF.
+ now rewrite FF2SF_B2FF, <- B2SF_B2BSN.
Qed.
(** Normalization and rounding *)
-Definition shl_align mx ex ex' :=
- match (ex' - ex)%Z with
- | Zneg d => (shift_pos d mx, ex')
- | _ => (mx, ex)
- end.
-
-Theorem shl_align_correct :
- forall mx ex ex',
- let (mx', ex'') := shl_align mx ex ex' in
- F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex'') /\
- (ex'' <= ex')%Z.
-Proof.
-intros mx ex ex'.
-unfold shl_align.
-case_eq (ex' - ex)%Z.
-(* d = 0 *)
-intros H.
-repeat split.
-rewrite Zminus_eq with (1 := H).
-apply Z.le_refl.
-(* d > 0 *)
-intros d Hd.
-repeat split.
-replace ex' with (ex' - ex + ex)%Z by ring.
-rewrite Hd.
-pattern ex at 1 ; rewrite <- Zplus_0_l.
-now apply Zplus_le_compat_r.
-(* d < 0 *)
-intros d Hd.
-rewrite shift_pos_correct, Zmult_comm.
-change (Zpower_pos 2 d) with (Zpower radix2 (Zpos d)).
-change (Zpos d) with (Z.opp (Zneg d)).
-rewrite <- Hd.
-split.
-replace (- (ex' - ex))%Z with (ex - ex')%Z by ring.
-apply F2R_change_exp.
-apply Zle_0_minus_le.
-replace (ex - ex')%Z with (- (ex' - ex))%Z by ring.
-now rewrite Hd.
-apply Z.le_refl.
-Qed.
-
-Theorem snd_shl_align :
- forall mx ex ex',
- (ex' <= ex)%Z ->
- snd (shl_align mx ex ex') = ex'.
-Proof.
-intros mx ex ex' He.
-unfold shl_align.
-case_eq (ex' - ex)%Z ; simpl.
-intros H.
-now rewrite Zminus_eq with (1 := H).
-intros p.
-clear -He ; zify ; lia.
-intros.
-apply refl_equal.
-Qed.
-
Definition shl_align_fexp mx ex :=
shl_align mx ex (fexp (Zpos (digits2_pos mx) + ex)).
-Theorem shl_align_fexp_correct :
+Lemma shl_align_fexp_correct :
forall mx ex,
let (mx', ex') := shl_align_fexp mx ex in
F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\
(ex' <= fexp (Zdigits radix2 (Zpos mx') + ex'))%Z.
Proof.
intros mx ex.
-unfold shl_align_fexp.
-generalize (shl_align_correct mx ex (fexp (Zpos (digits2_pos mx) + ex))).
-rewrite Zpos_digits2_pos.
-case shl_align.
-intros mx' ex' (H1, H2).
-split.
-exact H1.
-rewrite <- mag_F2R_Zdigits. 2: easy.
-rewrite <- H1.
-now rewrite mag_F2R_Zdigits.
+apply shl_align_fexp_correct.
Qed.
Definition binary_round m sx mx ex :=
- let '(mz, ez) := shl_align_fexp mx ex in binary_round_aux m sx (Zpos mz) ez loc_Exact.
+ SF2FF (binary_round prec emax m sx mx ex).
Theorem binary_round_correct :
forall m sx mx ex,
@@ -1578,32 +1017,21 @@ Theorem binary_round_correct :
else
z = binary_overflow m sx.
Proof.
-intros m sx mx ex.
+intros mode sx mx ex.
+generalize (binary_round_correct prec emax _ _ mode sx mx ex).
+simpl.
unfold binary_round.
-generalize (shl_align_fexp_correct mx ex).
-destruct (shl_align_fexp mx ex) as (mz, ez).
-intros (H1, H2).
-set (x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex)).
-replace sx with (Rlt_bool x 0).
-apply binary_round_aux_correct.
-constructor.
-unfold x.
-now rewrite <- F2R_Zabs, abs_cond_Zopp.
-exact H2.
-unfold x.
-case sx.
-apply Rlt_bool_true.
-now apply F2R_lt_0.
-apply Rlt_bool_false.
-now apply F2R_ge_0.
+destruct Rlt_bool.
+- now destruct BSN.binary_round.
+- intros [H1 ->].
+ split.
+ rewrite valid_binary_SF2FF by apply is_nan_binary_overflow.
+ now apply binary_overflow_correct.
+ easy.
Qed.
Definition binary_normalize mode m e szero :=
- match m with
- | Z0 => B754_zero szero
- | Zpos m => FF2B _ (proj1 (binary_round_correct mode false m e))
- | Zneg m => FF2B _ (proj1 (binary_round_correct mode true m e))
- end.
+ BSN2B' _ (is_nan_binary_normalize prec emax _ _ mode m e szero).
Theorem binary_normalize_correct :
forall m mx ex szero,
@@ -1618,72 +1046,22 @@ Theorem binary_normalize_correct :
end
else
B2FF (binary_normalize m mx ex szero) = binary_overflow m (Rlt_bool (F2R (Float radix2 mx ex)) 0).
-Proof with auto with typeclass_instances.
-intros m mx ez szero.
-destruct mx as [|mz|mz] ; simpl.
-rewrite F2R_0, round_0, Rabs_R0, Rlt_bool_true...
-split... split...
-rewrite Rcompare_Eq...
-apply bpow_gt_0.
-(* . mz > 0 *)
-generalize (binary_round_correct m false mz ez).
-simpl.
-case Rlt_bool_spec.
-intros _ (Vz, (Rz, (Rz', Rz''))).
-split.
-now rewrite B2R_FF2B.
-split.
-now rewrite is_finite_FF2B.
-rewrite Bsign_FF2B, Rz''.
-rewrite Rcompare_Gt...
-apply F2R_gt_0.
-simpl. zify; lia.
-intros Hz' (Vz, Rz).
-rewrite B2FF_FF2B, Rz.
-apply f_equal.
-apply sym_eq.
-apply Rlt_bool_false.
-now apply F2R_ge_0.
-(* . mz < 0 *)
-generalize (binary_round_correct m true mz ez).
+Proof.
+intros mode mx ex szero.
+generalize (binary_normalize_correct prec emax _ _ mode mx ex szero).
+replace (BSN.binary_normalize _ _ _ _ _ _ _ _) with (B2BSN (binary_normalize mode mx ex szero)) by apply B2BSN_BSN2B'.
simpl.
-case Rlt_bool_spec.
-intros _ (Vz, (Rz, (Rz', Rz''))).
-split.
-now rewrite B2R_FF2B.
-split.
-now rewrite is_finite_FF2B.
-rewrite Bsign_FF2B, Rz''.
-rewrite Rcompare_Lt...
-apply F2R_lt_0.
-simpl. zify; lia.
-intros Hz' (Vz, Rz).
-rewrite B2FF_FF2B, Rz.
-apply f_equal.
-apply sym_eq.
-apply Rlt_bool_true.
-now apply F2R_lt_0.
+destruct Rlt_bool.
+- now destruct binary_normalize.
+- intros H.
+ apply eq_binary_overflow_FF2SF.
+ now rewrite FF2SF_B2FF, <- B2SF_B2BSN.
Qed.
(** Addition *)
Definition Bplus plus_nan m x y :=
- match x, y with
- | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (plus_nan x y)
- | B754_infinity sx, B754_infinity sy =>
- if Bool.eqb sx sy then x else build_nan (plus_nan x y)
- | B754_infinity _, _ => x
- | _, B754_infinity _ => y
- | B754_zero sx, B754_zero sy =>
- if Bool.eqb sx sy then x else
- match m with mode_DN => B754_zero true | _ => B754_zero false end
- | B754_zero _, _ => y
- | _, B754_zero _ => x
- | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
- let ez := Z.min ex ey in
- binary_normalize m (Zplus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
- ez (match m with mode_DN => true | _ => false end)
- end.
+ BSN2B (plus_nan x y) (Bplus m (B2BSN x) (B2BSN y)).
Theorem Bplus_correct :
forall plus_nan m x y,
@@ -1702,170 +1080,25 @@ Theorem Bplus_correct :
else
(B2FF (Bplus plus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).
Proof with auto with typeclass_instances.
-intros plus_nan m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] Fx Fy ; try easy.
-(* *)
-rewrite Rplus_0_r, round_0, Rabs_R0, Rlt_bool_true...
-simpl.
-rewrite Rcompare_Eq by auto.
-destruct sx, sy; try easy; now case m.
-apply bpow_gt_0.
-(* *)
-rewrite Rplus_0_l, round_generic, Rlt_bool_true...
-split... split...
-simpl. unfold F2R.
-erewrite <- Rmult_0_l, Rcompare_mult_r.
-rewrite Rcompare_IZR with (y:=0%Z).
-destruct sy...
-apply bpow_gt_0.
-apply abs_B2R_lt_emax.
-apply generic_format_B2R.
-(* *)
-rewrite Rplus_0_r, round_generic, Rlt_bool_true...
-split... split...
-simpl. unfold F2R.
-erewrite <- Rmult_0_l, Rcompare_mult_r.
-rewrite Rcompare_IZR with (y:=0%Z).
-destruct sx...
-apply bpow_gt_0.
-apply abs_B2R_lt_emax.
-apply generic_format_B2R.
-(* *)
-clear Fx Fy.
-simpl.
-set (szero := match m with mode_DN => true | _ => false end).
-set (ez := Z.min ex ey).
-set (mz := (cond_Zopp sx (Zpos (fst (shl_align mx ex ez))) + cond_Zopp sy (Zpos (fst (shl_align my ey ez))))%Z).
-assert (Hp: (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) +
- F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey))%R = F2R (Float radix2 mz ez)).
-rewrite 2!F2R_cond_Zopp.
-generalize (shl_align_correct mx ex ez).
-generalize (shl_align_correct my ey ez).
-generalize (snd_shl_align mx ex ez (Z.le_min_l ex ey)).
-generalize (snd_shl_align my ey ez (Z.le_min_r ex ey)).
-destruct (shl_align mx ex ez) as (mx', ex').
-destruct (shl_align my ey ez) as (my', ey').
-simpl.
-intros H1 H2.
-rewrite H1, H2.
-clear H1 H2.
-intros (H1, _) (H2, _).
-rewrite H1, H2.
-clear H1 H2.
-rewrite <- 2!F2R_cond_Zopp.
-unfold F2R. simpl.
-now rewrite <- Rmult_plus_distr_r, <- plus_IZR.
-rewrite Hp.
-assert (Sz: (bpow radix2 emax <= Rabs (round radix2 fexp (round_mode m) (F2R (Float radix2 mz ez))))%R -> sx = Rlt_bool (F2R (Float radix2 mz ez)) 0 /\ sx = sy).
-(* . *)
-rewrite <- Hp.
-intros Bz.
-destruct (Bool.bool_dec sx sy) as [Hs|Hs].
-(* .. *)
-refine (conj _ Hs).
-rewrite Hs.
-apply sym_eq.
-case sy.
-apply Rlt_bool_true.
-rewrite <- (Rplus_0_r 0).
-apply Rplus_lt_compat.
-now apply F2R_lt_0.
-now apply F2R_lt_0.
-apply Rlt_bool_false.
-rewrite <- (Rplus_0_r 0).
-apply Rplus_le_compat.
-now apply F2R_ge_0.
-now apply F2R_ge_0.
-(* .. *)
-elim Rle_not_lt with (1 := Bz).
-generalize (bounded_lt_emax _ _ Hx) (bounded_lt_emax _ _ Hy) (andb_prop _ _ Hx) (andb_prop _ _ Hy).
-intros Bx By (Hx',_) (Hy',_).
-generalize (canonical_canonical_mantissa sx _ _ Hx') (canonical_canonical_mantissa sy _ _ Hy').
-clear -Bx By Hs prec_gt_0_.
-intros Cx Cy.
-destruct sx.
-(* ... *)
-destruct sy.
-now elim Hs.
-clear Hs.
-apply Rabs_lt.
-split.
-apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)).
-rewrite F2R_Zopp.
-now apply Ropp_lt_contravar.
-apply round_ge_generic...
-now apply generic_format_canonical.
-pattern (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)) at 1 ; rewrite <- Rplus_0_r.
-apply Rplus_le_compat_l.
-now apply F2R_ge_0.
-apply Rle_lt_trans with (2 := By).
-apply round_le_generic...
-now apply generic_format_canonical.
-rewrite <- (Rplus_0_l (F2R (Float radix2 (Zpos my) ey))).
-apply Rplus_le_compat_r.
-now apply F2R_le_0.
-(* ... *)
-destruct sy.
-2: now elim Hs.
-clear Hs.
-apply Rabs_lt.
-split.
-apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)).
-rewrite F2R_Zopp.
-now apply Ropp_lt_contravar.
-apply round_ge_generic...
-now apply generic_format_canonical.
-pattern (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)) at 1 ; rewrite <- Rplus_0_l.
-apply Rplus_le_compat_r.
-now apply F2R_ge_0.
-apply Rle_lt_trans with (2 := Bx).
-apply round_le_generic...
-now apply generic_format_canonical.
-rewrite <- (Rplus_0_r (F2R (Float radix2 (Zpos mx) ex))).
-apply Rplus_le_compat_l.
-now apply F2R_le_0.
-(* . *)
-generalize (binary_normalize_correct m mz ez szero).
-case Rlt_bool_spec.
-split; try easy. split; try easy.
-destruct (Rcompare_spec (F2R (beta:=radix2) {| Fnum := mz; Fexp := ez |}) 0); try easy.
-rewrite H1 in Hp.
-apply Rplus_opp_r_uniq in Hp.
-rewrite <- F2R_Zopp in Hp.
-eapply canonical_unique in Hp.
-inversion Hp. destruct sy, sx, m; try discriminate H3; easy.
-apply canonical_canonical_mantissa.
-apply Bool.andb_true_iff in Hy. easy.
-replace (-cond_Zopp sx (Z.pos mx))%Z with (cond_Zopp (negb sx) (Z.pos mx))
- by (destruct sx; auto).
-apply canonical_canonical_mantissa.
-apply Bool.andb_true_iff in Hx. easy.
-intros Hz' Vz.
-specialize (Sz Hz').
-split.
-rewrite Vz.
-now apply f_equal.
-apply Sz.
+intros plus_nan mode x y Fx Fy.
+rewrite <- is_finite_B2BSN in Fx, Fy.
+generalize (Bplus_correct prec emax _ _ mode _ _ Fx Fy).
+replace (BSN.Bplus _ _ _) with (B2BSN (Bplus plus_nan mode x y)) by apply B2BSN_BSN2B.
+rewrite 2!B2R_B2BSN.
+rewrite (Bsign_B2BSN x) by (clear -Fx ; now destruct x).
+rewrite (Bsign_B2BSN y) by (clear -Fy ; now destruct y).
+destruct Rlt_bool.
+- now destruct Bplus.
+- intros [H1 H2].
+ refine (conj _ H2).
+ apply eq_binary_overflow_FF2SF.
+ now rewrite FF2SF_B2FF, <- B2SF_B2BSN.
Qed.
(** Subtraction *)
Definition Bminus minus_nan m x y :=
- match x, y with
- | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (minus_nan x y)
- | B754_infinity sx, B754_infinity sy =>
- if Bool.eqb sx (negb sy) then x else build_nan (minus_nan x y)
- | B754_infinity _, _ => x
- | _, B754_infinity sy => B754_infinity (negb sy)
- | B754_zero sx, B754_zero sy =>
- if Bool.eqb sx (negb sy) then x else
- match m with mode_DN => B754_zero true | _ => B754_zero false end
- | B754_zero _, B754_finite sy my ey Hy => B754_finite (negb sy) my ey Hy
- | _, B754_zero _ => x
- | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
- let ez := Z.min ex ey in
- binary_normalize m (Zminus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez)))))
- ez (match m with mode_DN => true | _ => false end)
- end.
+ BSN2B (minus_nan x y) (Bminus m (B2BSN x) (B2BSN y)).
Theorem Bminus_correct :
forall minus_nan m x y,
@@ -1884,77 +1117,35 @@ Theorem Bminus_correct :
else
(B2FF (Bminus minus_nan m x y) = binary_overflow m (Bsign x) /\ Bsign x = negb (Bsign y)).
Proof with auto with typeclass_instances.
-intros minus_nan m x y Fx Fy.
-generalize (Bplus_correct minus_nan m x (Bopp (fun n => minus_nan n (B754_zero false)) y) Fx).
-rewrite is_finite_Bopp, B2R_Bopp.
-intros H.
-specialize (H Fy).
-replace (negb (Bsign y)) with (Bsign (Bopp (fun n => minus_nan n (B754_zero false)) y)).
-destruct x as [| | |sx mx ex Hx], y as [| | |sy my ey Hy] ; try easy.
-unfold Bminus, Zminus.
-now rewrite <- cond_Zopp_negb.
-now destruct y as [ | | | ].
+intros minus_nan mode x y Fx Fy.
+rewrite <- is_finite_B2BSN in Fx, Fy.
+generalize (Bminus_correct prec emax _ _ mode _ _ Fx Fy).
+replace (BSN.Bminus _ _ _) with (B2BSN (Bminus minus_nan mode x y)) by apply B2BSN_BSN2B.
+rewrite 2!B2R_B2BSN.
+rewrite (Bsign_B2BSN x) by (clear -Fx ; now destruct x).
+rewrite (Bsign_B2BSN y) by (clear -Fy ; now destruct y).
+destruct Rlt_bool.
+- now destruct Bminus.
+- intros [H1 H2].
+ refine (conj _ H2).
+ apply eq_binary_overflow_FF2SF.
+ now rewrite FF2SF_B2FF, <- B2SF_B2BSN.
Qed.
(** Fused Multiply-Add *)
-Definition Bfma_szero m (x y z: binary_float) : bool :=
- let s_xy := xorb (Bsign x) (Bsign y) in (* sign of product x*y *)
- if Bool.eqb s_xy (Bsign z) then s_xy
- else match m with mode_DN => true | _ => false end.
+Definition Bfma_szero m (x y z : binary_float) :=
+ Bfma_szero prec emax m (B2BSN x) (B2BSN y) (B2BSN z).
Definition Bfma fma_nan m (x y z: binary_float) :=
- match x, y with
- | B754_nan _ _ _, _ | _, B754_nan _ _ _
- | B754_infinity _, B754_zero _
- | B754_zero _, B754_infinity _ =>
- (* Multiplication produces NaN *)
- build_nan (fma_nan x y z)
- | B754_infinity sx, B754_infinity sy
- | B754_infinity sx, B754_finite sy _ _ _
- | B754_finite sx _ _ _, B754_infinity sy =>
- let s := xorb sx sy in
- (* Multiplication produces infinity with sign [s] *)
- match z with
- | B754_nan _ _ _ => build_nan (fma_nan x y z)
- | B754_infinity sz =>
- if Bool.eqb s sz then z else build_nan (fma_nan x y z)
- | _ => B754_infinity s
- end
- | B754_finite sx _ _ _, B754_zero sy
- | B754_zero sx, B754_finite sy _ _ _
- | B754_zero sx, B754_zero sy =>
- (* Multiplication produces zero *)
- match z with
- | B754_nan _ _ _ => build_nan (fma_nan x y z)
- | B754_zero _ => B754_zero (Bfma_szero m x y z)
- | _ => z
- end
- | B754_finite sx mx ex _, B754_finite sy my ey _ =>
- (* Multiplication produces a finite, non-zero result *)
- match z with
- | B754_nan _ _ _ => build_nan (fma_nan x y z)
- | B754_infinity sz => z
- | B754_zero _ =>
- let X := Float radix2 (cond_Zopp sx (Zpos mx)) ex in
- let Y := Float radix2 (cond_Zopp sy (Zpos my)) ey in
- let '(Float _ mr er) := Fmult X Y in
- binary_normalize m mr er (Bfma_szero m x y z)
- | B754_finite sz mz ez _ =>
- let X := Float radix2 (cond_Zopp sx (Zpos mx)) ex in
- let Y := Float radix2 (cond_Zopp sy (Zpos my)) ey in
- let Z := Float radix2 (cond_Zopp sz (Zpos mz)) ez in
- let '(Float _ mr er) := Fplus (Fmult X Y) Z in
- binary_normalize m mr er (Bfma_szero m x y z)
- end
- end.
+ BSN2B (fma_nan x y z) (Bfma m (B2BSN x) (B2BSN y) (B2BSN z)).
Theorem Bfma_correct:
forall fma_nan m x y z,
- let res := (B2R x * B2R y + B2R z)%R in
is_finite x = true ->
is_finite y = true ->
is_finite z = true ->
+ let res := (B2R x * B2R y + B2R z)%R in
if Rlt_bool (Rabs (round radix2 fexp (round_mode m) res)) (bpow radix2 emax) then
B2R (Bfma fma_nan m x y z) = round radix2 fexp (round_mode m) res /\
is_finite (Bfma fma_nan m x y z) = true /\
@@ -1967,179 +1158,23 @@ Theorem Bfma_correct:
else
B2FF (Bfma fma_nan m x y z) = binary_overflow m (Rlt_bool res 0).
Proof.
- intros. pattern (Bfma fma_nan m x y z).
- match goal with |- ?p ?x => set (PROP := p) end.
- set (szero := Bfma_szero m x y z).
- assert (BINORM: forall mr er, F2R (Float radix2 mr er) = res ->
- PROP (binary_normalize m mr er szero)).
- { intros mr er E.
- specialize (binary_normalize_correct m mr er szero).
- change (FLT_exp (3 - emax - prec) prec) with fexp. rewrite E. tauto.
- }
- set (add_zero :=
- match z with
- | B754_nan _ _ _ => build_nan (fma_nan x y z)
- | B754_zero sz => B754_zero szero
- | _ => z
- end).
- assert (ADDZERO: B2R x = 0%R \/ B2R y = 0%R -> PROP add_zero).
- {
- intros Z.
- assert (RES: res = B2R z).
- { unfold res. destruct Z as [E|E]; rewrite E, ?Rmult_0_l, ?Rmult_0_r, Rplus_0_l; auto. }
- unfold PROP, add_zero; destruct z as [ sz | sz | sz plz | sz mz ez Bz]; try discriminate.
- - simpl in RES; rewrite RES; rewrite round_0 by apply valid_rnd_round_mode.
- rewrite Rlt_bool_true. split. reflexivity. split. reflexivity.
- rewrite Rcompare_Eq by auto. reflexivity.
- rewrite Rabs_R0; apply bpow_gt_0.
- - rewrite RES, round_generic, Rlt_bool_true.
- split. reflexivity. split. reflexivity.
- unfold B2R. destruct sz.
- rewrite Rcompare_Lt. auto. apply F2R_lt_0. reflexivity.
- rewrite Rcompare_Gt. auto. apply F2R_gt_0. reflexivity.
- apply abs_B2R_lt_emax. apply valid_rnd_round_mode. apply generic_format_B2R.
- }
- destruct x as [ sx | sx | sx plx | sx mx ex Bx];
- destruct y as [ sy | sy | sy ply | sy my ey By];
- try discriminate.
-- apply ADDZERO; auto.
-- apply ADDZERO; auto.
-- apply ADDZERO; auto.
-- destruct z as [ sz | sz | sz plz | sz mz ez Bz]; try discriminate; unfold Bfma.
-+ set (X := Float radix2 (cond_Zopp sx (Zpos mx)) ex).
- set (Y := Float radix2 (cond_Zopp sy (Zpos my)) ey).
- destruct (Fmult X Y) as [mr er] eqn:FRES.
- apply BINORM. unfold res. rewrite <- FRES, F2R_mult, Rplus_0_r. auto.
-+ set (X := Float radix2 (cond_Zopp sx (Zpos mx)) ex).
- set (Y := Float radix2 (cond_Zopp sy (Zpos my)) ey).
- set (Z := Float radix2 (cond_Zopp sz (Zpos mz)) ez).
- destruct (Fplus (Fmult X Y) Z) as [mr er] eqn:FRES.
- apply BINORM. unfold res. rewrite <- FRES, F2R_plus, F2R_mult. auto.
+intros fma_nan mode x y z Fx Fy Fz.
+rewrite <- is_finite_B2BSN in Fx, Fy, Fz.
+generalize (Bfma_correct prec emax _ _ mode _ _ _ Fx Fy Fz).
+replace (BSN.Bfma _ _ _ _) with (B2BSN (Bfma fma_nan mode x y z)) by apply B2BSN_BSN2B.
+rewrite 3!B2R_B2BSN.
+cbv zeta.
+destruct Rlt_bool.
+- now destruct Bfma.
+- intros H.
+ apply eq_binary_overflow_FF2SF.
+ now rewrite FF2SF_B2FF, <- B2SF_B2BSN.
Qed.
(** Division *)
-Definition Fdiv_core_binary m1 e1 m2 e2 :=
- let d1 := Zdigits2 m1 in
- let d2 := Zdigits2 m2 in
- let e' := Z.min (fexp (d1 + e1 - (d2 + e2))) (e1 - e2) in
- let s := (e1 - e2 - e')%Z in
- let m' :=
- match s with
- | Zpos _ => Z.shiftl m1 s
- | Z0 => m1
- | Zneg _ => Z0
- end in
- let '(q, r) := Zfast_div_eucl m' m2 in
- (q, e', new_location m2 r loc_Exact).
-
-Lemma Bdiv_correct_aux :
- forall m sx mx ex sy my ey,
- let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
- let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
- let z :=
- let '(mz, ez, lz) := Fdiv_core_binary (Zpos mx) ex (Zpos my) ey in
- binary_round_aux m (xorb sx sy) mz ez lz in
- valid_binary z = true /\
- if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x / y))) (bpow radix2 emax) then
- FF2R radix2 z = round radix2 fexp (round_mode m) (x / y) /\
- is_finite_FF z = true /\ sign_FF z = xorb sx sy
- else
- z = binary_overflow m (xorb sx sy).
-Proof.
-intros m sx mx ex sy my ey.
-unfold Fdiv_core_binary.
-rewrite 2!Zdigits2_Zdigits.
-set (e' := Z.min _ _).
-generalize (Fdiv_core_correct radix2 (Zpos mx) ex (Zpos my) ey e' eq_refl eq_refl).
-unfold Fdiv_core.
-rewrite Zle_bool_true by apply Z.le_min_r.
-match goal with |- context [Zfast_div_eucl ?m _] => set (mx' := m) end.
-assert (mx' = Zpos mx * Zpower radix2 (ex - ey - e'))%Z as <-.
-{ unfold mx'.
- destruct (ex - ey - e')%Z as [|p|p].
- now rewrite Zmult_1_r.
- now rewrite Z.shiftl_mul_pow2.
- easy. }
-clearbody mx'.
-rewrite Zfast_div_eucl_correct.
-destruct Z.div_eucl as [q r].
-intros Bz.
-assert (xorb sx sy = Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) *
- / F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey)) 0) as ->.
-{ apply eq_sym.
-case sy ; simpl.
-change (Zneg my) with (Z.opp (Zpos my)).
-rewrite F2R_Zopp.
-rewrite <- Ropp_inv_permute.
-rewrite Ropp_mult_distr_r_reverse.
-case sx ; simpl.
-apply Rlt_bool_false.
-rewrite <- Ropp_mult_distr_l_reverse.
-apply Rmult_le_pos.
-rewrite <- F2R_opp.
-now apply F2R_ge_0.
-apply Rlt_le.
-apply Rinv_0_lt_compat.
-now apply F2R_gt_0.
-apply Rlt_bool_true.
-rewrite <- Ropp_0.
-apply Ropp_lt_contravar.
-apply Rmult_lt_0_compat.
-now apply F2R_gt_0.
-apply Rinv_0_lt_compat.
-now apply F2R_gt_0.
-apply Rgt_not_eq.
-now apply F2R_gt_0.
-case sx.
-apply Rlt_bool_true.
-rewrite F2R_Zopp.
-rewrite Ropp_mult_distr_l_reverse.
-rewrite <- Ropp_0.
-apply Ropp_lt_contravar.
-apply Rmult_lt_0_compat.
-now apply F2R_gt_0.
-apply Rinv_0_lt_compat.
-now apply F2R_gt_0.
-apply Rlt_bool_false.
-apply Rmult_le_pos.
-now apply F2R_ge_0.
-apply Rlt_le.
-apply Rinv_0_lt_compat.
-now apply F2R_gt_0. }
-unfold Rdiv.
-apply binary_round_aux_correct'.
-- apply Rmult_integral_contrapositive_currified.
- now apply F2R_neq_0 ; case sx.
- apply Rinv_neq_0_compat.
- now apply F2R_neq_0 ; case sy.
-- rewrite Rabs_mult, Rabs_Rinv.
- now rewrite <- 2!F2R_Zabs, 2!abs_cond_Zopp.
- now apply F2R_neq_0 ; case sy.
-- rewrite <- cexp_abs, Rabs_mult, Rabs_Rinv.
- rewrite 2!F2R_cond_Zopp, 2!abs_cond_Ropp, <- Rabs_Rinv.
- rewrite <- Rabs_mult, cexp_abs.
- apply Z.le_trans with (1 := Z.le_min_l _ _).
- apply FLT_exp_monotone.
- now apply mag_div_F2R.
- now apply F2R_neq_0.
- now apply F2R_neq_0 ; case sy.
-Qed.
-
Definition Bdiv div_nan m x y :=
- match x, y with
- | B754_nan _ _ _, _ | _, B754_nan _ _ _ => build_nan (div_nan x y)
- | B754_infinity sx, B754_infinity sy => build_nan (div_nan x y)
- | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
- | B754_finite sx _ _ _, B754_infinity sy => B754_zero (xorb sx sy)
- | B754_infinity sx, B754_zero sy => B754_infinity (xorb sx sy)
- | B754_zero sx, B754_infinity sy => B754_zero (xorb sx sy)
- | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy)
- | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
- | B754_zero sx, B754_zero sy => build_nan (div_nan x y)
- | B754_finite sx mx ex _, B754_finite sy my ey _ =>
- FF2B _ (proj1 (Bdiv_correct_aux m sx mx ex sy my ey))
- end.
+ BSN2B (div_nan x y) (Bdiv m (B2BSN x) (B2BSN y)).
Theorem Bdiv_correct :
forall div_nan m x y,
@@ -2152,164 +1187,25 @@ Theorem Bdiv_correct :
else
B2FF (Bdiv div_nan m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
Proof.
-intros div_nan m x [sy|sy|sy ply|sy my ey Hy] Zy ; try now elim Zy.
-revert x.
+intros div_nan mode x y Zy.
+rewrite <- B2R_B2BSN in Zy.
+generalize (Bdiv_correct prec emax _ _ mode (B2BSN x) _ Zy).
+replace (BSN.Bdiv _ _ _) with (B2BSN (Bdiv div_nan mode x y)) by apply B2BSN_BSN2B.
unfold Rdiv.
-intros [sx|sx|sx plx Hx|sx mx ex Hx] ;
- try ( rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | auto with typeclass_instances ] ).
-simpl.
-case Bdiv_correct_aux.
-intros H1.
-unfold Rdiv.
-case Rlt_bool.
-intros (H2, (H3, H4)).
-split.
-now rewrite B2R_FF2B.
-split.
-now rewrite is_finite_FF2B.
-rewrite Bsign_FF2B. congruence.
-intros H2.
-now rewrite B2FF_FF2B.
+destruct y as [sy|sy|sy ply|sy my ey Hy] ; try now elim Zy.
+destruct x as [sx|sx|sx plx Hx|sx mx ex Hx] ;
+ try ( simpl ; rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | auto with typeclass_instances ] ).
+destruct Rlt_bool.
+- now destruct Bdiv.
+- intros H.
+ apply eq_binary_overflow_FF2SF.
+ now rewrite FF2SF_B2FF, <- B2SF_B2BSN.
Qed.
(** Square root *)
-Definition Fsqrt_core_binary m e :=
- let d := Zdigits2 m in
- let e' := Z.min (fexp (Z.div2 (d + e + 1))) (Z.div2 e) in
- let s := (e - 2 * e')%Z in
- let m' :=
- match s with
- | Zpos p => Z.shiftl m s
- | Z0 => m
- | Zneg _ => Z0
- end in
- let (q, r) := Z.sqrtrem m' in
- let l :=
- if Zeq_bool r 0 then loc_Exact
- else loc_Inexact (if Zle_bool r q then Lt else Gt) in
- (q, e', l).
-
-Lemma Bsqrt_correct_aux :
- forall m mx ex (Hx : bounded mx ex = true),
- let x := F2R (Float radix2 (Zpos mx) ex) in
- let z :=
- let '(mz, ez, lz) := Fsqrt_core_binary (Zpos mx) ex in
- binary_round_aux m false mz ez lz in
- valid_binary z = true /\
- FF2R radix2 z = round radix2 fexp (round_mode m) (sqrt x) /\
- is_finite_FF z = true /\ sign_FF z = false.
-Proof with auto with typeclass_instances.
-intros m mx ex Hx.
-unfold Fsqrt_core_binary.
-rewrite Zdigits2_Zdigits.
-set (e' := Z.min _ _).
-assert (2 * e' <= ex)%Z as He.
-{ assert (e' <= Z.div2 ex)%Z by apply Z.le_min_r.
- rewrite (Zdiv2_odd_eqn ex).
- destruct Z.odd ; lia. }
-generalize (Fsqrt_core_correct radix2 (Zpos mx) ex e' eq_refl He).
-unfold Fsqrt_core.
-set (mx' := match (ex - 2 * e')%Z with Z0 => _ | _ => _ end).
-assert (mx' = Zpos mx * Zpower radix2 (ex - 2 * e'))%Z as <-.
-{ unfold mx'.
- destruct (ex - 2 * e')%Z as [|p|p].
- now rewrite Zmult_1_r.
- now rewrite Z.shiftl_mul_pow2.
- easy. }
-clearbody mx'.
-destruct Z.sqrtrem as [mz r].
-set (lz := if Zeq_bool r 0 then _ else _).
-clearbody lz.
-intros Bz.
-refine (_ (binary_round_aux_correct' m (sqrt (F2R (Float radix2 (Zpos mx) ex))) mz e' lz _ _ _)) ; cycle 1.
- now apply Rgt_not_eq, sqrt_lt_R0, F2R_gt_0.
- rewrite Rabs_pos_eq.
- exact Bz.
- apply sqrt_ge_0.
- apply Z.le_trans with (1 := Z.le_min_l _ _).
- apply FLT_exp_monotone.
- rewrite mag_sqrt_F2R by easy.
- apply Z.le_refl.
-rewrite Rlt_bool_false by apply sqrt_ge_0.
-rewrite Rlt_bool_true.
-easy.
-rewrite Rabs_pos_eq.
-refine (_ (relative_error_FLT_ex radix2 emin prec (prec_gt_0 prec) (round_mode m) (sqrt (F2R (Float radix2 (Zpos mx) ex))) _)).
-fold fexp.
-intros (eps, (Heps, Hr)).
-rewrite Hr.
-assert (Heps': (Rabs eps < 1)%R).
-apply Rlt_le_trans with (1 := Heps).
-fold (bpow radix2 0).
-apply bpow_le.
-generalize (prec_gt_0 prec).
-clear ; lia.
-apply Rsqr_incrst_0.
-3: apply bpow_ge_0.
-rewrite Rsqr_mult.
-rewrite Rsqr_sqrt.
-2: now apply F2R_ge_0.
-unfold Rsqr.
-apply Rmult_ge_0_gt_0_lt_compat.
-apply Rle_ge.
-apply Rle_0_sqr.
-apply bpow_gt_0.
-now apply bounded_lt_emax.
-apply Rlt_le_trans with 4%R.
-apply (Rsqr_incrst_1 _ 2).
-apply Rplus_lt_compat_l.
-apply (Rabs_lt_inv _ _ Heps').
-rewrite <- (Rplus_opp_r 1).
-apply Rplus_le_compat_l.
-apply Rlt_le.
-apply (Rabs_lt_inv _ _ Heps').
-now apply IZR_le.
-change 4%R with (bpow radix2 2).
-apply bpow_le.
-generalize (prec_gt_0 prec).
-clear -Hmax ; lia.
-apply Rmult_le_pos.
-apply sqrt_ge_0.
-rewrite <- (Rplus_opp_r 1).
-apply Rplus_le_compat_l.
-apply Rlt_le.
-apply (Rabs_lt_inv _ _ Heps').
-rewrite Rabs_pos_eq.
-2: apply sqrt_ge_0.
-apply Rsqr_incr_0.
-2: apply bpow_ge_0.
-2: apply sqrt_ge_0.
-rewrite Rsqr_sqrt.
-2: now apply F2R_ge_0.
-apply Rle_trans with (bpow radix2 emin).
-unfold Rsqr.
-rewrite <- bpow_plus.
-apply bpow_le.
-unfold emin.
-clear -Hmax ; lia.
-apply generic_format_ge_bpow with fexp.
-intros.
-apply Z.le_max_r.
-now apply F2R_gt_0.
-apply generic_format_canonical.
-apply (canonical_canonical_mantissa false).
-apply (andb_prop _ _ Hx).
-apply round_ge_generic...
-apply generic_format_0.
-apply sqrt_ge_0.
-Qed.
-
Definition Bsqrt sqrt_nan m x :=
- match x with
- | B754_nan sx plx _ => build_nan (sqrt_nan x)
- | B754_infinity false => x
- | B754_infinity true => build_nan (sqrt_nan x)
- | B754_finite true _ _ _ => build_nan (sqrt_nan x)
- | B754_zero _ => x
- | B754_finite sx mx ex Hx =>
- FF2B _ (proj1 (Bsqrt_correct_aux m mx ex Hx))
- end.
+ BSN2B (sqrt_nan x) (Bsqrt m (B2BSN x)).
Theorem Bsqrt_correct :
forall sqrt_nan m x,
@@ -2317,126 +1213,71 @@ Theorem Bsqrt_correct :
is_finite (Bsqrt sqrt_nan m x) = match x with B754_zero _ => true | B754_finite false _ _ _ => true | _ => false end /\
(is_nan (Bsqrt sqrt_nan m x) = false -> Bsign (Bsqrt sqrt_nan m x) = Bsign x).
Proof.
-intros sqrt_nan m [sx|[|]|sx plx Hplx|sx mx ex Hx] ;
- try ( simpl ; rewrite sqrt_0, round_0, ?B2R_build_nan, ?is_finite_build_nan, ?is_nan_build_nan ; intuition auto with typeclass_instances ; easy).
-simpl.
-case Bsqrt_correct_aux.
-intros H1 (H2, (H3, H4)).
-case sx.
-rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan.
-refine (conj _ (conj (refl_equal false) _)).
-apply sym_eq.
-unfold sqrt.
-case Rcase_abs.
-intros _.
-apply round_0.
-auto with typeclass_instances.
+intros sqrt_nan mode x.
+generalize (Bsqrt_correct prec emax _ _ mode (B2BSN x)).
+replace (BSN.Bsqrt _ _) with (B2BSN (Bsqrt sqrt_nan mode x)) by apply B2BSN_BSN2B.
intros H.
-elim Rge_not_lt with (1 := H).
-now apply F2R_lt_0.
-easy.
-split.
-now rewrite B2R_FF2B.
-split.
-now rewrite is_finite_FF2B.
-intros _.
-now rewrite Bsign_FF2B.
+destruct x as [sx|[|]|sx plx Hplx|sx mx ex Hx] ; try easy.
+now destruct Bsqrt.
Qed.
(** A few values *)
-Definition Bone := FF2B _ (proj1 (binary_round_correct mode_NE false 1 0)).
+Definition Bone :=
+ BSN2B' _ (@is_nan_Bone prec emax _ _).
Theorem Bone_correct : B2R Bone = 1%R.
Proof.
-unfold Bone; simpl.
-set (Hr := binary_round_correct _ _ _ _).
-unfold Hr; rewrite B2R_FF2B.
-destruct Hr as (Vz, Hr).
-revert Hr.
-fold emin; simpl.
-rewrite round_generic; [|now apply valid_rnd_N|].
-- unfold F2R; simpl; rewrite Rmult_1_r.
- rewrite Rlt_bool_true.
- + now intros (Hr, Hr'); rewrite Hr.
- + rewrite Rabs_pos_eq; [|lra].
- change 1%R with (bpow radix2 0); apply bpow_lt.
- unfold Prec_gt_0 in prec_gt_0_; lia.
-- apply generic_format_F2R; intros _.
- unfold cexp, fexp, FLT_exp, F2R; simpl; rewrite Rmult_1_r, mag_1.
- unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+unfold Bone.
+rewrite B2R_BSN2B'.
+apply Bone_correct.
Qed.
Lemma is_finite_Bone : is_finite Bone = true.
Proof.
-generalize Bone_correct; case Bone; simpl;
- try (intros; reflexivity); intros; exfalso; lra.
+unfold Bone.
+rewrite is_finite_BSN2B'.
+apply is_finite_Bone.
Qed.
Lemma Bsign_Bone : Bsign Bone = false.
Proof.
-generalize Bone_correct; case Bone; simpl;
- try (intros; exfalso; lra); intros s' m e _.
-case s'; [|now intro]; unfold F2R; simpl.
-intro H; exfalso; revert H; apply Rlt_not_eq, (Rle_lt_trans _ 0); [|lra].
-rewrite <-Ropp_0, <-(Ropp_involutive (_ * _)); apply Ropp_le_contravar.
-rewrite Ropp_mult_distr_l; apply Rmult_le_pos; [|now apply bpow_ge_0].
-unfold IZR; rewrite <-INR_IPR; generalize (INR_pos m); lra.
-Qed.
-
-Lemma Bmax_float_proof :
- valid_binary
- (F754_finite false (shift_pos (Z.to_pos prec) 1 - 1) (emax - prec))
- = true.
-Proof.
-unfold valid_binary, bounded; apply andb_true_intro; split.
-- unfold canonical_mantissa; apply Zeq_bool_true.
- set (p := Z.pos (digits2_pos _)).
- assert (H : p = prec).
- { unfold p; rewrite Zpos_digits2_pos, Pos2Z.inj_sub.
- - rewrite shift_pos_correct, Z.mul_1_r.
- assert (P2pm1 : (0 <= 2 ^ prec - 1)%Z).
- { apply (Zplus_le_reg_r _ _ 1); ring_simplify.
- change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z).
- apply Zpower_le; unfold Prec_gt_0 in prec_gt_0_; lia. }
- apply Zdigits_unique;
- rewrite Z.pow_pos_fold, Z2Pos.id; [|exact prec_gt_0_]; simpl; split.
- + rewrite (Z.abs_eq _ P2pm1).
- replace prec with (prec - 1 + 1)%Z at 2 by ring.
- rewrite Zpower_plus; [| unfold Prec_gt_0 in prec_gt_0_; lia|lia].
- simpl; unfold Z.pow_pos; simpl.
- assert (1 <= 2 ^ (prec - 1))%Z; [|lia].
- change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z).
- apply Zpower_le; simpl; unfold Prec_gt_0 in prec_gt_0_; lia.
- + now rewrite Z.abs_eq; [lia|].
- - change (_ < _)%positive
- with (Z.pos 1 < Z.pos (shift_pos (Z.to_pos prec) 1))%Z.
- rewrite shift_pos_correct, Z.mul_1_r, Z.pow_pos_fold.
- rewrite Z2Pos.id; [|exact prec_gt_0_].
- change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z).
- apply Zpower_lt; unfold Prec_gt_0 in prec_gt_0_; lia. }
- unfold fexp, FLT_exp; rewrite H, Z.max_l; [ring|].
- unfold Prec_gt_0 in prec_gt_0_; unfold emin; lia.
-- apply Zle_bool_true; unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
-Qed.
-
-Definition Bmax_float := FF2B _ Bmax_float_proof.
+unfold Bone.
+rewrite Bsign_BSN2B'.
+apply Bsign_Bone.
+Qed.
+
+Definition Bmax_float :=
+ BSN2B' Bmax_float eq_refl.
(** Extraction/modification of mantissa/exponent *)
Definition Bnormfr_mantissa x :=
- match x with
- | B754_finite _ mx ex _ =>
- if Z.eqb ex (-prec)%Z then Npos mx else 0%N
- | _ => 0%N
- end.
+ Bnormfr_mantissa (B2BSN x).
-Definition Bldexp mode f e :=
- match f with
- | B754_finite sx mx ex _ =>
- FF2B _ (proj1 (binary_round_correct mode sx mx (ex+e)))
- | _ => f
- end.
+Definition lift x y (Ny : @BSN.is_nan prec emax y = is_nan x) : binary_float.
+Proof.
+destruct (is_nan x).
+exact x.
+now apply (BSN2B' y).
+Defined.
+
+Lemma B2BSN_lift :
+ forall x y Ny,
+ B2BSN (lift x y Ny) = y.
+Proof.
+intros x y Ny.
+unfold lift.
+destruct x as [sx|sx|sx px Px|sx mx ex Bx] ; simpl ; try apply B2BSN_BSN2B'.
+now destruct y.
+Qed.
+
+Definition Bldexp (mode : mode) (x : binary_float) (e : Z) : binary_float.
+Proof.
+apply (lift x (Bldexp mode (B2BSN x) e)).
+rewrite <- is_nan_B2BSN.
+apply is_nan_Bldexp.
+Defined.
Theorem Bldexp_correct :
forall m (f : binary_float) e,
@@ -2450,144 +1291,38 @@ Theorem Bldexp_correct :
else
B2FF (Bldexp m f e) = binary_overflow m (Bsign f).
Proof.
-intros m f e.
-case f.
-- intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
- now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
-- intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
- now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
-- intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
- now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
-- intros s mf ef Hmef.
- case (Rlt_bool_spec _ _); intro Hover.
- + unfold Bldexp; rewrite B2R_FF2B, is_finite_FF2B, Bsign_FF2B.
- simpl; unfold F2R; simpl; rewrite Rmult_assoc, <-bpow_plus.
- destruct (binary_round_correct m s mf (ef + e)) as (Hf, Hr).
- fold emin in Hr; simpl in Hr; rewrite Rlt_bool_true in Hr.
- * now destruct Hr as (Hr, (Hfr, Hsr)); rewrite Hr, Hfr, Hsr.
- * now revert Hover; unfold B2R, F2R; simpl; rewrite Rmult_assoc, bpow_plus.
- + unfold Bldexp; rewrite B2FF_FF2B; simpl.
- destruct (binary_round_correct m s mf (ef + e)) as (Hf, Hr).
- fold emin in Hr; simpl in Hr; rewrite Rlt_bool_false in Hr; [exact Hr|].
- now revert Hover; unfold B2R, F2R; simpl; rewrite Rmult_assoc, bpow_plus.
-Qed.
+intros mode x e.
+generalize (Bldexp_correct prec emax _ _ mode (B2BSN x) e).
+replace (BSN.Bldexp _ _ _) with (B2BSN (Bldexp mode x e)) by apply B2BSN_lift.
+rewrite B2R_B2BSN.
+destruct Rlt_bool.
+- destruct x as [sx|sx|sx px Px|sx mx ex Bx] ; try easy.
+ now destruct Bldexp.
+- intros H.
+ apply eq_binary_overflow_FF2SF.
+ rewrite B2SF_B2BSN in H.
+ rewrite FF2SF_B2FF, H.
+ destruct x as [sx|sx|sx px Px|sx mx ex Bx] ; simpl in H ; try easy.
+ contradict H.
+ unfold BSN.binary_overflow.
+ now destruct overflow_to_inf.
+Qed.
+
+Section Bfrexp.
(** This hypothesis is needed to implement [Bfrexp]
(otherwise, we have emin > - prec
and [Bfrexp] cannot fit the mantissa in interval #[0.5, 1)#) *)
-Hypothesis Hemax : (3 <= emax)%Z.
+Hypothesis Hemax : (2 < emax)%Z.
-Definition Ffrexp_core_binary s m e :=
- if (Z.to_pos prec <=? digits2_pos m)%positive then
- (F754_finite s m (-prec), (e + prec)%Z)
- else
- let d := (prec - Z.pos (digits2_pos m))%Z in
- (F754_finite s (shift_pos (Z.to_pos d) m) (-prec), (e + prec - d)%Z).
-
-Lemma Bfrexp_correct_aux :
- forall sx mx ex (Hx : bounded mx ex = true),
- let x := F2R (Float radix2 (cond_Zopp sx (Z.pos mx)) ex) in
- let z := fst (Ffrexp_core_binary sx mx ex) in
- let e := snd (Ffrexp_core_binary sx mx ex) in
- valid_binary z = true /\
- (/2 <= Rabs (FF2R radix2 z) < 1)%R /\
- (x = FF2R radix2 z * bpow radix2 e)%R.
-Proof.
-intros sx mx ex Bx.
-set (x := F2R _).
-set (z := fst _).
-set (e := snd _); simpl.
-assert (Dmx_le_prec : (Z.pos (digits2_pos mx) <= prec)%Z).
-{ revert Bx; unfold bounded; rewrite Bool.andb_true_iff.
- unfold canonical_mantissa; rewrite <-Zeq_is_eq_bool; unfold fexp, FLT_exp.
- case (Z.max_spec (Z.pos (digits2_pos mx) + ex - prec) emin); lia. }
-assert (Dmx_le_prec' : (digits2_pos mx <= Z.to_pos prec)%positive).
-{ change (_ <= _)%positive
- with (Z.pos (digits2_pos mx) <= Z.pos (Z.to_pos prec))%Z.
- now rewrite Z2Pos.id; [|now apply prec_gt_0_]. }
-unfold z, e, Ffrexp_core_binary.
-case (Pos.leb_spec _ _); simpl; intro Dmx.
-- unfold bounded, F2R; simpl.
- assert (Dmx' : digits2_pos mx = Z.to_pos prec).
- { now apply Pos.le_antisym. }
- assert (Dmx'' : Z.pos (digits2_pos mx) = prec).
- { now rewrite Dmx', Z2Pos.id; [|apply prec_gt_0_]. }
- split; [|split].
- + apply andb_true_intro.
- split; [|apply Zle_bool_true; lia].
- apply Zeq_bool_true; unfold fexp, FLT_exp.
- rewrite Dmx', Z2Pos.id; [|now apply prec_gt_0_].
- rewrite Z.max_l; [ring|unfold emin; lia].
- + rewrite Rabs_mult, (Rabs_pos_eq (bpow _ _)); [|now apply bpow_ge_0].
- rewrite <-abs_IZR, abs_cond_Zopp; simpl; split.
- * apply (Rmult_le_reg_r (bpow radix2 prec)); [now apply bpow_gt_0|].
- rewrite Rmult_assoc, <-bpow_plus, Z.add_opp_diag_l; simpl.
- rewrite Rmult_1_r.
- change (/ 2)%R with (bpow radix2 (- 1)); rewrite <-bpow_plus.
- rewrite <-Dmx'', Z.add_comm, Zpos_digits2_pos, Zdigits_mag; [|lia].
- set (b := bpow _ _).
- rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
- apply bpow_mag_le; apply IZR_neq; lia.
- * apply (Rmult_lt_reg_r (bpow radix2 prec)); [now apply bpow_gt_0|].
- rewrite Rmult_assoc, <-bpow_plus, Z.add_opp_diag_l; simpl.
- rewrite Rmult_1_l, Rmult_1_r.
- rewrite <-Dmx'', Zpos_digits2_pos, Zdigits_mag; [|lia].
- set (b := bpow _ _).
- rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
- apply bpow_mag_gt; apply IZR_neq; lia.
- + unfold x, F2R; simpl; rewrite Rmult_assoc, <-bpow_plus.
- now replace (_ + _)%Z with ex by ring.
-- unfold bounded, F2R; simpl.
- assert (Dmx' : (Z.pos (digits2_pos mx) < prec)%Z).
- { now rewrite <-(Z2Pos.id prec); [|now apply prec_gt_0_]. }
- split; [|split].
- + unfold bounded; apply andb_true_intro.
- split; [|apply Zle_bool_true; lia].
- apply Zeq_bool_true; unfold fexp, FLT_exp.
- rewrite Zpos_digits2_pos, shift_pos_correct, Z.pow_pos_fold.
- rewrite Z2Pos.id; [|lia].
- rewrite Z.mul_comm; change 2%Z with (radix2 : Z).
- rewrite Zdigits_mult_Zpower; [|lia|lia].
- rewrite Zpos_digits2_pos; replace (_ - _)%Z with (- prec)%Z by ring.
- now rewrite Z.max_l; [|unfold emin; lia].
- + rewrite Rabs_mult, (Rabs_pos_eq (bpow _ _)); [|now apply bpow_ge_0].
- rewrite <-abs_IZR, abs_cond_Zopp; simpl.
- rewrite shift_pos_correct, mult_IZR.
- change (IZR (Z.pow_pos _ _))
- with (bpow radix2 (Z.pos (Z.to_pos ((prec - Z.pos (digits2_pos mx)))))).
- rewrite Z2Pos.id; [|lia].
- rewrite Rmult_comm, <-Rmult_assoc, <-bpow_plus.
- set (d := Z.pos (digits2_pos mx)).
- replace (_ + _)%Z with (- d)%Z by ring; split.
- * apply (Rmult_le_reg_l (bpow radix2 d)); [now apply bpow_gt_0|].
- rewrite <-Rmult_assoc, <-bpow_plus, Z.add_opp_diag_r.
- rewrite Rmult_1_l.
- change (/ 2)%R with (bpow radix2 (- 1)); rewrite <-bpow_plus.
- rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
- unfold d; rewrite Zpos_digits2_pos, Zdigits_mag; [|lia].
- apply bpow_mag_le; apply IZR_neq; lia.
- * apply (Rmult_lt_reg_l (bpow radix2 d)); [now apply bpow_gt_0|].
- rewrite <-Rmult_assoc, <-bpow_plus, Z.add_opp_diag_r.
- rewrite Rmult_1_l, Rmult_1_r.
- rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
- unfold d; rewrite Zpos_digits2_pos, Zdigits_mag; [|lia].
- apply bpow_mag_gt; apply IZR_neq; lia.
- + rewrite Rmult_assoc, <-bpow_plus, shift_pos_correct.
- rewrite IZR_cond_Zopp, mult_IZR, cond_Ropp_mult_r, <-IZR_cond_Zopp.
- change (IZR (Z.pow_pos _ _))
- with (bpow radix2 (Z.pos (Z.to_pos (prec - Z.pos (digits2_pos mx))))).
- rewrite Z2Pos.id; [|lia].
- rewrite Rmult_comm, <-Rmult_assoc, <-bpow_plus.
- now replace (_ + _)%Z with ex by ring; rewrite Rmult_comm.
-Qed.
-
-Definition Bfrexp f :=
- match f with
- | B754_finite s m e H =>
- let e' := snd (Ffrexp_core_binary s m e) in
- (FF2B _ (proj1 (Bfrexp_correct_aux s m e H)), e')
- | _ => (f, (-2*emax-prec)%Z)
- end.
+Definition Bfrexp (x : binary_float) : binary_float * Z.
+Proof.
+set (y := Bfrexp (B2BSN x)).
+refine (pair _ (snd y)).
+apply (lift x (fst y)).
+rewrite <- is_nan_B2BSN.
+apply is_nan_Bfrexp.
+Defined.
Theorem Bfrexp_correct :
forall f,
@@ -2599,19 +1334,27 @@ Theorem Bfrexp_correct :
(x = B2R z * bpow radix2 e)%R /\
e = mag radix2 x.
Proof.
-intro f; case f; intro s; try discriminate; intros m e Hf _.
-generalize (Bfrexp_correct_aux s m e Hf).
-intros (_, (Hb, Heq)); simpl; rewrite B2R_FF2B.
-split; [now simpl|]; split; [now simpl|].
-rewrite Heq, mag_mult_bpow.
-- apply (Z.add_reg_l (- (snd (Ffrexp_core_binary s m e)))).
- now ring_simplify; symmetry; apply mag_unique.
-- intro H; destruct Hb as (Hb, _); revert Hb; rewrite H, Rabs_R0; lra.
+intros x Fx.
+rewrite <- is_finite_strict_B2BSN in Fx.
+generalize (Bfrexp_correct prec emax _ (B2BSN x) Fx).
+simpl.
+rewrite <- B2R_B2BSN.
+rewrite B2BSN_lift.
+destruct BSN.Bfrexp as [z e].
+rewrite B2R_B2BSN.
+now intros [H1 [H2 H3]].
Qed.
+End Bfrexp.
+
(** Ulp *)
-Definition Bulp x := Bldexp mode_NE Bone (fexp (snd (Bfrexp x))).
+Definition Bulp (x : binary_float) : binary_float.
+Proof.
+apply (lift x (Bulp (B2BSN x))).
+rewrite <- is_nan_B2BSN.
+apply is_nan_Bulp.
+Defined.
Theorem Bulp_correct :
forall x,
@@ -2620,373 +1363,72 @@ Theorem Bulp_correct :
is_finite (Bulp x) = true /\
Bsign (Bulp x) = false.
Proof.
-intro x; case x.
-- intros s _; unfold Bulp.
- replace (fexp _) with emin.
- + generalize (Bldexp_correct mode_NE Bone emin).
- rewrite Bone_correct, Rmult_1_l, round_generic;
- [|now apply valid_rnd_N|apply generic_format_bpow; unfold fexp, FLT_exp;
- rewrite Z.max_r; unfold Prec_gt_0 in prec_gt_0_; lia].
- rewrite Rlt_bool_true.
- * intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs.
- split; [|now split; [apply is_finite_Bone|apply Bsign_Bone]].
- simpl; unfold ulp; rewrite Req_bool_true; [|reflexivity].
- destruct (negligible_exp_FLT emin prec) as (n, (Hn, Hn')).
- change fexp with (FLT_exp emin prec); rewrite Hn.
- now unfold FLT_exp; rewrite Z.max_r;
- [|unfold Prec_gt_0 in prec_gt_0_; lia].
- * rewrite Rabs_pos_eq; [|now apply bpow_ge_0]; apply bpow_lt.
- unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
- + simpl; change (fexp _) with (fexp (-2 * emax - prec)).
- unfold fexp, FLT_exp; rewrite Z.max_r; [reflexivity|].
- unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
-- intro; discriminate.
-- intros s pl Hpl; discriminate.
-- intros s m e Hme _; unfold Bulp, ulp, cexp.
- set (f := B754_finite _ _ _ _).
- rewrite Req_bool_false.
- + destruct (Bfrexp_correct f (eq_refl _)) as (Hfr1, (Hfr2, Hfr3)).
- rewrite Hfr3.
- set (e' := fexp _).
- generalize (Bldexp_correct mode_NE Bone e').
- rewrite Bone_correct, Rmult_1_l, round_generic; [|now apply valid_rnd_N|].
- { rewrite Rlt_bool_true.
- - intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs.
- now split; [|split; [apply is_finite_Bone|apply Bsign_Bone]].
- - rewrite Rabs_pos_eq; [|now apply bpow_ge_0].
- unfold e', fexp, FLT_exp.
- case (Z.max_spec (mag radix2 (B2R f) - prec) emin)
- as [(_, Hm)|(_, Hm)]; rewrite Hm; apply bpow_lt;
- [now unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia|].
- apply (Zplus_lt_reg_r _ _ prec); ring_simplify.
- assert (mag radix2 (B2R f) <= emax)%Z;
- [|now unfold Prec_gt_0 in prec_gt_0_; lia].
- apply mag_le_bpow; [|now apply abs_B2R_lt_emax].
- now unfold f, B2R; apply F2R_neq_0; case s. }
- apply generic_format_bpow, Z.max_lub.
- * unfold Prec_gt_0 in prec_gt_0_; lia.
- * apply Z.le_max_r.
- + now unfold f, B2R; apply F2R_neq_0; case s.
+intros x Fx.
+rewrite <- is_finite_B2BSN in Fx.
+generalize (Bulp_correct prec emax _ _ _ Fx).
+replace (BSN.Bulp (B2BSN x)) with (B2BSN (Bulp x)) by apply B2BSN_lift.
+rewrite 2!B2R_B2BSN.
+now destruct Bulp.
Qed.
(** Successor (and predecessor) *)
-Definition Bpred_pos pred_pos_nan x :=
- match x with
- | B754_finite _ mx _ _ =>
- let d :=
- if (mx~0 =? shift_pos (Z.to_pos prec) 1)%positive then
- Bldexp mode_NE Bone (fexp (snd (Bfrexp x) - 1))
- else
- Bulp x in
- Bminus (fun _ => pred_pos_nan) mode_NE x d
- | _ => x
- end.
-
-Theorem Bpred_pos_correct :
- forall pred_pos_nan x,
- (0 < B2R x)%R ->
- B2R (Bpred_pos pred_pos_nan x) = pred_pos radix2 fexp (B2R x) /\
- is_finite (Bpred_pos pred_pos_nan x) = true /\
- Bsign (Bpred_pos pred_pos_nan x) = false.
-Proof.
-intros pred_pos_nan x.
-generalize (Bfrexp_correct x).
-case x.
-- simpl; intros s _ Bx; exfalso; apply (Rlt_irrefl _ Bx).
-- simpl; intros s _ Bx; exfalso; apply (Rlt_irrefl _ Bx).
-- simpl; intros s pl Hpl _ Bx; exfalso; apply (Rlt_irrefl _ Bx).
-- intros sx mx ex Hmex Hfrexpx Px.
- assert (Hsx : sx = false).
- { revert Px; case sx; unfold B2R, F2R; simpl; [|now intro].
- intro Px; exfalso; revert Px; apply Rle_not_lt.
- rewrite <-(Rmult_0_l (bpow radix2 ex)).
- apply Rmult_le_compat_r; [apply bpow_ge_0|apply IZR_le; lia]. }
- clear Px; rewrite Hsx in Hfrexpx |- *; clear Hsx sx.
- specialize (Hfrexpx (eq_refl _)).
- simpl in Hfrexpx; rewrite B2R_FF2B in Hfrexpx.
- destruct Hfrexpx as (Hfrexpx_bounds, (Hfrexpx_eq, Hfrexpx_exp)).
- unfold Bpred_pos, Bfrexp.
- simpl (snd (_, snd _)).
- rewrite Hfrexpx_exp.
- set (x' := B754_finite _ _ _ _).
- set (xr := F2R _).
- assert (Nzxr : xr <> 0%R).
- { unfold xr, F2R; simpl.
- rewrite <-(Rmult_0_l (bpow radix2 ex)); intro H.
- apply Rmult_eq_reg_r in H; [|apply Rgt_not_eq, bpow_gt_0].
- apply eq_IZR in H; lia. }
- assert (Hulp := Bulp_correct x').
- specialize (Hulp (eq_refl _)).
- assert (Hldexp := Bldexp_correct mode_NE Bone (fexp (mag radix2 xr - 1))).
- rewrite Bone_correct, Rmult_1_l in Hldexp.
- assert (Fbpowxr : generic_format radix2 fexp
- (bpow radix2 (fexp (mag radix2 xr - 1)))).
- { apply generic_format_bpow, Z.max_lub.
- - unfold Prec_gt_0 in prec_gt_0_; lia.
- - apply Z.le_max_r. }
- assert (H : Rlt_bool (Rabs
- (round radix2 fexp (round_mode mode_NE)
- (bpow radix2 (fexp (mag radix2 xr - 1)))))
- (bpow radix2 emax) = true); [|rewrite H in Hldexp; clear H].
- { apply Rlt_bool_true; rewrite round_generic;
- [|apply valid_rnd_round_mode|apply Fbpowxr].
- rewrite Rabs_pos_eq; [|apply bpow_ge_0]; apply bpow_lt.
- apply Z.max_lub_lt; [|unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia].
- apply (Zplus_lt_reg_r _ _ (prec + 1)); ring_simplify.
- rewrite Z.add_1_r; apply Zle_lt_succ, mag_le_bpow.
- - exact Nzxr.
- - apply (Rlt_le_trans _ (bpow radix2 emax)).
- + change xr with (B2R x'); apply abs_B2R_lt_emax.
- + apply bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia. }
- set (d := if (mx~0 =? _)%positive then _ else _).
- set (minus_nan := fun _ => _).
- assert (Hminus := Bminus_correct minus_nan mode_NE x' d (eq_refl _)).
- assert (Fd : is_finite d = true).
- { unfold d; case (_ =? _)%positive.
- - now rewrite (proj1 (proj2 Hldexp)), is_finite_Bone.
- - now rewrite (proj1 (proj2 Hulp)). }
- specialize (Hminus Fd).
- assert (Px : (0 <= B2R x')%R).
- { unfold B2R, x', F2R; simpl.
- now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. }
- assert (Pd : (0 <= B2R d)%R).
- { unfold d; case (_ =? _)%positive.
- - rewrite (proj1 Hldexp).
- now rewrite round_generic; [apply bpow_ge_0|apply valid_rnd_N|].
- - rewrite (proj1 Hulp); apply ulp_ge_0. }
- assert (Hdlex : (B2R d <= B2R x')%R).
- { unfold d; case (_ =? _)%positive.
- - rewrite (proj1 Hldexp).
- rewrite round_generic; [|now apply valid_rnd_N|now simpl].
- apply (Rle_trans _ (bpow radix2 (mag radix2 xr - 1))).
- + apply bpow_le, Z.max_lub.
- * unfold Prec_gt_0 in prec_gt_0_; lia.
- * apply (Zplus_le_reg_r _ _ 1); ring_simplify.
- apply mag_ge_bpow.
- replace (_ - 1)%Z with emin by ring.
- now change xr with (B2R x'); apply abs_B2R_ge_emin.
- + rewrite <-(Rabs_pos_eq _ Px).
- now change xr with (B2R x'); apply bpow_mag_le.
- - rewrite (proj1 Hulp); apply ulp_le_id.
- + assert (B2R x' <> 0%R); [exact Nzxr|lra].
- + apply generic_format_B2R. }
- assert (H : Rlt_bool
- (Rabs
- (round radix2 fexp
- (round_mode mode_NE) (B2R x' - B2R d)))
- (bpow radix2 emax) = true); [|rewrite H in Hminus; clear H].
- { apply Rlt_bool_true.
- rewrite <-round_NE_abs; [|now apply FLT_exp_valid].
- rewrite Rabs_pos_eq; [|lra].
- apply (Rle_lt_trans _ (B2R x')).
- - apply round_le_generic;
- [now apply FLT_exp_valid|now apply valid_rnd_N| |lra].
- apply generic_format_B2R.
- - apply (Rle_lt_trans _ _ _ (Rle_abs _)), abs_B2R_lt_emax. }
- rewrite (proj1 Hminus).
- rewrite (proj1 (proj2 Hminus)).
- rewrite (proj2 (proj2 Hminus)).
- split; [|split; [reflexivity|now case (Rcompare_spec _ _); [lra| |]]].
- unfold pred_pos, d.
- case (Pos.eqb_spec _ _); intro Hd; case (Req_bool_spec _ _); intro Hpred.
- + rewrite (proj1 Hldexp).
- rewrite (round_generic _ _ _ _ Fbpowxr).
- change xr with (B2R x').
- replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
- * rewrite round_generic; [reflexivity|now apply valid_rnd_N|].
- apply generic_format_pred_pos;
- [now apply FLT_exp_valid|apply generic_format_B2R|].
- change xr with (B2R x') in Nzxr; lra.
- * now unfold pred_pos; rewrite Req_bool_true.
- + exfalso; apply Hpred.
- assert (Hmx : IZR (Z.pos mx) = bpow radix2 (prec - 1)).
- { apply (Rmult_eq_reg_l 2); [|lra]; rewrite <-mult_IZR.
- change (2 * Z.pos mx)%Z with (Z.pos mx~0); rewrite Hd.
- rewrite shift_pos_correct, Z.mul_1_r.
- change (IZR (Z.pow_pos _ _)) with (bpow radix2 (Z.pos (Z.to_pos prec))).
- rewrite Z2Pos.id; [|exact prec_gt_0_].
- change 2%R with (bpow radix2 1); rewrite <-bpow_plus.
- f_equal; ring. }
- unfold x' at 1; unfold B2R at 1; unfold F2R; simpl.
- rewrite Hmx, <-bpow_plus; f_equal.
- apply (Z.add_reg_l 1); ring_simplify; symmetry; apply mag_unique_pos.
- unfold F2R; simpl; rewrite Hmx, <-bpow_plus; split.
- * right; f_equal; ring.
- * apply bpow_lt; lia.
- + rewrite (proj1 Hulp).
- assert (H : ulp radix2 fexp (B2R x')
- = bpow radix2 (fexp (mag radix2 (B2R x') - 1)));
- [|rewrite H; clear H].
- { unfold ulp; rewrite Req_bool_false; [|now simpl].
- unfold cexp; f_equal.
- assert (H : (mag radix2 (B2R x') <= emin + prec)%Z).
- { assert (Hcm : canonical_mantissa mx ex = true).
- { now generalize Hmex; unfold bounded; rewrite Bool.andb_true_iff. }
- apply (canonical_canonical_mantissa false) in Hcm.
- revert Hcm; fold emin; unfold canonical, cexp; simpl.
- change (F2R _) with (B2R x'); intro Hex.
- apply Z.nlt_ge; intro H'; apply Hd.
- apply Pos2Z.inj_pos; rewrite shift_pos_correct, Z.mul_1_r.
- apply eq_IZR; change (IZR (Z.pow_pos _ _))
- with (bpow radix2 (Z.pos (Z.to_pos prec))).
- rewrite Z2Pos.id; [|exact prec_gt_0_].
- change (Z.pos mx~0) with (2 * Z.pos mx)%Z.
- rewrite Z.mul_comm, mult_IZR.
- apply (Rmult_eq_reg_r (bpow radix2 (ex - 1)));
- [|apply Rgt_not_eq, bpow_gt_0].
- change 2%R with (bpow radix2 1); rewrite Rmult_assoc, <-!bpow_plus.
- replace (1 + _)%Z with ex by ring.
- unfold B2R at 1, F2R in Hpred; simpl in Hpred; rewrite Hpred.
- change (F2R _) with (B2R x'); rewrite Hex.
- unfold fexp, FLT_exp; rewrite Z.max_l; [f_equal; ring|lia]. }
- now unfold fexp, FLT_exp; do 2 (rewrite Z.max_r; [|lia]). }
- replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
- * rewrite round_generic; [reflexivity|apply valid_rnd_N|].
- apply generic_format_pred_pos;
- [now apply FLT_exp_valid| |change xr with (B2R x') in Nzxr; lra].
- apply generic_format_B2R.
- * now unfold pred_pos; rewrite Req_bool_true.
- + rewrite (proj1 Hulp).
- replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
- * rewrite round_generic; [reflexivity|now apply valid_rnd_N|].
- apply generic_format_pred_pos;
- [now apply FLT_exp_valid|apply generic_format_B2R|].
- change xr with (B2R x') in Nzxr; lra.
- * now unfold pred_pos; rewrite Req_bool_false.
-Qed.
-
-Definition Bsucc succ_nan x :=
- match x with
- | B754_zero _ => Bldexp mode_NE Bone emin
- | B754_infinity false => x
- | B754_infinity true => Bopp succ_nan Bmax_float
- | B754_nan _ _ _ => build_nan (succ_nan x)
- | B754_finite false _ _ _ =>
- Bplus (fun _ => succ_nan) mode_NE x (Bulp x)
- | B754_finite true _ _ _ =>
- Bopp succ_nan (Bpred_pos succ_nan (Bopp succ_nan x))
- end.
+Definition Bsucc (x : binary_float) : binary_float.
+Proof.
+apply (lift x (Bsucc (B2BSN x))).
+rewrite <- is_nan_B2BSN.
+apply is_nan_Bsucc.
+Defined.
Lemma Bsucc_correct :
- forall succ_nan x,
+ forall x,
is_finite x = true ->
if Rlt_bool (succ radix2 fexp (B2R x)) (bpow radix2 emax) then
- B2R (Bsucc succ_nan x) = succ radix2 fexp (B2R x) /\
- is_finite (Bsucc succ_nan x) = true /\
- (Bsign (Bsucc succ_nan x) = Bsign x && is_finite_strict x)%bool
+ B2R (Bsucc x) = succ radix2 fexp (B2R x) /\
+ is_finite (Bsucc x) = true /\
+ (Bsign (Bsucc x) = Bsign x && is_finite_strict x)%bool
else
- B2FF (Bsucc succ_nan x) = F754_infinity false.
-Proof.
-assert (Hsucc : succ radix2 fexp 0 = bpow radix2 emin).
-{ unfold succ; rewrite Rle_bool_true; [|now right]; rewrite Rplus_0_l.
- unfold ulp; rewrite Req_bool_true; [|now simpl].
- destruct (negligible_exp_FLT emin prec) as (n, (Hne, Hn)).
- now unfold fexp; rewrite Hne; unfold FLT_exp; rewrite Z.max_r;
- [|unfold Prec_gt_0 in prec_gt_0_; lia]. }
-intros succ_nan [s|s|s pl Hpl|sx mx ex Hmex]; try discriminate; intros _.
-- generalize (Bldexp_correct mode_NE Bone emin); unfold Bsucc; simpl.
- assert (Hbemin : round radix2 fexp ZnearestE (bpow radix2 emin)
- = bpow radix2 emin).
- { rewrite round_generic; [reflexivity|apply valid_rnd_N|].
- apply generic_format_bpow.
- unfold fexp, FLT_exp; rewrite Z.max_r; [now simpl|].
- unfold Prec_gt_0 in prec_gt_0_; lia. }
- rewrite Hsucc, Rlt_bool_true.
- + intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs.
- rewrite Bone_correct, Rmult_1_l, is_finite_Bone, Bsign_Bone.
- case Rlt_bool_spec; intro Hover.
- * now rewrite Bool.andb_false_r.
- * exfalso; revert Hover; apply Rlt_not_le, bpow_lt.
- unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
- + rewrite Bone_correct, Rmult_1_l, Hbemin, Rabs_pos_eq; [|apply bpow_ge_0].
- apply bpow_lt; unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
-- unfold Bsucc; case sx.
- + case Rlt_bool_spec; intro Hover.
- * rewrite B2R_Bopp; simpl (Bopp _ (B754_finite _ _ _ _)).
- rewrite is_finite_Bopp.
- set (ox := B754_finite false mx ex Hmex).
- assert (Hpred := Bpred_pos_correct succ_nan ox).
- assert (Hox : (0 < B2R ox)%R); [|specialize (Hpred Hox); clear Hox].
- { now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0]. }
- rewrite (proj1 Hpred), (proj1 (proj2 Hpred)).
- unfold succ; rewrite Rle_bool_false; [split; [|split]|].
- { now unfold B2R, F2R, ox; simpl; rewrite Ropp_mult_distr_l, <-opp_IZR. }
- { now simpl. }
- { simpl (Bsign (B754_finite _ _ _ _)); simpl (true && _)%bool.
- rewrite Bsign_Bopp, (proj2 (proj2 Hpred)); [now simpl|].
- now destruct Hpred as (_, (H, _)); revert H; case (Bpred_pos _ _). }
- unfold B2R, F2R; simpl; change (Z.neg mx) with (- Z.pos mx)%Z.
- rewrite opp_IZR, <-Ropp_mult_distr_l, <-Ropp_0; apply Ropp_lt_contravar.
- now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0].
- * exfalso; revert Hover; apply Rlt_not_le.
- apply (Rle_lt_trans _ (succ radix2 fexp 0)).
- { apply succ_le; [now apply FLT_exp_valid|apply generic_format_B2R|
- apply generic_format_0|].
- unfold B2R, F2R; simpl; change (Z.neg mx) with (- Z.pos mx)%Z.
- rewrite opp_IZR, <-Ropp_mult_distr_l, <-Ropp_0; apply Ropp_le_contravar.
- now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. }
- rewrite Hsucc; apply bpow_lt.
- unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
- + set (x := B754_finite _ _ _ _).
- set (plus_nan := fun _ => succ_nan).
- assert (Hulp := Bulp_correct x (eq_refl _)).
- assert (Hplus := Bplus_correct plus_nan mode_NE x (Bulp x) (eq_refl _)).
- rewrite (proj1 (proj2 Hulp)) in Hplus; specialize (Hplus (eq_refl _)).
- assert (Px : (0 <= B2R x)%R).
- { now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. }
- assert (Hsucc' : (succ radix2 fexp (B2R x)
- = B2R x + ulp radix2 fexp (B2R x))%R).
- { now unfold succ; rewrite (Rle_bool_true _ _ Px). }
- rewrite (proj1 Hulp), <- Hsucc' in Hplus.
- rewrite round_generic in Hplus;
- [|apply valid_rnd_N| now apply generic_format_succ;
- [apply FLT_exp_valid|apply generic_format_B2R]].
- rewrite Rabs_pos_eq in Hplus; [|apply (Rle_trans _ _ _ Px), succ_ge_id].
- revert Hplus; case Rlt_bool_spec; intros Hover Hplus.
- * split; [now simpl|split; [now simpl|]].
- rewrite (proj2 (proj2 Hplus)); case Rcompare_spec.
- { intro H; exfalso; revert H.
- apply Rle_not_lt, (Rle_trans _ _ _ Px), succ_ge_id. }
- { intro H; exfalso; revert H; apply Rgt_not_eq, Rlt_gt.
- apply (Rlt_le_trans _ (B2R x)); [|apply succ_ge_id].
- now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0]. }
- now simpl.
- * now rewrite (proj1 Hplus).
-Qed.
-
-Definition Bpred pred_nan x :=
- Bopp pred_nan (Bsucc pred_nan (Bopp pred_nan x)).
+ B2FF (Bsucc x) = F754_infinity false.
+Proof.
+intros x Fx.
+rewrite <- is_finite_B2BSN in Fx.
+generalize (Bsucc_correct prec emax _ _ _ Fx).
+replace (BSN.Bsucc (B2BSN x)) with (B2BSN (Bsucc x)) by apply B2BSN_lift.
+rewrite 2!B2R_B2BSN.
+destruct Rlt_bool.
+- rewrite (Bsign_B2BSN x) by now destruct x.
+ rewrite is_finite_strict_B2BSN.
+ now destruct Bsucc.
+- now destruct Bsucc as [|[|]| |].
+Qed.
+
+Definition Bpred (x : binary_float) : binary_float.
+Proof.
+apply (lift x (Bpred (B2BSN x))).
+rewrite <- is_nan_B2BSN.
+apply is_nan_Bpred.
+Defined.
Lemma Bpred_correct :
- forall pred_nan x,
+ forall x,
is_finite x = true ->
if Rlt_bool (- bpow radix2 emax) (pred radix2 fexp (B2R x)) then
- B2R (Bpred pred_nan x) = pred radix2 fexp (B2R x) /\
- is_finite (Bpred pred_nan x) = true /\
- (Bsign (Bpred pred_nan x) = Bsign x || negb (is_finite_strict x))%bool
+ B2R (Bpred x) = pred radix2 fexp (B2R x) /\
+ is_finite (Bpred x) = true /\
+ (Bsign (Bpred x) = Bsign x || negb (is_finite_strict x))%bool
else
- B2FF (Bpred pred_nan x) = F754_infinity true.
-Proof.
-intros pred_nan x Fx.
-assert (Fox : is_finite (Bopp pred_nan x) = true).
-{ now rewrite is_finite_Bopp. }
-rewrite <-(Ropp_involutive (B2R x)), <-(B2R_Bopp pred_nan).
-rewrite pred_opp, Rlt_bool_opp.
-generalize (Bsucc_correct pred_nan _ Fox).
-case (Rlt_bool _ _).
-- intros (HR, (HF, HS)); unfold Bpred.
- rewrite B2R_Bopp, HR, is_finite_Bopp.
- rewrite <-(Bool.negb_involutive (Bsign x)), <-Bool.negb_andb.
- split; [reflexivity|split; [exact HF|]].
- replace (is_finite_strict x) with (is_finite_strict (Bopp pred_nan x));
- [|now case x; try easy; intros s pl Hpl; simpl;
- rewrite is_finite_strict_build_nan].
- rewrite Bsign_Bopp, <-(Bsign_Bopp pred_nan x), HS.
- + now simpl.
- + now revert Fx; case x.
- + now revert HF; case (Bsucc _ _).
-- now unfold Bpred; case (Bsucc _ _); intro s; case s.
+ B2FF (Bpred x) = F754_infinity true.
+Proof.
+intros x Fx.
+rewrite <- is_finite_B2BSN in Fx.
+generalize (Bpred_correct prec emax _ _ _ Fx).
+replace (BSN.Bpred (B2BSN x)) with (B2BSN (Bpred x)) by apply B2BSN_lift.
+rewrite 2!B2R_B2BSN.
+destruct Rlt_bool.
+- rewrite (Bsign_B2BSN x) by now destruct x.
+ rewrite is_finite_strict_B2BSN.
+ now destruct Bpred.
+- now destruct Bpred as [|[|]| |].
Qed.
End Binary.