aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/IEEE754/BinarySingleNaN.v
diff options
context:
space:
mode:
Diffstat (limited to 'flocq/IEEE754/BinarySingleNaN.v')
-rw-r--r--flocq/IEEE754/BinarySingleNaN.v3421
1 files changed, 3421 insertions, 0 deletions
diff --git a/flocq/IEEE754/BinarySingleNaN.v b/flocq/IEEE754/BinarySingleNaN.v
new file mode 100644
index 00000000..2dd5c3c6
--- /dev/null
+++ b/flocq/IEEE754/BinarySingleNaN.v
@@ -0,0 +1,3421 @@
+(**
+This file is part of the Flocq formalization of floating-point
+arithmetic in Coq: http://flocq.gforge.inria.fr/
+
+Copyright (C) 2010-2018 Sylvie Boldo
+#<br />#
+Copyright (C) 2010-2018 Guillaume Melquiond
+
+This library is free software; you can redistribute it and/or
+modify it under the terms of the GNU Lesser General Public
+License as published by the Free Software Foundation; either
+version 3 of the License, or (at your option) any later version.
+
+This library is distributed in the hope that it will be useful,
+but WITHOUT ANY WARRANTY; without even the implied warranty of
+MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+COPYING file for more details.
+*)
+
+(** * IEEE-754 arithmetic *)
+
+From Coq Require Import ZArith Reals Psatz SpecFloat.
+
+Require Import Core Round Bracket Operations Div Sqrt Relative.
+
+Definition SF2R beta x :=
+ match x with
+ | S754_finite s m e => F2R (Float beta (cond_Zopp s (Zpos m)) e)
+ | _ => 0%R
+ end.
+
+Class Prec_lt_emax prec emax := prec_lt_emax : (prec < emax)%Z.
+Arguments prec_lt_emax prec emax {Prec_lt_emax}.
+
+Section Binary.
+
+(** [prec] is the number of bits of the mantissa including the implicit one;
+ [emax] is the exponent of the infinities.
+ For instance, binary32 is defined by [prec = 24] and [emax = 128]. *)
+Variable prec emax : Z.
+Context (prec_gt_0_ : Prec_gt_0 prec).
+Context (prec_lt_emax_ : Prec_lt_emax prec emax).
+
+Notation emin := (emin prec emax).
+Notation fexp := (fexp prec emax).
+Instance fexp_correct : Valid_exp fexp := FLT_exp_valid emin prec.
+Instance fexp_monotone : Monotone_exp fexp := FLT_exp_monotone emin prec.
+
+Notation canonical_mantissa := (canonical_mantissa prec emax).
+
+Notation bounded := (SpecFloat.bounded prec emax).
+
+Notation valid_binary := (valid_binary prec emax).
+
+(** Basic type used for representing binary FP numbers.
+ Note that there is exactly one such object per FP datum. *)
+
+Inductive binary_float :=
+ | B754_zero (s : bool)
+ | B754_infinity (s : bool)
+ | B754_nan : binary_float
+ | B754_finite (s : bool) (m : positive) (e : Z) :
+ bounded m e = true -> binary_float.
+
+Definition SF2B x :=
+ match x as x return valid_binary x = true -> binary_float with
+ | S754_finite s m e => B754_finite s m e
+ | S754_infinity s => fun _ => B754_infinity s
+ | S754_zero s => fun _ => B754_zero s
+ | S754_nan => fun _ => B754_nan
+ end.
+
+Definition B2SF x :=
+ match x with
+ | B754_finite s m e _ => S754_finite s m e
+ | B754_infinity s => S754_infinity s
+ | B754_zero s => S754_zero s
+ | B754_nan => S754_nan
+ end.
+
+Definition B2R f :=
+ match f with
+ | B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e)
+ | _ => 0%R
+ end.
+
+Theorem SF2R_B2SF :
+ forall x,
+ SF2R radix2 (B2SF x) = B2R x.
+Proof.
+now intros [sx|sx| |sx mx ex Hx].
+Qed.
+
+Theorem B2SF_SF2B :
+ forall x Hx,
+ B2SF (SF2B x Hx) = x.
+Proof.
+now intros [sx|sx| |sx mx ex] Hx.
+Qed.
+
+Theorem valid_binary_B2SF :
+ forall x,
+ valid_binary (B2SF x) = true.
+Proof.
+now intros [sx|sx| |sx mx ex Hx].
+Qed.
+
+Theorem SF2B_B2SF :
+ forall x H,
+ SF2B (B2SF x) H = x.
+Proof.
+intros [sx|sx| |sx mx ex Hx] H ; try easy.
+apply f_equal, eqbool_irrelevance.
+Qed.
+
+Theorem SF2B_B2SF_valid :
+ forall x,
+ SF2B (B2SF x) (valid_binary_B2SF x) = x.
+Proof.
+intros x.
+apply SF2B_B2SF.
+Qed.
+
+Theorem B2R_SF2B :
+ forall x Hx,
+ B2R (SF2B x Hx) = SF2R radix2 x.
+Proof.
+now intros [sx|sx| |sx mx ex] Hx.
+Qed.
+
+Theorem match_SF2B :
+ forall {T} fz fi fn ff x Hx,
+ match SF2B x Hx return T with
+ | B754_zero sx => fz sx
+ | B754_infinity sx => fi sx
+ | B754_nan => fn
+ | B754_finite sx mx ex _ => ff sx mx ex
+ end =
+ match x with
+ | S754_zero sx => fz sx
+ | S754_infinity sx => fi sx
+ | S754_nan => fn
+ | S754_finite sx mx ex => ff sx mx ex
+ end.
+Proof.
+now intros T fz fi fn ff [sx|sx| |sx mx ex] Hx.
+Qed.
+
+Theorem canonical_canonical_mantissa :
+ forall (sx : bool) mx ex,
+ canonical_mantissa mx ex = true ->
+ canonical radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex).
+Proof.
+intros sx mx ex H.
+assert (Hx := Zeq_bool_eq _ _ H). clear H.
+apply sym_eq.
+simpl.
+pattern ex at 2 ; rewrite <- Hx.
+apply (f_equal fexp).
+rewrite mag_F2R_Zdigits.
+rewrite <- Zdigits_abs.
+rewrite Zpos_digits2_pos.
+now case sx.
+now case sx.
+Qed.
+
+Theorem generic_format_B2R :
+ forall x,
+ generic_format radix2 fexp (B2R x).
+Proof.
+intros [sx|sx| |sx mx ex Hx] ; try apply generic_format_0.
+simpl.
+apply generic_format_canonical.
+apply canonical_canonical_mantissa.
+now destruct (andb_prop _ _ Hx) as (H, _).
+Qed.
+
+Theorem FLT_format_B2R :
+ forall x,
+ FLT_format radix2 emin prec (B2R x).
+Proof with auto with typeclass_instances.
+intros x.
+apply FLT_format_generic...
+apply generic_format_B2R.
+Qed.
+
+Theorem B2SF_inj :
+ forall x y : binary_float,
+ B2SF x = B2SF y ->
+ x = y.
+Proof.
+intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
+(* *)
+intros H.
+now inversion H.
+(* *)
+intros H.
+now inversion H.
+(* *)
+intros H.
+inversion H.
+clear H.
+revert Hx.
+rewrite H2, H3.
+intros Hx.
+apply f_equal, eqbool_irrelevance.
+Qed.
+
+Definition is_finite_strict f :=
+ match f with
+ | B754_finite _ _ _ _ => true
+ | _ => false
+ end.
+
+Definition is_finite_strict_SF f :=
+ match f with
+ | S754_finite _ _ _ => true
+ | _ => false
+ end.
+
+Theorem is_finite_strict_B2R :
+ forall x,
+ B2R x <> 0%R ->
+ is_finite_strict x = true.
+Proof.
+now intros [sx|sx| |sx mx ex Bx] Hx.
+Qed.
+
+Theorem is_finite_strict_SF2B :
+ forall x Hx,
+ is_finite_strict (SF2B x Hx) = is_finite_strict_SF x.
+Proof.
+now intros [sx|sx| |sx mx ex] Hx.
+Qed.
+
+Theorem B2R_inj:
+ forall x y : binary_float,
+ is_finite_strict x = true ->
+ is_finite_strict y = true ->
+ B2R x = B2R y ->
+ x = y.
+Proof.
+intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
+simpl.
+intros _ _ Heq.
+assert (Hs: sx = sy).
+(* *)
+revert Heq. clear.
+case sx ; case sy ; try easy ;
+ intros Heq ; apply False_ind ; revert Heq.
+apply Rlt_not_eq.
+apply Rlt_trans with R0.
+now apply F2R_lt_0.
+now apply F2R_gt_0.
+apply Rgt_not_eq.
+apply Rgt_trans with R0.
+now apply F2R_gt_0.
+now apply F2R_lt_0.
+assert (mx = my /\ ex = ey).
+(* *)
+refine (_ (canonical_unique _ fexp _ _ _ _ Heq)).
+rewrite Hs.
+now case sy ; intro H ; injection H ; split.
+apply canonical_canonical_mantissa.
+exact (proj1 (andb_prop _ _ Hx)).
+apply canonical_canonical_mantissa.
+exact (proj1 (andb_prop _ _ Hy)).
+(* *)
+revert Hx.
+rewrite Hs, (proj1 H), (proj2 H).
+intros Hx.
+apply f_equal.
+apply eqbool_irrelevance.
+Qed.
+
+Definition Bsign x :=
+ match x with
+ | B754_nan => false
+ | B754_zero s => s
+ | B754_infinity s => s
+ | B754_finite s _ _ _ => s
+ end.
+
+Definition sign_SF x :=
+ match x with
+ | S754_nan => false
+ | S754_zero s => s
+ | S754_infinity s => s
+ | S754_finite s _ _ => s
+ end.
+
+Theorem Bsign_SF2B :
+ forall x H,
+ Bsign (SF2B x H) = sign_SF x.
+Proof.
+now intros [sx|sx| |sx mx ex] H.
+Qed.
+
+Definition is_finite f :=
+ match f with
+ | B754_finite _ _ _ _ => true
+ | B754_zero _ => true
+ | _ => false
+ end.
+
+Definition is_finite_SF f :=
+ match f with
+ | S754_finite _ _ _ => true
+ | S754_zero _ => true
+ | _ => false
+ end.
+
+Theorem is_finite_SF2B :
+ forall x Hx,
+ is_finite (SF2B x Hx) = is_finite_SF x.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem is_finite_SF_B2SF :
+ forall x,
+ is_finite_SF (B2SF x) = is_finite x.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem B2R_Bsign_inj:
+ forall x y : binary_float,
+ is_finite x = true ->
+ is_finite y = true ->
+ B2R x = B2R y ->
+ Bsign x = Bsign y ->
+ x = y.
+Proof.
+intros. destruct x, y; try (apply B2R_inj; now eauto).
+- simpl in H2. congruence.
+- symmetry in H1. apply Rmult_integral in H1.
+ destruct H1. apply (eq_IZR _ 0) in H1. destruct s0; discriminate H1.
+ simpl in H1. pose proof (bpow_gt_0 radix2 e).
+ rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3.
+- apply Rmult_integral in H1.
+ destruct H1. apply (eq_IZR _ 0) in H1. destruct s; discriminate H1.
+ simpl in H1. pose proof (bpow_gt_0 radix2 e).
+ rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3.
+Qed.
+
+Definition is_nan f :=
+ match f with
+ | B754_nan => true
+ | _ => false
+ end.
+
+Definition is_nan_SF f :=
+ match f with
+ | S754_nan => true
+ | _ => false
+ end.
+
+Theorem is_nan_SF2B :
+ forall x Hx,
+ is_nan (SF2B x Hx) = is_nan_SF x.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem is_nan_SF_B2SF :
+ forall x,
+ is_nan_SF (B2SF x) = is_nan x.
+Proof.
+now intros [| | |].
+Qed.
+
+Definition erase (x : binary_float) : binary_float.
+Proof.
+destruct x as [s|s| |s m e H].
+- exact (B754_zero s).
+- exact (B754_infinity s).
+- exact B754_nan.
+- apply (B754_finite s m e).
+ destruct bounded.
+ apply eq_refl.
+ exact H.
+Defined.
+
+Theorem erase_correct :
+ forall x, erase x = x.
+Proof.
+destruct x as [s|s| |s m e H] ; try easy ; simpl.
+- apply f_equal, eqbool_irrelevance.
+Qed.
+
+(** Opposite *)
+
+Definition Bopp x :=
+ match x with
+ | B754_nan => x
+ | B754_infinity sx => B754_infinity (negb sx)
+ | B754_finite sx mx ex Hx => B754_finite (negb sx) mx ex Hx
+ | B754_zero sx => B754_zero (negb sx)
+ end.
+
+Theorem Bopp_involutive :
+ forall x,
+ Bopp (Bopp x) = x.
+Proof.
+now intros [sx|sx| |sx mx ex Hx] ; simpl ; try rewrite Bool.negb_involutive.
+Qed.
+
+Theorem B2R_Bopp :
+ forall x,
+ B2R (Bopp x) = (- B2R x)%R.
+Proof.
+intros [sx|sx| |sx mx ex Hx]; apply sym_eq ; try apply Ropp_0.
+simpl.
+rewrite <- F2R_opp.
+now case sx.
+Qed.
+
+Theorem is_nan_Bopp :
+ forall x,
+ is_nan (Bopp x) = is_nan x.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem is_finite_Bopp :
+ forall x,
+ is_finite (Bopp x) = is_finite x.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem is_finite_strict_Bopp :
+ forall x,
+ is_finite_strict (Bopp x) = is_finite_strict x.
+Proof.
+now intros [| | |].
+Qed.
+
+Lemma Bsign_Bopp :
+ forall x, is_nan x = false -> Bsign (Bopp x) = negb (Bsign x).
+Proof. now intros [s|s| |s m e H]. Qed.
+
+(** Absolute value *)
+
+Definition Babs (x : binary_float) : binary_float :=
+ match x with
+ | B754_nan => x
+ | B754_infinity sx => B754_infinity false
+ | B754_finite sx mx ex Hx => B754_finite false mx ex Hx
+ | B754_zero sx => B754_zero false
+ end.
+
+Theorem B2R_Babs :
+ forall x,
+ B2R (Babs x) = Rabs (B2R x).
+Proof.
+intros [sx|sx| |sx mx ex Hx]; apply sym_eq ; try apply Rabs_R0.
+simpl. rewrite <- F2R_abs. now destruct sx.
+Qed.
+
+Theorem is_nan_Babs :
+ forall x,
+ is_nan (Babs x) = is_nan x.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem is_finite_Babs :
+ forall x,
+ is_finite (Babs x) = is_finite x.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem is_finite_strict_Babs :
+ forall x,
+ is_finite_strict (Babs x) = is_finite_strict x.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem Bsign_Babs :
+ forall x,
+ Bsign (Babs x) = false.
+Proof.
+now intros [| | |].
+Qed.
+
+Theorem Babs_idempotent :
+ forall (x: binary_float),
+ Babs (Babs x) = Babs x.
+Proof.
+now intros [sx|sx| |sx mx ex Hx].
+Qed.
+
+Theorem Babs_Bopp :
+ forall x,
+ Babs (Bopp x) = Babs x.
+Proof.
+now intros [| | |].
+Qed.
+
+(** Comparison
+
+[Some c] means ordered as per [c]; [None] means unordered. *)
+
+Definition Bcompare (f1 f2 : binary_float) : option comparison :=
+ SFcompare (B2SF f1) (B2SF f2).
+
+Theorem Bcompare_correct :
+ forall f1 f2,
+ is_finite f1 = true -> is_finite f2 = true ->
+ Bcompare f1 f2 = Some (Rcompare (B2R f1) (B2R f2)).
+Proof.
+ Ltac apply_Rcompare :=
+ match goal with
+ | [ |- Lt = Rcompare _ _ ] => symmetry; apply Rcompare_Lt
+ | [ |- Eq = Rcompare _ _ ] => symmetry; apply Rcompare_Eq
+ | [ |- Gt = Rcompare _ _ ] => symmetry; apply Rcompare_Gt
+ end.
+ unfold Bcompare, SFcompare; intros f1 f2 H1 H2.
+ destruct f1, f2; try easy; apply f_equal; clear H1 H2.
+ now rewrite Rcompare_Eq.
+ destruct s0 ; apply_Rcompare.
+ now apply F2R_lt_0.
+ now apply F2R_gt_0.
+ destruct s ; apply_Rcompare.
+ now apply F2R_lt_0.
+ now apply F2R_gt_0.
+ simpl.
+ apply andb_prop in e0; destruct e0; apply (canonical_canonical_mantissa false) in H.
+ apply andb_prop in e2; destruct e2; apply (canonical_canonical_mantissa false) in H1.
+ pose proof (Zcompare_spec e e1); unfold canonical, Fexp in H1, H.
+ assert (forall m1 m2 e1 e2,
+ let x := (IZR (Zpos m1) * bpow radix2 e1)%R in
+ let y := (IZR (Zpos m2) * bpow radix2 e2)%R in
+ (cexp radix2 fexp x < cexp radix2 fexp y)%Z -> (x < y)%R).
+ {
+ intros; apply Rnot_le_lt; intro; apply (mag_le radix2) in H5.
+ apply Zlt_not_le with (1 := H4).
+ now apply fexp_monotone.
+ now apply (F2R_gt_0 _ (Float radix2 (Zpos m2) e2)).
+ }
+ assert (forall m1 m2 e1 e2, (IZR (- Zpos m1) * bpow radix2 e1 < IZR (Zpos m2) * bpow radix2 e2)%R).
+ {
+ intros; apply (Rlt_trans _ 0%R).
+ now apply (F2R_lt_0 _ (Float radix2 (Zneg m1) e0)).
+ now apply (F2R_gt_0 _ (Float radix2 (Zpos m2) e2)).
+ }
+ unfold F2R, Fnum, Fexp.
+ destruct s, s0; try (now apply_Rcompare; apply H5); inversion H3;
+ try (apply_Rcompare; apply H4; rewrite H, H1 in H7; assumption);
+ try (apply_Rcompare; do 2 rewrite opp_IZR, Ropp_mult_distr_l_reverse;
+ apply Ropp_lt_contravar; apply H4; rewrite H, H1 in H7; assumption);
+ rewrite H7, Rcompare_mult_r, Rcompare_IZR by (apply bpow_gt_0); reflexivity.
+Qed.
+
+Theorem Bcompare_swap :
+ forall x y,
+ Bcompare y x = match Bcompare x y with Some c => Some (CompOpp c) | None => None end.
+Proof.
+ intros.
+ unfold Bcompare.
+ destruct x as [ ? | [] | | [] mx ex Bx ];
+ destruct y as [ ? | [] | | [] my ey By ]; simpl; try easy.
+- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
+ now rewrite (Pcompare_antisym mx my).
+- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
+ now rewrite Pcompare_antisym.
+Qed.
+
+Definition Beqb (f1 f2 : binary_float) : bool := SFeqb (B2SF f1) (B2SF f2).
+
+Theorem Beqb_correct :
+ forall f1 f2,
+ is_finite f1 = true -> is_finite f2 = true ->
+ Beqb f1 f2 = Req_bool (B2R f1) (B2R f2).
+Proof.
+intros f1 f2 F1 F2.
+generalize (Bcompare_correct _ _ F1 F2).
+unfold Beqb, SFeqb, Bcompare.
+intros ->.
+case Rcompare_spec; intro H; case Req_bool_spec; intro H'; try reflexivity; lra.
+Qed.
+
+Definition Bltb (f1 f2 : binary_float) : bool := SFltb (B2SF f1) (B2SF f2).
+
+Theorem Bltb_correct :
+ forall f1 f2,
+ is_finite f1 = true -> is_finite f2 = true ->
+ Bltb f1 f2 = Rlt_bool (B2R f1) (B2R f2).
+Proof.
+intros f1 f2 F1 F2.
+generalize (Bcompare_correct _ _ F1 F2).
+unfold Bltb, SFltb, Bcompare.
+intros ->.
+case Rcompare_spec; intro H; case Rlt_bool_spec; intro H'; try reflexivity; lra.
+Qed.
+
+Definition Bleb (f1 f2 : binary_float) : bool := SFleb (B2SF f1) (B2SF f2).
+
+Theorem Bleb_correct :
+ forall f1 f2,
+ is_finite f1 = true -> is_finite f2 = true ->
+ Bleb f1 f2 = Rle_bool (B2R f1) (B2R f2).
+Proof.
+intros f1 f2 F1 F2.
+generalize (Bcompare_correct _ _ F1 F2).
+unfold Bleb, SFleb, Bcompare.
+intros ->.
+case Rcompare_spec; intro H; case Rle_bool_spec; intro H'; try reflexivity; lra.
+Qed.
+
+Theorem bounded_le_emax_minus_prec :
+ forall mx ex,
+ bounded mx ex = true ->
+ (F2R (Float radix2 (Zpos mx) ex)
+ <= bpow radix2 emax - bpow radix2 (emax - prec))%R.
+Proof.
+intros mx ex Hx.
+destruct (andb_prop _ _ Hx) as (H1,H2).
+generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
+generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
+generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex).
+destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
+unfold mag_val.
+intros H.
+elim Ex; [|now apply Rgt_not_eq, F2R_gt_0]; intros _.
+rewrite <-F2R_Zabs; simpl; clear Ex; intros Ex.
+generalize (Rmult_lt_compat_r (bpow radix2 (-ex)) _ _ (bpow_gt_0 _ _) Ex).
+unfold F2R; simpl; rewrite Rmult_assoc, <-!bpow_plus.
+rewrite H; [|intro H'; discriminate H'].
+rewrite <-Z.add_assoc, Z.add_opp_diag_r, Z.add_0_r, Rmult_1_r.
+rewrite <-(IZR_Zpower _ _ (Zdigits_ge_0 _ _)); clear Ex; intro Ex.
+generalize (Zlt_le_succ _ _ (lt_IZR _ _ Ex)); clear Ex; intro Ex.
+generalize (IZR_le _ _ Ex).
+rewrite succ_IZR; clear Ex; intro Ex.
+generalize (Rplus_le_compat_r (-1) _ _ Ex); clear Ex; intro Ex.
+ring_simplify in Ex; revert Ex.
+rewrite (IZR_Zpower _ _ (Zdigits_ge_0 _ _)); intro Ex.
+generalize (Rmult_le_compat_r (bpow radix2 ex) _ _ (bpow_ge_0 _ _) Ex).
+intro H'; apply (Rle_trans _ _ _ H').
+rewrite Rmult_minus_distr_r, Rmult_1_l, <-bpow_plus.
+revert H1; unfold fexp, FLT_exp; intro H1.
+generalize (Z.le_max_l (Z.pos (digits2_pos mx) + ex - prec) emin).
+
+rewrite H1; intro H1'.
+generalize (proj1 (Z.le_sub_le_add_r _ _ _) H1').
+rewrite Zpos_digits2_pos; clear H1'; intro H1'.
+apply (Rle_trans _ _ _ (Rplus_le_compat_r _ _ _ (bpow_le _ _ _ H1'))).
+replace emax with (emax - prec - ex + (ex + prec))%Z at 1 by ring.
+replace (emax - prec)%Z with (emax - prec - ex + ex)%Z at 2 by ring.
+do 2 rewrite (bpow_plus _ (emax - prec - ex)).
+rewrite <-Rmult_minus_distr_l.
+rewrite <-(Rmult_1_l (_ + _)).
+apply Rmult_le_compat_r.
+{ apply Rle_0_minus, bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia. }
+change 1%R with (bpow radix2 0); apply bpow_le; lia.
+Qed.
+
+Theorem bounded_lt_emax :
+ forall mx ex,
+ bounded mx ex = true ->
+ (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R.
+Proof.
+intros mx ex Hx.
+destruct (andb_prop _ _ Hx) as (H1,H2).
+generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
+generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
+generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex).
+destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
+unfold mag_val.
+intros H.
+apply Rlt_le_trans with (bpow radix2 e').
+change (Zpos mx) with (Z.abs (Zpos mx)).
+rewrite F2R_Zabs.
+apply Ex.
+apply Rgt_not_eq.
+now apply F2R_gt_0.
+apply bpow_le.
+rewrite H. 2: discriminate.
+revert H1. clear -H2.
+rewrite Zpos_digits2_pos.
+unfold fexp, FLT_exp.
+intros ; lia.
+Qed.
+
+Theorem bounded_ge_emin :
+ forall mx ex,
+ bounded mx ex = true ->
+ (bpow radix2 emin <= F2R (Float radix2 (Zpos mx) ex))%R.
+Proof.
+intros mx ex Hx.
+destruct (andb_prop _ _ Hx) as [H1 _].
+apply Zeq_bool_eq in H1.
+generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex).
+destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as [e' Ex].
+unfold mag_val.
+intros H.
+assert (H0 : Zpos mx <> 0%Z) by easy.
+rewrite Rabs_pos_eq in Ex by now apply F2R_ge_0.
+refine (Rle_trans _ _ _ _ (proj1 (Ex _))).
+2: now apply F2R_neq_0.
+apply bpow_le.
+rewrite H by easy.
+revert H1.
+rewrite Zpos_digits2_pos.
+generalize (Zdigits radix2 (Zpos mx)) (Zdigits_gt_0 radix2 (Zpos mx) H0).
+unfold fexp, FLT_exp.
+clear -prec_gt_0_.
+unfold Prec_gt_0 in prec_gt_0_.
+intros ; lia.
+Qed.
+
+Theorem abs_B2R_le_emax_minus_prec :
+ forall x,
+ (Rabs (B2R x) <= bpow radix2 emax - bpow radix2 (emax - prec))%R.
+Proof.
+intros [sx|sx| |sx mx ex Hx] ; simpl ;
+ [rewrite Rabs_R0 ; apply Rle_0_minus, bpow_le ;
+ revert prec_gt_0_; unfold Prec_gt_0; lia..|].
+rewrite <- F2R_Zabs, abs_cond_Zopp.
+now apply bounded_le_emax_minus_prec.
+Qed.
+
+Theorem abs_B2R_lt_emax :
+ forall x,
+ (Rabs (B2R x) < bpow radix2 emax)%R.
+Proof.
+intros [sx|sx| |sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ).
+rewrite <- F2R_Zabs, abs_cond_Zopp.
+now apply bounded_lt_emax.
+Qed.
+
+Theorem abs_B2R_ge_emin :
+ forall x,
+ is_finite_strict x = true ->
+ (bpow radix2 emin <= Rabs (B2R x))%R.
+Proof.
+intros [sx|sx| |sx mx ex Hx] ; simpl ; try discriminate.
+intros; case sx; simpl.
+- unfold F2R; simpl; rewrite Rabs_mult, <-abs_IZR; simpl.
+ rewrite Rabs_pos_eq; [|apply bpow_ge_0].
+ now apply bounded_ge_emin.
+- unfold F2R; simpl; rewrite Rabs_mult, <-abs_IZR; simpl.
+ rewrite Rabs_pos_eq; [|apply bpow_ge_0].
+ now apply bounded_ge_emin.
+Qed.
+
+Theorem bounded_canonical_lt_emax :
+ forall mx ex,
+ canonical radix2 fexp (Float radix2 (Zpos mx) ex) ->
+ (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R ->
+ bounded mx ex = true.
+Proof.
+intros mx ex Cx Bx.
+apply andb_true_intro.
+split.
+unfold canonical_mantissa.
+unfold canonical, Fexp in Cx.
+rewrite Cx at 2.
+rewrite Zpos_digits2_pos.
+unfold cexp.
+rewrite mag_F2R_Zdigits. 2: discriminate.
+now apply -> Zeq_is_eq_bool.
+apply Zle_bool_true.
+unfold canonical, Fexp in Cx.
+rewrite Cx.
+unfold cexp, fexp, FLT_exp.
+destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl.
+apply Z.max_lub.
+cut (e' - 1 < emax)%Z. clear ; lia.
+apply lt_bpow with radix2.
+apply Rle_lt_trans with (2 := Bx).
+change (Zpos mx) with (Z.abs (Zpos mx)).
+rewrite F2R_Zabs.
+apply Ex.
+apply Rgt_not_eq.
+now apply F2R_gt_0.
+unfold emin.
+generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
+clear ; lia.
+Qed.
+
+(** Truncation *)
+
+Theorem shr_m_shr_record_of_loc :
+ forall m l,
+ shr_m (shr_record_of_loc m l) = m.
+Proof.
+now intros m [|[| |]].
+Qed.
+
+Theorem loc_of_shr_record_of_loc :
+ forall m l,
+ loc_of_shr_record (shr_record_of_loc m l) = l.
+Proof.
+now intros m [|[| |]].
+Qed.
+
+Lemma inbetween_shr_1 :
+ forall x mrs e,
+ (0 <= shr_m mrs)%Z ->
+ inbetween_float radix2 (shr_m mrs) e x (loc_of_shr_record mrs) ->
+ inbetween_float radix2 (shr_m (shr_1 mrs)) (e + 1) x (loc_of_shr_record (shr_1 mrs)).
+Proof.
+intros x mrs e Hm Hl.
+refine (_ (new_location_even_correct (F2R (Float radix2 (shr_m (shr_1 mrs)) (e + 1))) (bpow radix2 e) 2 _ _ _ x (if shr_r (shr_1 mrs) then 1 else 0) (loc_of_shr_record mrs) _ _)) ; try easy.
+2: apply bpow_gt_0.
+2: now case (shr_r (shr_1 mrs)) ; split.
+change 2%R with (bpow radix2 1).
+rewrite <- bpow_plus.
+rewrite (Zplus_comm 1), <- (F2R_bpow radix2 (e + 1)).
+unfold inbetween_float, F2R. simpl.
+rewrite plus_IZR, Rmult_plus_distr_r.
+replace (Bracket.new_location_even 2 (if shr_r (shr_1 mrs) then 1%Z else 0%Z) (loc_of_shr_record mrs)) with (loc_of_shr_record (shr_1 mrs)).
+easy.
+clear -Hm.
+destruct mrs as (m, r, s).
+now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
+rewrite (F2R_change_exp radix2 e).
+2: apply Zle_succ.
+unfold F2R. simpl.
+rewrite <- 2!Rmult_plus_distr_r, <- 2!plus_IZR.
+rewrite Zplus_assoc.
+replace (shr_m (shr_1 mrs) * 2 ^ (e + 1 - e) + (if shr_r (shr_1 mrs) then 1%Z else 0%Z))%Z with (shr_m mrs).
+exact Hl.
+ring_simplify (e + 1 - e)%Z.
+change (2^1)%Z with 2%Z.
+rewrite Zmult_comm.
+clear -Hm.
+destruct mrs as (m, r, s).
+now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
+Qed.
+
+Theorem inbetween_shr :
+ forall x m e l n,
+ (0 <= m)%Z ->
+ inbetween_float radix2 m e x l ->
+ let '(mrs, e') := shr (shr_record_of_loc m l) e n in
+ inbetween_float radix2 (shr_m mrs) e' x (loc_of_shr_record mrs).
+Proof.
+intros x m e l n Hm Hl.
+destruct n as [|n|n].
+now destruct l as [|[| |]].
+2: now destruct l as [|[| |]].
+unfold shr.
+rewrite iter_pos_nat.
+rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
+induction (nat_of_P n).
+simpl.
+rewrite Zplus_0_r.
+now destruct l as [|[| |]].
+rewrite iter_nat_S.
+rewrite inj_S.
+unfold Z.succ.
+rewrite Zplus_assoc.
+revert IHn0.
+apply inbetween_shr_1.
+clear -Hm.
+induction n0.
+now destruct l as [|[| |]].
+rewrite iter_nat_S.
+revert IHn0.
+generalize (iter_nat shr_1 n0 (shr_record_of_loc m l)).
+clear.
+intros (m, r, s) Hm.
+now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
+Qed.
+
+Notation shr_fexp := (shr_fexp prec emax).
+
+Theorem shr_truncate :
+ forall m e l,
+ (0 <= m)%Z ->
+ shr_fexp m e l =
+ let '(m', e', l') := truncate radix2 fexp (m, e, l) in (shr_record_of_loc m' l', e').
+Proof.
+intros m e l Hm.
+case_eq (truncate radix2 fexp (m, e, l)).
+intros (m', e') l'.
+unfold shr_fexp.
+rewrite Zdigits2_Zdigits.
+case_eq (fexp (Zdigits radix2 m + e) - e)%Z.
+(* *)
+intros He.
+unfold truncate.
+rewrite He.
+simpl.
+intros H.
+now inversion H.
+(* *)
+intros p Hp.
+assert (He: (e <= fexp (Zdigits radix2 m + e))%Z).
+clear -Hp ; lia.
+destruct (inbetween_float_ex radix2 m e l) as (x, Hx).
+generalize (inbetween_shr x m e l (fexp (Zdigits radix2 m + e) - e) Hm Hx).
+assert (Hx0 : (0 <= x)%R).
+apply Rle_trans with (F2R (Float radix2 m e)).
+now apply F2R_ge_0.
+exact (proj1 (inbetween_float_bounds _ _ _ _ _ Hx)).
+case_eq (shr (shr_record_of_loc m l) e (fexp (Zdigits radix2 m + e) - e)).
+intros mrs e'' H3 H4 H1.
+generalize (truncate_correct radix2 _ x m e l Hx0 Hx (or_introl _ He)).
+rewrite H1.
+intros (H2,_).
+rewrite <- Hp, H3.
+assert (e'' = e').
+change (snd (mrs, e'') = snd (fst (m',e',l'))).
+rewrite <- H1, <- H3.
+unfold truncate.
+now rewrite Hp.
+rewrite H in H4 |- *.
+apply (f_equal (fun v => (v, _))).
+destruct (inbetween_float_unique _ _ _ _ _ _ _ H2 H4) as (H5, H6).
+rewrite H5, H6.
+case mrs.
+now intros m0 [|] [|].
+(* *)
+intros p Hp.
+unfold truncate.
+rewrite Hp.
+simpl.
+intros H.
+now inversion H.
+Qed.
+
+(** Rounding modes *)
+
+Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA.
+
+Definition round_mode m :=
+ match m with
+ | mode_NE => ZnearestE
+ | mode_ZR => Ztrunc
+ | mode_DN => Zfloor
+ | mode_UP => Zceil
+ | mode_NA => ZnearestA
+ end.
+
+Definition choice_mode m sx mx lx :=
+ match m with
+ | mode_NE => cond_incr (round_N (negb (Z.even mx)) lx) mx
+ | mode_ZR => mx
+ | mode_DN => cond_incr (round_sign_DN sx lx) mx
+ | mode_UP => cond_incr (round_sign_UP sx lx) mx
+ | mode_NA => cond_incr (round_N true lx) mx
+ end.
+
+Global Instance valid_rnd_round_mode : forall m, Valid_rnd (round_mode m).
+Proof.
+destruct m ; unfold round_mode ; auto with typeclass_instances.
+Qed.
+
+Definition overflow_to_inf m s :=
+ match m with
+ | mode_NE => true
+ | mode_NA => true
+ | mode_ZR => false
+ | mode_UP => negb s
+ | mode_DN => s
+ end.
+
+Definition binary_overflow m s :=
+ if overflow_to_inf m s then S754_infinity s
+ else S754_finite s (Z.to_pos (Zpower 2 prec - 1)%Z) (emax - prec).
+
+Theorem is_nan_binary_overflow :
+ forall mode s,
+ is_nan_SF (binary_overflow mode s) = false.
+Proof.
+intros mode s.
+unfold binary_overflow.
+now destruct overflow_to_inf.
+Qed.
+
+Theorem binary_overflow_correct :
+ forall m s,
+ valid_binary (binary_overflow m s) = true.
+Proof.
+intros m s.
+unfold binary_overflow.
+case overflow_to_inf.
+easy.
+unfold valid_binary, bounded.
+rewrite Zle_bool_refl.
+rewrite Bool.andb_true_r.
+apply Zeq_bool_true.
+rewrite Zpos_digits2_pos.
+replace (Zdigits radix2 _) with prec.
+unfold fexp, FLT_exp, emin.
+generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
+clear ; zify ; lia.
+change 2%Z with (radix_val radix2).
+assert (H: (0 < radix2 ^ prec - 1)%Z).
+ apply Zlt_succ_pred.
+ now apply Zpower_gt_1.
+rewrite Z2Pos.id by exact H.
+apply Zle_antisym.
+- apply Z.lt_pred_le.
+ apply Zdigits_gt_Zpower.
+ rewrite Z.abs_eq by now apply Zlt_le_weak.
+ apply Z.lt_le_pred.
+ apply Zpower_lt.
+ now apply Zlt_le_weak.
+ apply Z.lt_pred_l.
+- apply Zdigits_le_Zpower.
+ rewrite Z.abs_eq by now apply Zlt_le_weak.
+ apply Z.lt_pred_l.
+Qed.
+
+Definition binary_fit_aux mode sx mx ex :=
+ if Zle_bool ex (emax - prec) then S754_finite sx mx ex
+ else binary_overflow mode sx.
+
+Theorem binary_fit_aux_correct :
+ forall mode sx mx ex,
+ canonical_mantissa mx ex = true ->
+ let x := SF2R radix2 (S754_finite sx mx ex) in
+ let z := binary_fit_aux mode sx mx ex in
+ valid_binary z = true /\
+ if Rlt_bool (Rabs x) (bpow radix2 emax) then
+ SF2R radix2 z = x /\ is_finite_SF z = true /\ sign_SF z = sx
+ else
+ z = binary_overflow mode sx.
+Proof.
+intros m sx mx ex Cx.
+unfold binary_fit_aux.
+simpl.
+rewrite F2R_cond_Zopp.
+rewrite abs_cond_Ropp.
+rewrite Rabs_pos_eq by now apply F2R_ge_0.
+destruct Zle_bool eqn:He.
+- assert (Hb: bounded mx ex = true).
+ { unfold bounded. now rewrite Cx. }
+ apply (conj Hb).
+ rewrite Rlt_bool_true.
+ repeat split.
+ apply F2R_cond_Zopp.
+ now apply bounded_lt_emax.
+- rewrite Rlt_bool_false.
+ { repeat split.
+ apply binary_overflow_correct. }
+ apply Rnot_lt_le.
+ intros Hx.
+ apply bounded_canonical_lt_emax in Hx.
+ revert Hx.
+ unfold bounded.
+ now rewrite Cx, He.
+ now apply (canonical_canonical_mantissa false).
+Qed.
+
+Definition binary_round_aux mode sx mx ex lx :=
+ let '(mrs', e') := shr_fexp mx ex lx in
+ let '(mrs'', e'') := shr_fexp (choice_mode mode sx (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in
+ match shr_m mrs'' with
+ | Z0 => S754_zero sx
+ | Zpos m => binary_fit_aux mode sx m e''
+ | _ => S754_nan
+ end.
+
+Theorem binary_round_aux_correct' :
+ forall mode x mx ex lx,
+ (x <> 0)%R ->
+ inbetween_float radix2 mx ex (Rabs x) lx ->
+ (ex <= cexp radix2 fexp x)%Z ->
+ let z := binary_round_aux mode (Rlt_bool x 0) mx ex lx in
+ valid_binary z = true /\
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
+ SF2R radix2 z = round radix2 fexp (round_mode mode) x /\
+ is_finite_SF z = true /\ sign_SF z = Rlt_bool x 0
+ else
+ z = binary_overflow mode (Rlt_bool x 0).
+Proof with auto with typeclass_instances.
+intros m x mx ex lx Px Bx Ex z.
+unfold binary_round_aux in z.
+revert z.
+rewrite shr_truncate.
+refine (_ (round_trunc_sign_any_correct' _ _ (round_mode m) (choice_mode m) _ x mx ex lx Bx (or_introl _ Ex))).
+rewrite <- cexp_abs in Ex.
+refine (_ (truncate_correct_partial' _ fexp _ _ _ _ _ Bx Ex)).
+destruct (truncate radix2 fexp (mx, ex, lx)) as ((m1, e1), l1).
+rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
+set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
+intros (H1a,H1b) H1c.
+rewrite H1c.
+assert (Hm: (m1 <= m1')%Z).
+(* . *)
+unfold m1', choice_mode, cond_incr.
+case m ;
+ try apply Z.le_refl ;
+ match goal with |- (m1 <= if ?b then _ else _)%Z =>
+ case b ; [ apply Zle_succ | apply Z.le_refl ] end.
+assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
+(* . *)
+rewrite <- (Z.abs_eq m1').
+rewrite <- (abs_cond_Zopp (Rlt_bool x 0) m1').
+rewrite F2R_Zabs.
+now apply f_equal.
+apply Z.le_trans with (2 := Hm).
+apply Zlt_succ_le.
+apply gt_0_F2R with radix2 e1.
+apply Rle_lt_trans with (1 := Rabs_pos x).
+exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
+(* . *)
+assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
+now apply inbetween_Exact.
+destruct m1' as [|m1'|m1'].
+(* . m1' = 0 *)
+rewrite shr_truncate. 2: apply Z.le_refl.
+generalize (truncate_0 radix2 fexp e1 loc_Exact).
+destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
+rewrite shr_m_shr_record_of_loc.
+intros Hm2.
+rewrite Hm2.
+repeat split.
+rewrite Rlt_bool_true.
+repeat split.
+apply sym_eq.
+case Rlt_bool ; apply F2R_0.
+rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
+apply bpow_gt_0.
+(* . 0 < m1' *)
+assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
+rewrite <- mag_F2R_Zdigits, <- Hr, mag_abs.
+2: discriminate.
+rewrite H1b.
+rewrite cexp_abs.
+fold (cexp radix2 fexp (round radix2 fexp (round_mode m) x)).
+apply cexp_round_ge...
+rewrite H1c.
+case (Rlt_bool x 0).
+apply Rlt_not_eq.
+now apply F2R_lt_0.
+apply Rgt_not_eq.
+now apply F2R_gt_0.
+refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
+2: now rewrite Hr ; apply F2R_gt_0.
+refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
+2: discriminate.
+rewrite shr_truncate. 2: easy.
+destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
+rewrite shr_m_shr_record_of_loc.
+intros (H3,H4) (H2,_).
+destruct m2 as [|m2|m2].
+elim Rgt_not_eq with (2 := H3).
+rewrite F2R_0.
+now apply F2R_gt_0.
+destruct (binary_fit_aux_correct m (Rlt_bool x 0) m2 e2) as [H5 H6].
+ apply Zeq_bool_true.
+ rewrite Zpos_digits2_pos.
+ rewrite <- mag_F2R_Zdigits by easy.
+ now rewrite <- H3.
+apply (conj H5).
+revert H6.
+simpl.
+rewrite 2!F2R_cond_Zopp.
+now rewrite <- H3.
+elim Rgt_not_eq with (2 := H3).
+apply Rlt_trans with R0.
+now apply F2R_lt_0.
+now apply F2R_gt_0.
+rewrite <- Hr.
+apply generic_format_abs...
+apply generic_format_round...
+(* . not m1' < 0 *)
+elim Rgt_not_eq with (2 := Hr).
+apply Rlt_le_trans with R0.
+now apply F2R_lt_0.
+apply Rabs_pos.
+(* *)
+now apply Rabs_pos_lt.
+(* all the modes are valid *)
+clear. case m.
+exact inbetween_int_NE_sign.
+exact inbetween_int_ZR_sign.
+exact inbetween_int_DN_sign.
+exact inbetween_int_UP_sign.
+exact inbetween_int_NA_sign.
+(* *)
+apply inbetween_float_bounds in Bx.
+apply Zlt_succ_le.
+eapply gt_0_F2R.
+apply Rle_lt_trans with (2 := proj2 Bx).
+apply Rabs_pos.
+Qed.
+
+Theorem binary_round_aux_correct :
+ forall mode x mx ex lx,
+ inbetween_float radix2 (Zpos mx) ex (Rabs x) lx ->
+ (ex <= fexp (Zdigits radix2 (Zpos mx) + ex))%Z ->
+ let z := binary_round_aux mode (Rlt_bool x 0) (Zpos mx) ex lx in
+ valid_binary z = true /\
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
+ SF2R radix2 z = round radix2 fexp (round_mode mode) x /\
+ is_finite_SF z = true /\ sign_SF z = Rlt_bool x 0
+ else
+ z = binary_overflow mode (Rlt_bool x 0).
+Proof with auto with typeclass_instances.
+intros m x mx ex lx Bx Ex z.
+unfold binary_round_aux in z.
+revert z.
+rewrite shr_truncate. 2: easy.
+refine (_ (round_trunc_sign_any_correct _ _ (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))).
+refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Bx Ex)).
+destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1).
+rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
+set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
+intros (H1a,H1b) H1c.
+rewrite H1c.
+assert (Hm: (m1 <= m1')%Z).
+(* . *)
+unfold m1', choice_mode, cond_incr.
+case m ;
+ try apply Z.le_refl ;
+ match goal with |- (m1 <= if ?b then _ else _)%Z =>
+ case b ; [ apply Zle_succ | apply Z.le_refl ] end.
+assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
+(* . *)
+rewrite <- (Z.abs_eq m1').
+rewrite <- (abs_cond_Zopp (Rlt_bool x 0) m1').
+rewrite F2R_Zabs.
+now apply f_equal.
+apply Z.le_trans with (2 := Hm).
+apply Zlt_succ_le.
+apply gt_0_F2R with radix2 e1.
+apply Rle_lt_trans with (1 := Rabs_pos x).
+exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
+(* . *)
+assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
+now apply inbetween_Exact.
+destruct m1' as [|m1'|m1'].
+(* . m1' = 0 *)
+rewrite shr_truncate. 2: apply Z.le_refl.
+generalize (truncate_0 radix2 fexp e1 loc_Exact).
+destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
+rewrite shr_m_shr_record_of_loc.
+intros Hm2.
+rewrite Hm2.
+repeat split.
+rewrite Rlt_bool_true.
+repeat split.
+apply sym_eq.
+case Rlt_bool ; apply F2R_0.
+rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
+apply bpow_gt_0.
+(* . 0 < m1' *)
+assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
+rewrite <- mag_F2R_Zdigits, <- Hr, mag_abs.
+2: discriminate.
+rewrite H1b.
+rewrite cexp_abs.
+fold (cexp radix2 fexp (round radix2 fexp (round_mode m) x)).
+apply cexp_round_ge...
+rewrite H1c.
+case (Rlt_bool x 0).
+apply Rlt_not_eq.
+now apply F2R_lt_0.
+apply Rgt_not_eq.
+now apply F2R_gt_0.
+refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
+2: now rewrite Hr ; apply F2R_gt_0.
+refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
+2: discriminate.
+rewrite shr_truncate. 2: easy.
+destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
+rewrite shr_m_shr_record_of_loc.
+intros (H3,H4) (H2,_).
+destruct m2 as [|m2|m2].
+elim Rgt_not_eq with (2 := H3).
+rewrite F2R_0.
+now apply F2R_gt_0.
+destruct (binary_fit_aux_correct m (Rlt_bool x 0) m2 e2) as [H5 H6].
+ apply Zeq_bool_true.
+ rewrite Zpos_digits2_pos.
+ rewrite <- mag_F2R_Zdigits by easy.
+ now rewrite <- H3.
+apply (conj H5).
+revert H6.
+simpl.
+rewrite 2!F2R_cond_Zopp.
+now rewrite <- H3.
+elim Rgt_not_eq with (2 := H3).
+apply Rlt_trans with R0.
+now apply F2R_lt_0.
+now apply F2R_gt_0.
+rewrite <- Hr.
+apply generic_format_abs...
+apply generic_format_round...
+(* . not m1' < 0 *)
+elim Rgt_not_eq with (2 := Hr).
+apply Rlt_le_trans with R0.
+now apply F2R_lt_0.
+apply Rabs_pos.
+(* *)
+apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)).
+now apply F2R_gt_0.
+(* all the modes are valid *)
+clear. case m.
+exact inbetween_int_NE_sign.
+exact inbetween_int_ZR_sign.
+exact inbetween_int_DN_sign.
+exact inbetween_int_UP_sign.
+exact inbetween_int_NA_sign.
+Qed.
+
+(** Multiplication *)
+
+Lemma Bmult_correct_aux :
+ forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
+ let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
+ let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
+ let z := binary_round_aux m (xorb sx sy) (Zpos (mx * my)) (ex + ey) loc_Exact in
+ valid_binary z = true /\
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x * y))) (bpow radix2 emax) then
+ SF2R radix2 z = round radix2 fexp (round_mode m) (x * y) /\
+ is_finite_SF z = true /\ sign_SF z = xorb sx sy
+ else
+ z = binary_overflow m (xorb sx sy).
+Proof.
+intros m sx mx ex Hx sy my ey Hy x y.
+unfold x, y.
+rewrite <- F2R_mult.
+simpl.
+replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0).
+apply binary_round_aux_correct.
+constructor.
+rewrite <- F2R_abs.
+apply F2R_eq.
+rewrite Zabs_Zmult.
+now rewrite 2!abs_cond_Zopp.
+(* *)
+change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z.
+assert (forall m e, bounded m e = true -> fexp (Zdigits radix2 (Zpos m) + e) = e)%Z.
+clear. intros m e Hb.
+destruct (andb_prop _ _ Hb) as (H,_).
+apply Zeq_bool_eq.
+now rewrite <- Zpos_digits2_pos.
+generalize (H _ _ Hx) (H _ _ Hy).
+clear x y sx sy Hx Hy H.
+unfold fexp, FLT_exp.
+refine (_ (Zdigits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate.
+refine (_ (Zdigits_gt_0 radix2 (Zpos mx) _) (Zdigits_gt_0 radix2 (Zpos my) _)) ; try discriminate.
+generalize (Zdigits radix2 (Zpos mx)) (Zdigits radix2 (Zpos my)) (Zdigits radix2 (Zpos mx * Zpos my)).
+intros dx dy dxy Hx Hy Hxy.
+unfold emin.
+generalize (prec_lt_emax prec emax).
+lia.
+(* *)
+case sx ; case sy.
+apply Rlt_bool_false.
+now apply F2R_ge_0.
+apply Rlt_bool_true.
+now apply F2R_lt_0.
+apply Rlt_bool_true.
+now apply F2R_lt_0.
+apply Rlt_bool_false.
+now apply F2R_ge_0.
+Qed.
+
+Definition Bmult m x y :=
+ match x, y with
+ | B754_nan, _ | _, B754_nan => B754_nan
+ | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy)
+ | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
+ | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
+ | B754_infinity _, B754_zero _ => B754_nan
+ | B754_zero _, B754_infinity _ => B754_nan
+ | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy)
+ | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
+ | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy)
+ | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
+ SF2B _ (proj1 (Bmult_correct_aux m sx mx ex Hx sy my ey Hy))
+ end.
+
+(* TODO: lemme d'equivalence *)
+
+Theorem Bmult_correct :
+ forall m x y,
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x * B2R y))) (bpow radix2 emax) then
+ B2R (Bmult m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y) /\
+ is_finite (Bmult m x y) = andb (is_finite x) (is_finite y) /\
+ (is_nan (Bmult m x y) = false ->
+ Bsign (Bmult m x y) = xorb (Bsign x) (Bsign y))
+ else
+ B2SF (Bmult m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
+Proof.
+intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ;
+ try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | now auto with typeclass_instances ] ).
+simpl.
+case Bmult_correct_aux.
+intros H1.
+case Rlt_bool.
+intros (H2, (H3, H4)).
+split.
+now rewrite B2R_SF2B.
+split.
+now rewrite is_finite_SF2B.
+rewrite Bsign_SF2B. auto.
+intros H2.
+now rewrite B2SF_SF2B.
+Qed.
+
+(** Normalization and rounding *)
+
+Theorem shl_align_correct':
+ forall mx ex e,
+ (e <= ex)%Z ->
+ let (mx', ex') := shl_align mx ex e in
+ F2R (Float radix2 (Zpos mx') e) = F2R (Float radix2 (Zpos mx) ex) /\
+ ex' = e.
+Proof.
+intros mx ex ex' He.
+unfold shl_align.
+destruct (ex' - ex)%Z as [|d|d] eqn:Hd ; simpl.
+- now replace ex with ex' by lia.
+- exfalso ; lia.
+- refine (conj _ eq_refl).
+ rewrite shift_pos_correct, Zmult_comm.
+ change (Zpower_pos 2 d) with (Zpower radix2 (Z.opp (Z.neg d))).
+ rewrite <- Hd.
+ replace (- (ex' - ex))%Z with (ex - ex')%Z by ring.
+ now apply eq_sym, F2R_change_exp.
+Qed.
+
+Theorem shl_align_correct :
+ forall mx ex ex',
+ let (mx', ex'') := shl_align mx ex ex' in
+ F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex'') /\
+ (ex'' <= ex')%Z.
+Proof.
+intros mx ex ex'.
+generalize (shl_align_correct' mx ex ex').
+unfold shl_align.
+destruct (ex' - ex)%Z as [|d|d] eqn:Hd ; simpl.
+- refine (fun H => _ (H _)).
+ 2: clear -Hd; lia.
+ clear.
+ intros [H1 ->].
+ now split.
+- intros _.
+ refine (conj eq_refl _).
+ lia.
+- refine (fun H => _ (H _)).
+ 2: clear -Hd; lia.
+ clear.
+ now split.
+Qed.
+
+Theorem snd_shl_align :
+ forall mx ex ex',
+ (ex' <= ex)%Z ->
+ snd (shl_align mx ex ex') = ex'.
+Proof.
+intros mx ex ex' He.
+generalize (shl_align_correct' mx ex ex' He).
+now destruct shl_align as [m e].
+Qed.
+
+Definition shl_align_fexp mx ex :=
+ shl_align mx ex (fexp (Zpos (digits2_pos mx) + ex)).
+
+Theorem shl_align_fexp_correct :
+ forall mx ex,
+ let (mx', ex') := shl_align_fexp mx ex in
+ F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\
+ (ex' <= fexp (Zdigits radix2 (Zpos mx') + ex'))%Z.
+Proof.
+intros mx ex.
+unfold shl_align_fexp.
+generalize (shl_align_correct mx ex (fexp (Zpos (digits2_pos mx) + ex))).
+rewrite Zpos_digits2_pos.
+case shl_align.
+intros mx' ex' (H1, H2).
+split.
+exact H1.
+rewrite <- mag_F2R_Zdigits. 2: easy.
+rewrite <- H1.
+now rewrite mag_F2R_Zdigits.
+Qed.
+
+(* TODO: lemme equivalence pour le cas mode_NE *)
+Definition binary_round m sx mx ex :=
+ let '(mz, ez) := shl_align_fexp mx ex in binary_round_aux m sx (Zpos mz) ez loc_Exact.
+
+Theorem binary_round_correct :
+ forall m sx mx ex,
+ let z := binary_round m sx mx ex in
+ valid_binary z = true /\
+ let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then
+ SF2R radix2 z = round radix2 fexp (round_mode m) x /\
+ is_finite_SF z = true /\
+ sign_SF z = sx
+ else
+ z = binary_overflow m sx.
+Proof.
+intros m sx mx ex.
+unfold binary_round.
+generalize (shl_align_fexp_correct mx ex).
+destruct (shl_align_fexp mx ex) as (mz, ez).
+intros (H1, H2).
+set (x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex)).
+replace sx with (Rlt_bool x 0).
+apply binary_round_aux_correct.
+constructor.
+unfold x.
+now rewrite <- F2R_Zabs, abs_cond_Zopp.
+exact H2.
+unfold x.
+case sx.
+apply Rlt_bool_true.
+now apply F2R_lt_0.
+apply Rlt_bool_false.
+now apply F2R_ge_0.
+Qed.
+
+Theorem is_nan_binary_round :
+ forall mode sx mx ex,
+ is_nan_SF (binary_round mode sx mx ex) = false.
+Proof.
+intros mode sx mx ex.
+generalize (binary_round_correct mode sx mx ex).
+simpl.
+destruct binary_round ; try easy.
+intros [_ H].
+destruct Rlt_bool ; try easy.
+unfold binary_overflow in H.
+now destruct overflow_to_inf.
+Qed.
+
+(* TODO: lemme equivalence pour le cas mode_NE *)
+Definition binary_normalize mode m e szero :=
+ match m with
+ | Z0 => B754_zero szero
+ | Zpos m => SF2B _ (proj1 (binary_round_correct mode false m e))
+ | Zneg m => SF2B _ (proj1 (binary_round_correct mode true m e))
+ end.
+
+Theorem binary_normalize_correct :
+ forall m mx ex szero,
+ let x := F2R (Float radix2 mx ex) in
+ let z := binary_normalize m mx ex szero in
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then
+ B2R z = round radix2 fexp (round_mode m) x /\
+ is_finite z = true /\
+ Bsign z =
+ match Rcompare x 0 with
+ | Eq => szero
+ | Lt => true
+ | Gt => false
+ end
+ else
+ B2SF z = binary_overflow m (Rlt_bool x 0).
+Proof with auto with typeclass_instances.
+intros m mx ez szero.
+destruct mx as [|mz|mz] ; simpl.
+rewrite F2R_0, round_0, Rabs_R0, Rlt_bool_true...
+split... split...
+rewrite Rcompare_Eq...
+apply bpow_gt_0.
+(* . mz > 0 *)
+generalize (binary_round_correct m false mz ez).
+simpl.
+case Rlt_bool_spec.
+intros _ (Vz, (Rz, (Rz', Rz''))).
+split.
+now rewrite B2R_SF2B.
+split.
+now rewrite is_finite_SF2B.
+rewrite Bsign_SF2B, Rz''.
+rewrite Rcompare_Gt...
+apply F2R_gt_0.
+simpl. lia.
+intros Hz' (Vz, Rz).
+rewrite B2SF_SF2B, Rz.
+apply f_equal.
+apply sym_eq.
+apply Rlt_bool_false.
+now apply F2R_ge_0.
+(* . mz < 0 *)
+generalize (binary_round_correct m true mz ez).
+simpl.
+case Rlt_bool_spec.
+intros _ (Vz, (Rz, (Rz', Rz''))).
+split.
+now rewrite B2R_SF2B.
+split.
+now rewrite is_finite_SF2B.
+rewrite Bsign_SF2B, Rz''.
+rewrite Rcompare_Lt...
+apply F2R_lt_0.
+simpl. lia.
+intros Hz' (Vz, Rz).
+rewrite B2SF_SF2B, Rz.
+apply f_equal.
+apply sym_eq.
+apply Rlt_bool_true.
+now apply F2R_lt_0.
+Qed.
+
+Theorem is_nan_binary_normalize :
+ forall mode m e szero,
+ is_nan (binary_normalize mode m e szero) = false.
+Proof.
+intros mode m e szero.
+generalize (binary_normalize_correct mode m e szero).
+simpl.
+destruct Rlt_bool.
+- intros [_ [H _]].
+ now destruct binary_normalize.
+- intros H.
+ rewrite <- is_nan_SF_B2SF.
+ rewrite H.
+ unfold binary_overflow.
+ now destruct overflow_to_inf.
+Qed.
+
+(** Addition *)
+
+Definition Fplus_naive sx mx ex sy my ey ez :=
+ (Zplus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez))))).
+
+Lemma Fplus_naive_correct :
+ forall sx mx ex sy my ey ez,
+ (ez <= ex)%Z -> (ez <= ey)%Z ->
+ let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
+ let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
+ F2R (Float radix2 (Fplus_naive sx mx ex sy my ey ez) ez) = (x + y)%R.
+Proof.
+intros sx mx ex sy my ey ez Ex Ey.
+unfold Fplus_naive, F2R. simpl.
+generalize (shl_align_correct' mx ex ez Ex).
+generalize (shl_align_correct' my ey ez Ey).
+destruct shl_align as [my' ey'].
+destruct shl_align as [mx' ex'].
+intros [Hy _].
+intros [Hx _].
+simpl.
+rewrite plus_IZR, Rmult_plus_distr_r.
+generalize (f_equal (cond_Ropp sx) Hx).
+generalize (f_equal (cond_Ropp sy) Hy).
+rewrite <- 4!F2R_cond_Zopp.
+unfold F2R. simpl.
+now intros -> ->.
+Qed.
+
+Lemma sign_plus_overflow :
+ forall m sx mx ex sy my ey,
+ bounded mx ex = true ->
+ bounded my ey = true ->
+ let z := (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) + F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey))%R in
+ (bpow radix2 emax <= Rabs (round radix2 fexp (round_mode m) z))%R ->
+ sx = Rlt_bool z 0 /\ sx = sy.
+Proof with auto with typeclass_instances.
+intros m sx mx ex sy my ey Hx Hy z Bz.
+destruct (Bool.bool_dec sx sy) as [Hs|Hs].
+(* .. *)
+refine (conj _ Hs).
+unfold z.
+rewrite Hs.
+apply sym_eq.
+case sy.
+apply Rlt_bool_true.
+rewrite <- (Rplus_0_r 0).
+apply Rplus_lt_compat.
+now apply F2R_lt_0.
+now apply F2R_lt_0.
+apply Rlt_bool_false.
+rewrite <- (Rplus_0_r 0).
+apply Rplus_le_compat.
+now apply F2R_ge_0.
+now apply F2R_ge_0.
+(* .. *)
+elim Rle_not_lt with (1 := Bz).
+generalize (bounded_lt_emax _ _ Hx) (bounded_lt_emax _ _ Hy) (andb_prop _ _ Hx) (andb_prop _ _ Hy).
+intros Bx By (Hx',_) (Hy',_).
+generalize (canonical_canonical_mantissa sx _ _ Hx') (canonical_canonical_mantissa sy _ _ Hy').
+clear -Bx By Hs prec_gt_0_.
+intros Cx Cy.
+destruct sx.
+(* ... *)
+destruct sy.
+now elim Hs.
+clear Hs.
+apply Rabs_lt.
+split.
+apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)).
+rewrite F2R_Zopp.
+now apply Ropp_lt_contravar.
+apply round_ge_generic...
+now apply generic_format_canonical.
+pattern (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)) at 1 ; rewrite <- Rplus_0_r.
+apply Rplus_le_compat_l.
+now apply F2R_ge_0.
+apply Rle_lt_trans with (2 := By).
+apply round_le_generic...
+now apply generic_format_canonical.
+rewrite <- (Rplus_0_l (F2R (Float radix2 (Zpos my) ey))).
+apply Rplus_le_compat_r.
+now apply F2R_le_0.
+(* ... *)
+destruct sy.
+2: now elim Hs.
+clear Hs.
+apply Rabs_lt.
+split.
+apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)).
+rewrite F2R_Zopp.
+now apply Ropp_lt_contravar.
+apply round_ge_generic...
+now apply generic_format_canonical.
+pattern (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)) at 1 ; rewrite <- Rplus_0_l.
+apply Rplus_le_compat_r.
+now apply F2R_ge_0.
+apply Rle_lt_trans with (2 := Bx).
+apply round_le_generic...
+now apply generic_format_canonical.
+rewrite <- (Rplus_0_r (F2R (Float radix2 (Zpos mx) ex))).
+apply Rplus_le_compat_l.
+now apply F2R_le_0.
+Qed.
+
+Definition Bplus m x y :=
+ match x, y with
+ | B754_nan, _ | _, B754_nan => B754_nan
+ | B754_infinity sx, B754_infinity sy => if Bool.eqb sx sy then x else B754_nan
+ | B754_infinity _, _ => x
+ | _, B754_infinity _ => y
+ | B754_zero sx, B754_zero sy =>
+ if Bool.eqb sx sy then x else
+ match m with mode_DN => B754_zero true | _ => B754_zero false end
+ | B754_zero _, _ => y
+ | _, B754_zero _ => x
+ | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
+ let ez := Z.min ex ey in
+ binary_normalize m (Fplus_naive sx mx ex sy my ey ez)
+ ez (match m with mode_DN => true | _ => false end)
+ end.
+
+Theorem Bplus_correct :
+ forall m x y,
+ is_finite x = true ->
+ is_finite y = true ->
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then
+ B2R (Bplus m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\
+ is_finite (Bplus m x y) = true /\
+ Bsign (Bplus m x y) =
+ match Rcompare (B2R x + B2R y) 0 with
+ | Eq => match m with mode_DN => orb (Bsign x) (Bsign y)
+ | _ => andb (Bsign x) (Bsign y) end
+ | Lt => true
+ | Gt => false
+ end
+ else
+ (B2SF (Bplus m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).
+Proof with auto with typeclass_instances.
+intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] Fx Fy ; try easy.
+(* *)
+rewrite Rplus_0_r, round_0, Rabs_R0, Rlt_bool_true...
+simpl.
+rewrite Rcompare_Eq by auto.
+destruct sx, sy; try easy; now case m.
+apply bpow_gt_0.
+(* *)
+rewrite Rplus_0_l, round_generic, Rlt_bool_true...
+split... split...
+simpl. unfold F2R.
+erewrite <- Rmult_0_l, Rcompare_mult_r.
+rewrite Rcompare_IZR with (y:=0%Z).
+destruct sy...
+apply bpow_gt_0.
+apply abs_B2R_lt_emax.
+apply generic_format_B2R.
+(* *)
+rewrite Rplus_0_r, round_generic, Rlt_bool_true...
+split... split...
+simpl. unfold F2R.
+erewrite <- Rmult_0_l, Rcompare_mult_r.
+rewrite Rcompare_IZR with (y:=0%Z).
+destruct sx...
+apply bpow_gt_0.
+apply abs_B2R_lt_emax.
+apply generic_format_B2R.
+(* *)
+clear Fx Fy.
+simpl.
+set (szero := match m with mode_DN => true | _ => false end).
+set (ez := Z.min ex ey).
+assert (Hp := Fplus_naive_correct sx mx ex sy my ey ez (Z.le_min_l _ _) (Z.le_min_r _ _)).
+set (mz := Fplus_naive sx mx ex sy my ey ez).
+simpl in Hp.
+fold mz in Hp.
+rewrite <- Hp.
+generalize (binary_normalize_correct m mz ez szero).
+simpl.
+case Rlt_bool_spec ; intros Hz.
+intros [H1 [H2 H3]].
+apply (conj H1).
+apply (conj H2).
+rewrite H3.
+case Rcompare_spec ; try easy.
+intros Hz'.
+rewrite Hz' in Hp.
+apply eq_sym, Rplus_opp_r_uniq in Hp.
+rewrite <- F2R_Zopp in Hp.
+eapply canonical_unique in Hp.
+inversion Hp.
+clear -H0.
+destruct sy, sx, m ; easy.
+apply canonical_canonical_mantissa.
+apply Bool.andb_true_iff in Hy. easy.
+rewrite <- cond_Zopp_negb.
+apply canonical_canonical_mantissa.
+apply Bool.andb_true_iff in Hx. easy.
+intros Vz.
+rewrite Hp in Hz.
+assert (Sz := sign_plus_overflow m sx mx ex sy my ey Hx Hy Hz).
+split.
+rewrite Vz.
+apply f_equal.
+now rewrite Hp.
+apply Sz.
+Qed.
+
+(** Subtraction *)
+
+Definition Bminus m x y :=
+ match x, y with
+ | B754_nan, _ | _, B754_nan => B754_nan
+ | B754_infinity sx, B754_infinity sy =>
+ if Bool.eqb sx (negb sy) then x else B754_nan
+ | B754_infinity _, _ => x
+ | _, B754_infinity sy => B754_infinity (negb sy)
+ | B754_zero sx, B754_zero sy =>
+ if Bool.eqb sx (negb sy) then x else
+ match m with mode_DN => B754_zero true | _ => B754_zero false end
+ | B754_zero _, B754_finite sy my ey Hy => B754_finite (negb sy) my ey Hy
+ | _, B754_zero _ => x
+ | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
+ let ez := Z.min ex ey in
+ binary_normalize m (Fplus_naive sx mx ex (negb sy) my ey ez)
+ ez (match m with mode_DN => true | _ => false end)
+ end.
+
+Theorem Bminus_correct :
+ forall m x y,
+ is_finite x = true ->
+ is_finite y = true ->
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x - B2R y))) (bpow radix2 emax) then
+ B2R (Bminus m x y) = round radix2 fexp (round_mode m) (B2R x - B2R y) /\
+ is_finite (Bminus m x y) = true /\
+ Bsign (Bminus m x y) =
+ match Rcompare (B2R x - B2R y) 0 with
+ | Eq => match m with mode_DN => orb (Bsign x) (negb (Bsign y))
+ | _ => andb (Bsign x) (negb (Bsign y)) end
+ | Lt => true
+ | Gt => false
+ end
+ else
+ (B2SF (Bminus m x y) = binary_overflow m (Bsign x) /\ Bsign x = negb (Bsign y)).
+Proof with auto with typeclass_instances.
+intros m x y Fx Fy.
+generalize (Bplus_correct m x (Bopp y) Fx).
+rewrite is_finite_Bopp, B2R_Bopp.
+intros H.
+specialize (H Fy).
+rewrite <- Bsign_Bopp.
+destruct x as [| | |sx mx ex Hx], y as [| | |sy my ey Hy] ; try easy.
+now clear -Fy; destruct y as [ | | | ].
+Qed.
+
+(** Fused Multiply-Add *)
+
+Definition Bfma_szero m (x y z: binary_float) : bool :=
+ let s_xy := xorb (Bsign x) (Bsign y) in (* sign of product x*y *)
+ if Bool.eqb s_xy (Bsign z) then s_xy
+ else match m with mode_DN => true | _ => false end.
+
+Definition Bfma m (x y z: binary_float) :=
+ match x, y with
+ | B754_nan, _ | _, B754_nan
+ | B754_infinity _, B754_zero _
+ | B754_zero _, B754_infinity _ =>
+ (* Multiplication produces NaN *)
+ B754_nan
+ | B754_infinity sx, B754_infinity sy
+ | B754_infinity sx, B754_finite sy _ _ _
+ | B754_finite sx _ _ _, B754_infinity sy =>
+ let s := xorb sx sy in
+ (* Multiplication produces infinity with sign [s] *)
+ match z with
+ | B754_nan => B754_nan
+ | B754_infinity sz => if Bool.eqb s sz then z else B754_nan
+ | _ => B754_infinity s
+ end
+ | B754_finite sx _ _ _, B754_zero sy
+ | B754_zero sx, B754_finite sy _ _ _
+ | B754_zero sx, B754_zero sy =>
+ (* Multiplication produces zero *)
+ match z with
+ | B754_nan => B754_nan
+ | B754_zero _ => B754_zero (Bfma_szero m x y z)
+ | _ => z
+ end
+ | B754_finite sx mx ex _, B754_finite sy my ey _ =>
+ (* Multiplication produces a finite, non-zero result *)
+ match z with
+ | B754_nan => B754_nan
+ | B754_infinity sz => z
+ | B754_zero _ =>
+ let X := Float radix2 (cond_Zopp sx (Zpos mx)) ex in
+ let Y := Float radix2 (cond_Zopp sy (Zpos my)) ey in
+ let '(Float _ mr er) := Fmult X Y in
+ binary_normalize m mr er (Bfma_szero m x y z)
+ | B754_finite sz mz ez _ =>
+ let X := Float radix2 (cond_Zopp sx (Zpos mx)) ex in
+ let Y := Float radix2 (cond_Zopp sy (Zpos my)) ey in
+ let Z := Float radix2 (cond_Zopp sz (Zpos mz)) ez in
+ let '(Float _ mr er) := Fplus (Fmult X Y) Z in
+ binary_normalize m mr er (Bfma_szero m x y z)
+ end
+ end.
+
+Theorem Bfma_correct:
+ forall m x y z,
+ is_finite x = true ->
+ is_finite y = true ->
+ is_finite z = true ->
+ let res := (B2R x * B2R y + B2R z)%R in
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) res)) (bpow radix2 emax) then
+ B2R (Bfma m x y z) = round radix2 fexp (round_mode m) res /\
+ is_finite (Bfma m x y z) = true /\
+ Bsign (Bfma m x y z) =
+ match Rcompare res 0 with
+ | Eq => Bfma_szero m x y z
+ | Lt => true
+ | Gt => false
+ end
+ else
+ B2SF (Bfma m x y z) = binary_overflow m (Rlt_bool res 0).
+Proof.
+ intros. pattern (Bfma m x y z).
+ match goal with |- ?p ?x => set (PROP := p) end.
+ set (szero := Bfma_szero m x y z).
+ assert (BINORM: forall mr er, F2R (Float radix2 mr er) = res ->
+ PROP (binary_normalize m mr er szero)).
+ { intros mr er E.
+ specialize (binary_normalize_correct m mr er szero).
+ change (FLT_exp (3 - emax - prec) prec) with fexp. rewrite E. tauto.
+ }
+ set (add_zero :=
+ match z with
+ | B754_nan => B754_nan
+ | B754_zero sz => B754_zero szero
+ | _ => z
+ end).
+ assert (ADDZERO: B2R x = 0%R \/ B2R y = 0%R -> PROP add_zero).
+ {
+ intros Z.
+ assert (RES: res = B2R z).
+ { unfold res. destruct Z as [E|E]; rewrite E, ?Rmult_0_l, ?Rmult_0_r, Rplus_0_l; auto. }
+ unfold PROP, add_zero; destruct z as [ sz | sz | | sz mz ez Bz]; try discriminate.
+ - simpl in RES; rewrite RES; rewrite round_0 by apply valid_rnd_round_mode.
+ rewrite Rlt_bool_true. split. reflexivity. split. reflexivity.
+ rewrite Rcompare_Eq by auto. reflexivity.
+ rewrite Rabs_R0; apply bpow_gt_0.
+ - rewrite RES, round_generic, Rlt_bool_true.
+ split. reflexivity. split. reflexivity.
+ unfold B2R. destruct sz.
+ rewrite Rcompare_Lt. auto. apply F2R_lt_0. reflexivity.
+ rewrite Rcompare_Gt. auto. apply F2R_gt_0. reflexivity.
+ apply abs_B2R_lt_emax. apply valid_rnd_round_mode. apply generic_format_B2R.
+ }
+ destruct x as [ sx | sx | | sx mx ex Bx];
+ destruct y as [ sy | sy | | sy my ey By];
+ try discriminate.
+- apply ADDZERO; auto.
+- apply ADDZERO; auto.
+- apply ADDZERO; auto.
+- destruct z as [ sz | sz | | sz mz ez Bz]; try discriminate; unfold Bfma.
++ set (X := Float radix2 (cond_Zopp sx (Zpos mx)) ex).
+ set (Y := Float radix2 (cond_Zopp sy (Zpos my)) ey).
+ destruct (Fmult X Y) as [mr er] eqn:FRES.
+ apply BINORM. unfold res. rewrite <- FRES, F2R_mult, Rplus_0_r. auto.
++ set (X := Float radix2 (cond_Zopp sx (Zpos mx)) ex).
+ set (Y := Float radix2 (cond_Zopp sy (Zpos my)) ey).
+ set (Z := Float radix2 (cond_Zopp sz (Zpos mz)) ez).
+ destruct (Fplus (Fmult X Y) Z) as [mr er] eqn:FRES.
+ apply BINORM. unfold res. rewrite <- FRES, F2R_plus, F2R_mult. auto.
+Qed.
+
+(** Division *)
+
+Lemma Bdiv_correct_aux :
+ forall m sx mx ex sy my ey,
+ let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
+ let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
+ let z :=
+ let '(mz, ez, lz) := SFdiv_core_binary prec emax (Zpos mx) ex (Zpos my) ey in
+ binary_round_aux m (xorb sx sy) mz ez lz in
+ valid_binary z = true /\
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x / y))) (bpow radix2 emax) then
+ SF2R radix2 z = round radix2 fexp (round_mode m) (x / y) /\
+ is_finite_SF z = true /\ sign_SF z = xorb sx sy
+ else
+ z = binary_overflow m (xorb sx sy).
+Proof.
+intros m sx mx ex sy my ey.
+unfold SFdiv_core_binary.
+rewrite 2!Zdigits2_Zdigits.
+set (e' := Z.min _ _).
+match goal with |- context [Z.div_eucl ?m _] => set (mx' := m) end.
+generalize (Fdiv_core_correct radix2 (Zpos mx) ex (Zpos my) ey e' eq_refl eq_refl).
+unfold Fdiv_core.
+rewrite Zle_bool_true by apply Z.le_min_r.
+assert (mx' = Zpos mx * Zpower radix2 (ex - ey - e'))%Z as <-.
+{ unfold mx'.
+ destruct (ex - ey - e')%Z as [|p|p].
+ now rewrite Zmult_1_r.
+ now rewrite Z.shiftl_mul_pow2.
+ easy. }
+clearbody mx'.
+destruct Z.div_eucl as [q r].
+intros Bz.
+assert (xorb sx sy = Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) *
+ / F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey)) 0) as ->.
+{ apply eq_sym.
+case sy ; simpl.
+change (Zneg my) with (Z.opp (Zpos my)).
+rewrite F2R_Zopp.
+rewrite <- Ropp_inv_permute.
+rewrite Ropp_mult_distr_r_reverse.
+case sx ; simpl.
+apply Rlt_bool_false.
+rewrite <- Ropp_mult_distr_l_reverse.
+apply Rmult_le_pos.
+rewrite <- F2R_opp.
+now apply F2R_ge_0.
+apply Rlt_le.
+apply Rinv_0_lt_compat.
+now apply F2R_gt_0.
+apply Rlt_bool_true.
+rewrite <- Ropp_0.
+apply Ropp_lt_contravar.
+apply Rmult_lt_0_compat.
+now apply F2R_gt_0.
+apply Rinv_0_lt_compat.
+now apply F2R_gt_0.
+apply Rgt_not_eq.
+now apply F2R_gt_0.
+case sx.
+apply Rlt_bool_true.
+rewrite F2R_Zopp.
+rewrite Ropp_mult_distr_l_reverse.
+rewrite <- Ropp_0.
+apply Ropp_lt_contravar.
+apply Rmult_lt_0_compat.
+now apply F2R_gt_0.
+apply Rinv_0_lt_compat.
+now apply F2R_gt_0.
+apply Rlt_bool_false.
+apply Rmult_le_pos.
+now apply F2R_ge_0.
+apply Rlt_le.
+apply Rinv_0_lt_compat.
+now apply F2R_gt_0. }
+unfold Rdiv.
+apply binary_round_aux_correct'.
+- apply Rmult_integral_contrapositive_currified.
+ now apply F2R_neq_0 ; case sx.
+ apply Rinv_neq_0_compat.
+ now apply F2R_neq_0 ; case sy.
+- rewrite Rabs_mult, Rabs_Rinv.
+ + rewrite <- 2!F2R_Zabs, 2!abs_cond_Zopp; simpl.
+ replace (SpecFloat.new_location _ _) with (Bracket.new_location (Z.pos my) r loc_Exact);
+ [exact Bz|].
+ case my as [p|p|]; [reflexivity| |reflexivity].
+ unfold Bracket.new_location, SpecFloat.new_location; simpl.
+ unfold Bracket.new_location_even, SpecFloat.new_location_even; simpl.
+ now case Zeq_bool; [|case r as [|rp|rp]; case Z.compare].
+ + now apply F2R_neq_0 ; case sy.
+- rewrite <- cexp_abs, Rabs_mult, Rabs_Rinv.
+ rewrite 2!F2R_cond_Zopp, 2!abs_cond_Ropp, <- Rabs_Rinv.
+ rewrite <- Rabs_mult, cexp_abs.
+ apply Z.le_trans with (1 := Z.le_min_l _ _).
+ apply FLT_exp_monotone.
+ now apply mag_div_F2R.
+ now apply F2R_neq_0.
+ now apply F2R_neq_0 ; case sy.
+Qed.
+
+Definition Bdiv m x y :=
+ match x, y with
+ | B754_nan, _ | _, B754_nan => B754_nan
+ | B754_infinity sx, B754_infinity sy => B754_nan
+ | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
+ | B754_finite sx _ _ _, B754_infinity sy => B754_zero (xorb sx sy)
+ | B754_infinity sx, B754_zero sy => B754_infinity (xorb sx sy)
+ | B754_zero sx, B754_infinity sy => B754_zero (xorb sx sy)
+ | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy)
+ | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
+ | B754_zero sx, B754_zero sy => B754_nan
+ | B754_finite sx mx ex _, B754_finite sy my ey _ =>
+ SF2B _ (proj1 (Bdiv_correct_aux m sx mx ex sy my ey))
+ end.
+
+Theorem Bdiv_correct :
+ forall m x y,
+ B2R y <> 0%R ->
+ if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x / B2R y))) (bpow radix2 emax) then
+ B2R (Bdiv m x y) = round radix2 fexp (round_mode m) (B2R x / B2R y) /\
+ is_finite (Bdiv m x y) = is_finite x /\
+ (is_nan (Bdiv m x y) = false ->
+ Bsign (Bdiv m x y) = xorb (Bsign x) (Bsign y))
+ else
+ B2SF (Bdiv m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
+Proof.
+intros m x [sy|sy| |sy my ey Hy] Zy ; try now elim Zy.
+revert x.
+unfold Rdiv.
+intros [sx|sx| |sx mx ex Hx] ;
+ try ( rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | auto with typeclass_instances ] ).
+simpl.
+case Bdiv_correct_aux.
+intros H1.
+unfold Rdiv.
+case Rlt_bool.
+intros (H2, (H3, H4)).
+split.
+now rewrite B2R_SF2B.
+split.
+now rewrite is_finite_SF2B.
+rewrite Bsign_SF2B. congruence.
+intros H2.
+now rewrite B2SF_SF2B.
+Qed.
+
+(** Square root *)
+
+Lemma Bsqrt_correct_aux :
+ forall m mx ex (Hx : bounded mx ex = true),
+ let x := F2R (Float radix2 (Zpos mx) ex) in
+ let z :=
+ let '(mz, ez, lz) := SFsqrt_core_binary prec emax (Zpos mx) ex in
+ binary_round_aux m false mz ez lz in
+ valid_binary z = true /\
+ SF2R radix2 z = round radix2 fexp (round_mode m) (sqrt x) /\
+ is_finite_SF z = true /\ sign_SF z = false.
+Proof with auto with typeclass_instances.
+intros m mx ex Hx.
+unfold SFsqrt_core_binary.
+rewrite Zdigits2_Zdigits.
+set (e' := Z.min _ _).
+assert (2 * e' <= ex)%Z as He.
+{ assert (e' <= Z.div2 ex)%Z by apply Z.le_min_r.
+ rewrite (Zdiv2_odd_eqn ex).
+ destruct Z.odd ; lia. }
+generalize (Fsqrt_core_correct radix2 (Zpos mx) ex e' eq_refl He).
+unfold Fsqrt_core.
+set (mx' := match (ex - 2 * e')%Z with Z0 => _ | _ => _ end).
+assert (mx' = Zpos mx * Zpower radix2 (ex - 2 * e'))%Z as <-.
+{ unfold mx'.
+ destruct (ex - 2 * e')%Z as [|p|p].
+ now rewrite Zmult_1_r.
+ now rewrite Z.shiftl_mul_pow2.
+ easy. }
+clearbody mx'.
+destruct Z.sqrtrem as [mz r].
+set (lz := if Zeq_bool r 0 then _ else _).
+clearbody lz.
+intros Bz.
+refine (_ (binary_round_aux_correct' m (sqrt (F2R (Float radix2 (Zpos mx) ex))) mz e' lz _ _ _)) ; cycle 1.
+ now apply Rgt_not_eq, sqrt_lt_R0, F2R_gt_0.
+ rewrite Rabs_pos_eq.
+ exact Bz.
+ apply sqrt_ge_0.
+ apply Z.le_trans with (1 := Z.le_min_l _ _).
+ apply FLT_exp_monotone.
+ rewrite mag_sqrt_F2R by easy.
+ apply Z.le_refl.
+rewrite Rlt_bool_false by apply sqrt_ge_0.
+rewrite Rlt_bool_true.
+easy.
+rewrite Rabs_pos_eq.
+refine (_ (relative_error_FLT_ex radix2 emin prec (prec_gt_0 prec) (round_mode m) (sqrt (F2R (Float radix2 (Zpos mx) ex))) _)).
+fold fexp.
+intros (eps, (Heps, Hr)).
+change fexp with (FLT_exp emin prec).
+rewrite Hr.
+assert (Heps': (Rabs eps < 1)%R).
+apply Rlt_le_trans with (1 := Heps).
+fold (bpow radix2 0).
+apply bpow_le.
+generalize (prec_gt_0 prec).
+clear ; lia.
+apply Rsqr_incrst_0.
+3: apply bpow_ge_0.
+rewrite Rsqr_mult.
+rewrite Rsqr_sqrt.
+2: now apply F2R_ge_0.
+unfold Rsqr.
+apply Rmult_ge_0_gt_0_lt_compat.
+apply Rle_ge.
+apply Rle_0_sqr.
+apply bpow_gt_0.
+now apply bounded_lt_emax.
+apply Rlt_le_trans with 4%R.
+apply (Rsqr_incrst_1 _ 2).
+apply Rplus_lt_compat_l.
+apply (Rabs_lt_inv _ _ Heps').
+rewrite <- (Rplus_opp_r 1).
+apply Rplus_le_compat_l.
+apply Rlt_le.
+apply (Rabs_lt_inv _ _ Heps').
+now apply IZR_le.
+change 4%R with (bpow radix2 2).
+apply bpow_le.
+generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
+clear ; lia.
+apply Rmult_le_pos.
+apply sqrt_ge_0.
+rewrite <- (Rplus_opp_r 1).
+apply Rplus_le_compat_l.
+apply Rlt_le.
+apply (Rabs_lt_inv _ _ Heps').
+rewrite Rabs_pos_eq.
+2: apply sqrt_ge_0.
+apply Rsqr_incr_0.
+2: apply bpow_ge_0.
+2: apply sqrt_ge_0.
+rewrite Rsqr_sqrt.
+2: now apply F2R_ge_0.
+apply Rle_trans with (bpow radix2 emin).
+unfold Rsqr.
+rewrite <- bpow_plus.
+apply bpow_le.
+unfold emin.
+generalize (prec_lt_emax prec emax).
+clear ; lia.
+apply generic_format_ge_bpow with fexp.
+intros.
+apply Z.le_max_r.
+now apply F2R_gt_0.
+apply generic_format_canonical.
+apply (canonical_canonical_mantissa false).
+apply (andb_prop _ _ Hx).
+apply round_ge_generic...
+apply generic_format_0.
+apply sqrt_ge_0.
+Qed.
+
+Definition Bsqrt m x :=
+ match x with
+ | B754_nan => B754_nan
+ | B754_infinity false => x
+ | B754_infinity true => B754_nan
+ | B754_finite true _ _ _ => B754_nan
+ | B754_zero _ => x
+ | B754_finite sx mx ex Hx =>
+ SF2B _ (proj1 (Bsqrt_correct_aux m mx ex Hx))
+ end.
+
+Theorem Bsqrt_correct :
+ forall m x,
+ B2R (Bsqrt m x) = round radix2 fexp (round_mode m) (sqrt (B2R x)) /\
+ is_finite (Bsqrt m x) = match x with B754_zero _ => true | B754_finite false _ _ _ => true | _ => false end /\
+ (is_nan (Bsqrt m x) = false -> Bsign (Bsqrt m x) = Bsign x).
+Proof.
+intros m [sx|[|]| |sx mx ex Hx] ;
+ try ( simpl ; rewrite sqrt_0, round_0, ?B2R_build_nan, ?is_finite_build_nan, ?is_nan_build_nan ; intuition auto with typeclass_instances ; easy).
+simpl.
+case Bsqrt_correct_aux.
+intros H1 (H2, (H3, H4)).
+case sx.
+refine (conj _ (conj (refl_equal false) _)).
+apply sym_eq.
+unfold sqrt.
+case Rcase_abs.
+intros _.
+apply round_0.
+auto with typeclass_instances.
+intros H.
+elim Rge_not_lt with (1 := H).
+now apply F2R_lt_0.
+easy.
+split.
+now rewrite B2R_SF2B.
+split.
+now rewrite is_finite_SF2B.
+intros _.
+now rewrite Bsign_SF2B.
+Qed.
+
+(** A few values *)
+
+Definition Bone := SF2B _ (proj1 (binary_round_correct mode_NE false 1 0)).
+
+Theorem Bone_correct : B2R Bone = 1%R.
+Proof.
+unfold Bone; simpl.
+set (Hr := binary_round_correct _ _ _ _).
+unfold Hr; rewrite B2R_SF2B.
+destruct Hr as (Vz, Hr).
+revert Hr.
+fold emin; simpl.
+rewrite round_generic; [|now apply valid_rnd_N|].
+- unfold F2R; simpl; rewrite Rmult_1_r.
+ rewrite Rlt_bool_true.
+ + now intros (Hr, Hr'); rewrite Hr.
+ + rewrite Rabs_pos_eq; [|lra].
+ change 1%R with (bpow radix2 0); apply bpow_lt.
+ generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
+ lia.
+- apply generic_format_F2R; intros _.
+ unfold cexp, fexp, FLT_exp, F2R; simpl; rewrite Rmult_1_r, mag_1.
+ unfold emin.
+ generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
+ lia.
+Qed.
+
+Theorem is_finite_strict_Bone :
+ is_finite_strict Bone = true.
+Proof.
+apply is_finite_strict_B2R.
+rewrite Bone_correct.
+apply R1_neq_R0.
+Qed.
+
+Theorem is_nan_Bone :
+ is_nan Bone = false.
+Proof.
+unfold Bone.
+rewrite is_nan_SF2B.
+apply is_nan_binary_round.
+Qed.
+
+Theorem is_finite_Bone :
+ is_finite Bone = true.
+Proof.
+generalize is_finite_strict_Bone.
+now destruct Bone.
+Qed.
+
+Theorem Bsign_Bone :
+ Bsign Bone = false.
+Proof.
+generalize Bone_correct is_finite_strict_Bone.
+destruct Bone as [sx|sx| |[|] mx ex Bx] ; try easy.
+intros H _.
+contradict H.
+apply Rlt_not_eq, Rlt_trans with (2 := Rlt_0_1).
+now apply F2R_lt_0.
+Qed.
+
+Lemma Bmax_float_proof :
+ valid_binary
+ (S754_finite false (shift_pos (Z.to_pos prec) 1 - 1) (emax - prec))
+ = true.
+Proof.
+unfold valid_binary, bounded; apply andb_true_intro; split.
+- unfold canonical_mantissa; apply Zeq_bool_true.
+ set (p := Z.pos (digits2_pos _)).
+ assert (H : p = prec).
+ { unfold p; rewrite Zpos_digits2_pos, Pos2Z.inj_sub.
+ - rewrite shift_pos_correct, Z.mul_1_r.
+ assert (P2pm1 : (0 <= 2 ^ prec - 1)%Z).
+ { apply (Zplus_le_reg_r _ _ 1); ring_simplify.
+ change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z).
+ apply Zpower_le; unfold Prec_gt_0 in prec_gt_0_; lia. }
+ apply Zdigits_unique;
+ rewrite Z.pow_pos_fold, Z2Pos.id; [|exact prec_gt_0_]; simpl; split.
+ + rewrite (Z.abs_eq _ P2pm1).
+ replace prec with (prec - 1 + 1)%Z at 2 by ring.
+ rewrite Zpower_plus; [| unfold Prec_gt_0 in prec_gt_0_; lia|lia].
+ simpl; unfold Z.pow_pos; simpl.
+ assert (1 <= 2 ^ (prec - 1))%Z; [|lia].
+ change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z).
+ apply Zpower_le; simpl; unfold Prec_gt_0 in prec_gt_0_; lia.
+ + now rewrite Z.abs_eq; [lia|].
+ - change (_ < _)%positive
+ with (Z.pos 1 < Z.pos (shift_pos (Z.to_pos prec) 1))%Z.
+ rewrite shift_pos_correct, Z.mul_1_r, Z.pow_pos_fold.
+ rewrite Z2Pos.id; [|exact prec_gt_0_].
+ change 1%Z with (2 ^ 0)%Z; change 2%Z with (radix2 : Z).
+ apply Zpower_lt; unfold Prec_gt_0 in prec_gt_0_; lia. }
+ unfold fexp, FLT_exp; rewrite H, Z.max_l; [ring|].
+ unfold emin.
+ generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
+ lia.
+- apply Zle_bool_true; unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+Qed.
+
+Definition Bmax_float := SF2B _ Bmax_float_proof.
+
+(** Extraction/modification of mantissa/exponent *)
+
+Definition Bnormfr_mantissa x := SFnormfr_mantissa prec (B2SF x).
+
+Lemma Bnormfr_mantissa_correct :
+ forall x,
+ (/ 2 <= Rabs (B2R x) < 1)%R ->
+ match x with
+ | B754_finite _ m e _ =>
+ Bnormfr_mantissa x = N.pos m
+ /\ Z.pos (digits2_pos m) = prec /\ (e = - prec)%Z
+ | _ => False
+ end.
+Proof.
+intro x.
+destruct x as [s|s| |s m e B]; [now simpl; rewrite Rabs_R0; lra..| ].
+unfold Bnormfr_mantissa, SFnormfr_mantissa; simpl.
+intro Hx.
+cut (e = -prec /\ Z.pos (digits2_pos m) = prec)%Z.
+{ now intros [-> ->]; rewrite Z.eqb_refl. }
+revert Hx.
+change (/ 2)%R with (bpow radix2 (0 - 1)); change 1%R with (bpow radix2 0).
+intro H; generalize (mag_unique _ _ _ H); clear H.
+rewrite Float_prop.mag_F2R_Zdigits; [ |now case s].
+replace (Digits.Zdigits _ _)
+ with (Digits.Zdigits radix2 (Z.pos m)); [ |now case s].
+clear s.
+rewrite <-Digits.Zpos_digits2_pos.
+intro He; replace e with (e - 0)%Z by ring; rewrite <-He.
+cut (Z.pos (digits2_pos m) = prec)%Z.
+{ now intro H; split; [ |exact H]; ring_simplify; rewrite H. }
+revert B; unfold bounded, canonical_mantissa.
+intro H; generalize (andb_prop _ _ H); clear H; intros [H _]; revert H.
+intro H; generalize (Zeq_bool_eq _ _ H); clear H.
+unfold fexp, emin.
+unfold Prec_gt_0 in prec_gt_0_; unfold Prec_lt_emax in prec_lt_emax_.
+lia.
+Qed.
+
+Definition Bldexp mode f e :=
+ match f with
+ | B754_finite sx mx ex _ =>
+ SF2B _ (proj1 (binary_round_correct mode sx mx (ex+e)))
+ | _ => f
+ end.
+
+Theorem is_nan_Bldexp :
+ forall mode x e,
+ is_nan (Bldexp mode x e) = is_nan x.
+Proof.
+intros mode [sx|sx| |sx mx ex Bx] e ; try easy.
+unfold Bldexp.
+rewrite is_nan_SF2B.
+apply is_nan_binary_round.
+Qed.
+
+Theorem Bldexp_correct :
+ forall m (f : binary_float) e,
+ if Rlt_bool
+ (Rabs (round radix2 fexp (round_mode m) (B2R f * bpow radix2 e)))
+ (bpow radix2 emax) then
+ (B2R (Bldexp m f e)
+ = round radix2 fexp (round_mode m) (B2R f * bpow radix2 e))%R /\
+ is_finite (Bldexp m f e) = is_finite f /\
+ Bsign (Bldexp m f e) = Bsign f
+ else
+ B2SF (Bldexp m f e) = binary_overflow m (Bsign f).
+Proof.
+intros m f e.
+case f.
+- intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
+ now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
+- intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
+ now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
+- simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
+ now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
+- intros s mf ef Hmef.
+ case (Rlt_bool_spec _ _); intro Hover.
+ + unfold Bldexp; rewrite B2R_SF2B, is_finite_SF2B, Bsign_SF2B.
+ simpl; unfold F2R; simpl; rewrite Rmult_assoc, <-bpow_plus.
+ destruct (binary_round_correct m s mf (ef + e)) as (Hf, Hr).
+ fold emin in Hr; simpl in Hr; rewrite Rlt_bool_true in Hr.
+ * now destruct Hr as (Hr, (Hfr, Hsr)); rewrite Hr, Hfr, Hsr.
+ * now revert Hover; unfold B2R, F2R; simpl; rewrite Rmult_assoc, bpow_plus.
+ + unfold Bldexp; rewrite B2SF_SF2B; simpl.
+ destruct (binary_round_correct m s mf (ef + e)) as (Hf, Hr).
+ fold emin in Hr; simpl in Hr; rewrite Rlt_bool_false in Hr; [exact Hr|].
+ now revert Hover; unfold B2R, F2R; simpl; rewrite Rmult_assoc, bpow_plus.
+Qed.
+
+Lemma Bldexp_Bopp_NE x e : Bldexp mode_NE (Bopp x) e = Bopp (Bldexp mode_NE x e).
+Proof.
+case x as [s|s| |s m e' B]; [now simpl..| ].
+apply B2SF_inj.
+replace (B2SF (Bopp _)) with (SFopp (B2SF (Bldexp mode_NE (B754_finite s m e' B) e))).
+{ unfold Bldexp, Bopp; rewrite !B2SF_SF2B.
+ unfold binary_round.
+ set (shl := shl_align_fexp _ _); case shl; intros mz ez.
+ unfold binary_round_aux.
+ set (shr := shr_fexp _ _ _); case shr; intros mrs e''.
+ unfold choice_mode.
+ set (shr' := shr_fexp _ _ _); case shr'; intros mrs' e'''.
+ unfold binary_fit_aux.
+ now case (shr_m mrs') as [|p|p]; [|case Z.leb|]. }
+now case Bldexp as [s'|s'| |s' m' e'' B'].
+Qed.
+
+Definition Ffrexp_core_binary s m e :=
+ if Zlt_bool (-prec) emin then
+ (S754_finite s m e, 0%Z)
+ else if (Z.to_pos prec <=? digits2_pos m)%positive then
+ (S754_finite s m (-prec), (e + prec)%Z)
+ else
+ let d := (prec - Z.pos (digits2_pos m))%Z in
+ (S754_finite s (shift_pos (Z.to_pos d) m) (-prec), (e + prec - d)%Z).
+
+Lemma Bfrexp_correct_aux :
+ forall sx mx ex (Hx : bounded mx ex = true),
+ let x := F2R (Float radix2 (cond_Zopp sx (Z.pos mx)) ex) in
+ let z := fst (Ffrexp_core_binary sx mx ex) in
+ let e := snd (Ffrexp_core_binary sx mx ex) in
+ valid_binary z = true /\
+ ((2 < emax)%Z -> (/2 <= Rabs (SF2R radix2 z) < 1)%R) /\
+ (x = SF2R radix2 z * bpow radix2 e)%R.
+Proof.
+intros sx mx ex Bx.
+set (x := F2R _).
+set (z := fst _).
+set (e := snd _); simpl.
+assert (Dmx_le_prec : (Z.pos (digits2_pos mx) <= prec)%Z).
+{ revert Bx; unfold bounded; rewrite Bool.andb_true_iff.
+ unfold canonical_mantissa; rewrite <-Zeq_is_eq_bool; unfold fexp, FLT_exp.
+ case (Z.max_spec (Z.pos (digits2_pos mx) + ex - prec) emin); lia. }
+assert (Dmx_le_prec' : (digits2_pos mx <= Z.to_pos prec)%positive).
+{ change (_ <= _)%positive
+ with (Z.pos (digits2_pos mx) <= Z.pos (Z.to_pos prec))%Z.
+ now rewrite Z2Pos.id; [|now apply prec_gt_0_]. }
+unfold z, e, Ffrexp_core_binary.
+case Z.ltb_spec ; intros Hp ; unfold emin in Hp.
+{ apply (conj Bx).
+ split.
+ clear -Hp ; lia.
+ now rewrite Rmult_1_r. }
+case (Pos.leb_spec _ _); simpl; intro Dmx.
+- unfold bounded, F2R; simpl.
+ assert (Dmx' : digits2_pos mx = Z.to_pos prec).
+ { now apply Pos.le_antisym. }
+ assert (Dmx'' : Z.pos (digits2_pos mx) = prec).
+ { now rewrite Dmx', Z2Pos.id; [|apply prec_gt_0_]. }
+ split; [|split].
+ + apply andb_true_intro.
+ split ; cycle 1.
+ { apply Zle_bool_true. clear -Hp ; lia. }
+ apply Zeq_bool_true; unfold fexp, FLT_exp.
+ rewrite Dmx', Z2Pos.id by apply prec_gt_0_.
+ rewrite Z.max_l.
+ ring.
+ clear -Hp.
+ unfold emin ; lia.
+ + intros _.
+ rewrite Rabs_mult, (Rabs_pos_eq (bpow _ _)) by now apply bpow_ge_0.
+ rewrite <-abs_IZR, abs_cond_Zopp; simpl; split.
+ * apply (Rmult_le_reg_r (bpow radix2 prec)); [now apply bpow_gt_0|].
+ rewrite Rmult_assoc, <-bpow_plus, Z.add_opp_diag_l; simpl.
+ rewrite Rmult_1_r.
+ change (/ 2)%R with (bpow radix2 (- 1)); rewrite <-bpow_plus.
+ rewrite <-Dmx'', Z.add_comm, Zpos_digits2_pos, Zdigits_mag; [|lia].
+ set (b := bpow _ _).
+ rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
+ apply bpow_mag_le; apply IZR_neq; lia.
+ * apply (Rmult_lt_reg_r (bpow radix2 prec)); [now apply bpow_gt_0|].
+ rewrite Rmult_assoc, <-bpow_plus, Z.add_opp_diag_l; simpl.
+ rewrite Rmult_1_l, Rmult_1_r.
+ rewrite <-Dmx'', Zpos_digits2_pos, Zdigits_mag; [|lia].
+ set (b := bpow _ _).
+ rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
+ apply bpow_mag_gt; apply IZR_neq; lia.
+ + rewrite Rmult_assoc, <- bpow_plus.
+ now replace (_ + _)%Z with ex by ring.
+- unfold bounded, F2R; simpl.
+ assert (Dmx' : (Z.pos (digits2_pos mx) < prec)%Z).
+ { now rewrite <-(Z2Pos.id prec); [|now apply prec_gt_0_]. }
+ split; [|split].
+ + unfold bounded; apply andb_true_intro.
+ split ; cycle 1.
+ { apply Zle_bool_true. clear -Hp ; lia. }
+ apply Zeq_bool_true; unfold fexp, FLT_exp.
+ rewrite Zpos_digits2_pos, shift_pos_correct, Z.pow_pos_fold.
+ rewrite Z2Pos.id; [|lia].
+ rewrite Z.mul_comm; change 2%Z with (radix2 : Z).
+ rewrite Zdigits_mult_Zpower; [|lia|lia].
+ rewrite Zpos_digits2_pos; replace (_ - _)%Z with (- prec)%Z by ring.
+ now apply Z.max_l.
+ + rewrite Rabs_mult, (Rabs_pos_eq (bpow _ _)); [|now apply bpow_ge_0].
+ rewrite <-abs_IZR, abs_cond_Zopp; simpl.
+ rewrite shift_pos_correct, mult_IZR.
+ change (IZR (Z.pow_pos _ _))
+ with (bpow radix2 (Z.pos (Z.to_pos ((prec - Z.pos (digits2_pos mx)))))).
+ rewrite Z2Pos.id; [|lia].
+ rewrite Rmult_comm, <-Rmult_assoc, <-bpow_plus.
+ set (d := Z.pos (digits2_pos mx)).
+ replace (_ + _)%Z with (- d)%Z by ring; split.
+ * apply (Rmult_le_reg_l (bpow radix2 d)); [now apply bpow_gt_0|].
+ rewrite <-Rmult_assoc, <-bpow_plus, Z.add_opp_diag_r.
+ rewrite Rmult_1_l.
+ change (/ 2)%R with (bpow radix2 (- 1)); rewrite <-bpow_plus.
+ rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
+ unfold d; rewrite Zpos_digits2_pos, Zdigits_mag; [|lia].
+ apply bpow_mag_le; apply IZR_neq; lia.
+ * apply (Rmult_lt_reg_l (bpow radix2 d)); [now apply bpow_gt_0|].
+ rewrite <-Rmult_assoc, <-bpow_plus, Z.add_opp_diag_r.
+ rewrite Rmult_1_l, Rmult_1_r.
+ rewrite <-(Rabs_pos_eq (IZR _)); [|apply IZR_le; lia].
+ unfold d; rewrite Zpos_digits2_pos, Zdigits_mag; [|lia].
+ apply bpow_mag_gt; apply IZR_neq; lia.
+ + rewrite Rmult_assoc, <-bpow_plus, shift_pos_correct.
+ rewrite IZR_cond_Zopp, mult_IZR, cond_Ropp_mult_r, <-IZR_cond_Zopp.
+ change (IZR (Z.pow_pos _ _))
+ with (bpow radix2 (Z.pos (Z.to_pos (prec - Z.pos (digits2_pos mx))))).
+ rewrite Z2Pos.id; [|lia].
+ rewrite Rmult_comm, <-Rmult_assoc, <-bpow_plus.
+ now replace (_ + _)%Z with ex by ring; rewrite Rmult_comm.
+Qed.
+
+Definition Bfrexp f :=
+ match f with
+ | B754_finite s m e H =>
+ let e' := snd (Ffrexp_core_binary s m e) in
+ (SF2B _ (proj1 (Bfrexp_correct_aux s m e H)), e')
+ | _ => (f, (-2*emax-prec)%Z)
+ end.
+
+Theorem is_nan_Bfrexp :
+ forall x,
+ is_nan (fst (Bfrexp x)) = is_nan x.
+Proof.
+intros [sx|sx| |sx mx ex Bx] ; try easy.
+simpl.
+rewrite is_nan_SF2B.
+unfold Ffrexp_core_binary.
+destruct Zlt_bool ; try easy.
+now destruct Pos.leb.
+Qed.
+
+Theorem Bfrexp_correct :
+ forall f,
+ is_finite_strict f = true ->
+ let (z, e) := Bfrexp f in
+ (B2R f = B2R z * bpow radix2 e)%R /\
+ ( (2 < emax)%Z -> (/2 <= Rabs (B2R z) < 1)%R /\ e = mag radix2 (B2R f) ).
+Proof.
+intro f; case f; intro s; try discriminate; intros m e Hf _.
+generalize (Bfrexp_correct_aux s m e Hf).
+intros (_, (Hb, Heq)); simpl; rewrite B2R_SF2B.
+split.
+easy.
+intros Hp.
+specialize (Hb Hp).
+split.
+easy.
+rewrite Heq, mag_mult_bpow.
+- apply (Z.add_reg_l (- (snd (Ffrexp_core_binary s m e)))).
+ now ring_simplify; symmetry; apply mag_unique.
+- intro H; destruct Hb as (Hb, _); revert Hb; rewrite H, Rabs_R0; lra.
+Qed.
+
+(** Ulp *)
+
+Lemma Bulp_correct_aux :
+ bounded 1 emin = true.
+Proof.
+unfold bounded, canonical_mantissa.
+rewrite Zeq_bool_true.
+apply Zle_bool_true.
+unfold emin.
+generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
+lia.
+apply Z.max_r.
+simpl digits2_pos.
+generalize (prec_gt_0 prec).
+lia.
+Qed.
+
+Definition Bulp x :=
+ match x with
+ | B754_zero _ => B754_finite false 1 emin Bulp_correct_aux
+ | B754_infinity _ => B754_infinity false
+ | B754_nan => B754_nan
+ | B754_finite _ _ e _ => binary_normalize mode_ZR 1 e false
+ end.
+
+Theorem is_nan_Bulp :
+ forall x,
+ is_nan (Bulp x) = is_nan x.
+Proof.
+intros [sx|sx| |sx mx ex Bx] ; try easy.
+unfold Bulp.
+apply is_nan_binary_normalize.
+Qed.
+
+Theorem Bulp_correct :
+ forall x,
+ is_finite x = true ->
+ B2R (Bulp x) = ulp radix2 fexp (B2R x) /\
+ is_finite (Bulp x) = true /\
+ Bsign (Bulp x) = false.
+Proof.
+intros [sx|sx| |sx mx ex Hx] Fx ; try easy ; simpl.
+- repeat split.
+ change fexp with (FLT_exp emin prec).
+ rewrite ulp_FLT_0 by easy.
+ apply F2R_bpow.
+- destruct (binary_round_correct mode_ZR false 1 ex) as [H1 H2].
+ revert H2.
+ simpl.
+ destruct (andb_prop _ _ Hx) as [H5 H6].
+ replace (round _ _ _ _) with (bpow radix2 ex).
+ rewrite Rlt_bool_true.
+ intros [H2 [H3 H4]].
+ split ; [|split].
+ + rewrite B2R_SF2B.
+ rewrite ulp_canonical.
+ exact H2.
+ now case sx.
+ now apply canonical_canonical_mantissa.
+ + now rewrite is_finite_SF2B.
+ + now rewrite Bsign_SF2B.
+ + rewrite Rabs_pos_eq by apply bpow_ge_0.
+ apply bpow_lt.
+ generalize (prec_gt_0 prec) (Zle_bool_imp_le _ _ H6).
+ clear ; lia.
+ + rewrite F2R_bpow.
+ apply sym_eq, round_generic.
+ typeclasses eauto.
+ apply generic_format_FLT_bpow.
+ easy.
+ rewrite (canonical_canonical_mantissa false _ _ H5).
+ apply Z.max_le_iff.
+ now right.
+Qed.
+
+Theorem is_finite_strict_Bulp :
+ forall x,
+ is_finite_strict (Bulp x) = is_finite x.
+Proof.
+intros [sx|sx| |sx mx ex Bx] ; try easy.
+generalize (Bulp_correct (B754_finite sx mx ex Bx) eq_refl).
+destruct Bulp as [sy| | |] ; try easy.
+intros [H _].
+contradict H.
+rewrite ulp_neq_0.
+apply Rlt_not_eq.
+apply bpow_gt_0.
+apply F2R_neq_0.
+now destruct sx.
+Qed.
+
+Definition Bulp' x := Bldexp mode_NE Bone (fexp (snd (Bfrexp x))).
+
+Theorem Bulp'_correct :
+ (2 < emax)%Z ->
+ forall x,
+ is_finite x = true ->
+ Bulp' x = Bulp x.
+Proof.
+intros Hp x Fx.
+assert (B2R (Bulp' x) = ulp radix2 fexp (B2R x) /\
+ is_finite (Bulp' x) = true /\
+ Bsign (Bulp' x) = false) as [H1 [H2 H3]].
+{ destruct x as [sx|sx| |sx mx ex Hx] ; unfold Bulp'.
+- replace (fexp _) with emin.
+ + generalize (Bldexp_correct mode_NE Bone emin).
+ rewrite Bone_correct, Rmult_1_l, round_generic;
+ [|now apply valid_rnd_N|apply generic_format_bpow; unfold fexp, FLT_exp;
+ rewrite Z.max_r; unfold Prec_gt_0 in prec_gt_0_; lia].
+ rewrite Rlt_bool_true.
+ * intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs.
+ split; [|now split; [apply is_finite_Bone|apply Bsign_Bone]].
+ simpl; unfold ulp; rewrite Req_bool_true; [|reflexivity].
+ destruct (negligible_exp_FLT emin prec) as (n, (Hn, Hn')).
+ change fexp with (FLT_exp emin prec); rewrite Hn.
+ now unfold FLT_exp; rewrite Z.max_r;
+ [|unfold Prec_gt_0 in prec_gt_0_; lia].
+ * rewrite Rabs_pos_eq; [|now apply bpow_ge_0]; apply bpow_lt.
+ unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+ + simpl; change (fexp _) with (fexp (-2 * emax - prec)).
+ unfold fexp, FLT_exp; rewrite Z.max_r; [reflexivity|].
+ unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
+- discriminate.
+- discriminate.
+- unfold ulp, cexp.
+ set (f := B754_finite _ _ _ _).
+ rewrite Req_bool_false.
+ + destruct (Bfrexp_correct f (eq_refl _)) as (Hfr1, (Hfr2, Hfr3)).
+ apply Hp.
+ simpl.
+ rewrite Hfr3.
+ set (e' := fexp _).
+ generalize (Bldexp_correct mode_NE Bone e').
+ rewrite Bone_correct, Rmult_1_l, round_generic; [|now apply valid_rnd_N|].
+ { rewrite Rlt_bool_true.
+ - intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs.
+ now split; [|split; [apply is_finite_Bone|apply Bsign_Bone]].
+ - rewrite Rabs_pos_eq; [|now apply bpow_ge_0].
+ unfold e', fexp, FLT_exp.
+ apply bpow_lt.
+ case (Z.max_spec (mag radix2 (B2R f) - prec) emin)
+ as [(_, Hm)|(_, Hm)]; rewrite Hm;
+ [now unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia|].
+ apply (Zplus_lt_reg_r _ _ prec); ring_simplify.
+ assert (mag radix2 (B2R f) <= emax)%Z;
+ [|now unfold Prec_gt_0 in prec_gt_0_; lia].
+ apply mag_le_bpow; [|now apply abs_B2R_lt_emax].
+ now unfold f, B2R; apply F2R_neq_0; case sx. }
+ apply generic_format_bpow, Z.max_lub.
+ * unfold Prec_gt_0 in prec_gt_0_; lia.
+ * apply Z.le_max_r.
+ + now unfold f, B2R; apply F2R_neq_0; case sx. }
+destruct (Bulp_correct x Fx) as [H4 [H5 H6]].
+apply B2R_Bsign_inj ; try easy.
+now rewrite H4.
+now rewrite H3.
+Qed.
+
+(** Successor (and predecessor) *)
+
+Definition Bsucc x :=
+ match x with
+ | B754_zero _ => B754_finite false 1 emin Bulp_correct_aux
+ | B754_infinity false => x
+ | B754_infinity true => Bopp Bmax_float
+ | B754_nan => B754_nan
+ | B754_finite false mx ex _ =>
+ SF2B _ (proj1 (binary_round_correct mode_UP false (mx + 1) ex))
+ | B754_finite true mx ex _ =>
+ SF2B _ (proj1 (binary_round_correct mode_ZR true (xO mx - 1) (ex - 1)))
+ end.
+
+Theorem is_nan_Bsucc :
+ forall x,
+ is_nan (Bsucc x) = is_nan x.
+Proof.
+unfold Bsucc.
+intros [sx|[|]| |[|] mx ex Bx] ; try easy.
+rewrite is_nan_SF2B.
+apply is_nan_binary_round.
+rewrite is_nan_SF2B.
+apply is_nan_binary_round.
+Qed.
+
+Theorem Bsucc_correct :
+ forall x,
+ is_finite x = true ->
+ if Rlt_bool (succ radix2 fexp (B2R x)) (bpow radix2 emax) then
+ B2R (Bsucc x) = succ radix2 fexp (B2R x) /\
+ is_finite (Bsucc x) = true /\
+ (Bsign (Bsucc x) = Bsign x && is_finite_strict x)%bool
+ else
+ B2SF (Bsucc x) = S754_infinity false.
+Proof.
+intros [sx|sx| | [|] mx ex Bx] Hx ; try easy ; clear Hx.
+- simpl.
+ change fexp with (FLT_exp emin prec).
+ rewrite succ_0, ulp_FLT_0 by easy.
+ rewrite Rlt_bool_true.
+ repeat split ; cycle 1.
+ now case sx.
+ apply F2R_bpow.
+ apply bpow_lt.
+ unfold emin.
+ generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
+ lia.
+- assert (Cx := proj1 (andb_prop _ _ Bx)).
+ change (B2R (B754_finite _ _ _ _)) with (F2R (Fopp (Float radix2 (Zpos mx) ex))).
+ rewrite F2R_opp, succ_opp.
+ rewrite Rlt_bool_true ; cycle 1.
+ { apply Rle_lt_trans with 0%R.
+ 2: apply bpow_gt_0.
+ rewrite <- Ropp_0.
+ apply Ropp_le_contravar.
+ apply pred_ge_0.
+ now apply FLT_exp_valid.
+ now apply F2R_gt_0.
+ apply generic_format_canonical.
+ now apply (canonical_canonical_mantissa false). }
+ simpl.
+ rewrite B2R_SF2B, is_finite_SF2B, Bsign_SF2B.
+ generalize (binary_round_correct mode_ZR true (xO mx - 1) (ex - 1)).
+ set (z := binary_round _ _ _ _).
+ rewrite F2R_cond_Zopp.
+ simpl.
+ rewrite round_ZR_opp.
+ rewrite round_ZR_DN by now apply F2R_ge_0.
+ assert (H: F2R (Float radix2 (Zpos (xO mx - 1)) (ex - 1)) = (F2R (Float radix2 (Zpos mx) ex) - F2R (Float radix2 1 (ex - 1)))%R).
+ { rewrite (F2R_change_exp _ (ex - 1) _ ex) by apply Z.le_pred_l.
+ rewrite <- F2R_minus, Fminus_same_exp.
+ apply F2R_eq.
+ replace (ex - (ex - 1))%Z with 1%Z by ring.
+ now rewrite Zmult_comm. }
+ rewrite Rlt_bool_true.
+ + intros [_ [H1 [H2 H3]]].
+ split.
+ 2: now split.
+ rewrite H1, H.
+ apply f_equal.
+ apply round_DN_minus_eps_pos.
+ now apply FLT_exp_valid.
+ now apply F2R_gt_0.
+ apply (generic_format_B2R (B754_finite false mx ex Bx)).
+ split.
+ now apply F2R_gt_0.
+ rewrite F2R_bpow.
+ change fexp with (FLT_exp emin prec).
+ destruct (ulp_FLT_pred_pos radix2 emin prec (F2R (Float radix2 (Zpos mx) ex))) as [Hu|[Hu1 Hu2]].
+ * apply (generic_format_B2R (B754_finite false mx ex Bx)).
+ * now apply F2R_ge_0.
+ * rewrite Hu.
+ rewrite ulp_canonical.
+ apply bpow_le.
+ apply Z.le_pred_l.
+ easy.
+ now apply (canonical_canonical_mantissa false).
+ * rewrite Hu2.
+ rewrite ulp_canonical.
+ rewrite <- (Zmult_1_r radix2).
+ change (_ / _)%R with (bpow radix2 ex * bpow radix2 (-1))%R.
+ rewrite <- bpow_plus.
+ apply Rle_refl.
+ easy.
+ now apply (canonical_canonical_mantissa false).
+ + rewrite Rabs_Ropp, Rabs_pos_eq.
+ eapply Rle_lt_trans.
+ 2: apply bounded_lt_emax with (1 := Bx).
+ apply Rle_trans with (F2R (Float radix2 (Zpos (xO mx - 1)) (ex - 1))).
+ apply round_DN_pt.
+ now apply FLT_exp_valid.
+ rewrite H.
+ rewrite <- (Rminus_0_r (F2R _)) at 2.
+ apply Rplus_le_compat_l.
+ apply Ropp_le_contravar.
+ now apply F2R_ge_0.
+ apply round_DN_pt.
+ now apply FLT_exp_valid.
+ apply generic_format_0.
+ now apply F2R_ge_0.
+- assert (Cx := proj1 (andb_prop _ _ Bx)).
+ apply (canonical_canonical_mantissa false) in Cx.
+ replace (succ _ _ _) with (F2R (Float radix2 (Zpos mx + 1) ex)) ; cycle 1.
+ { unfold succ, B2R.
+ rewrite Rle_bool_true by now apply F2R_ge_0.
+ rewrite ulp_canonical by easy.
+ rewrite <- F2R_bpow.
+ rewrite <- F2R_plus.
+ now rewrite Fplus_same_exp. }
+ simpl.
+ rewrite B2R_SF2B, is_finite_SF2B, Bsign_SF2B.
+ generalize (binary_round_correct mode_UP false (mx + 1) ex).
+ simpl.
+ rewrite round_generic.
+ + rewrite Rabs_pos_eq by now apply F2R_ge_0.
+ case Rlt_bool_spec ; intros Hs.
+ now intros [_ H].
+ intros H.
+ rewrite B2SF_SF2B.
+ now rewrite (proj2 H).
+ + apply valid_rnd_UP.
+ + destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as [e He].
+ rewrite Rabs_pos_eq in He by now apply F2R_ge_0.
+ refine (_ (He _)).
+ 2: now apply F2R_neq_0.
+ clear He. intros He.
+ destruct (F2R_p1_le_bpow _ (Zpos mx) _ _ eq_refl (proj2 He)) as [H|H].
+ * apply generic_format_F2R.
+ intros _.
+ rewrite Cx at 2.
+ apply cexp_ge_bpow.
+ apply FLT_exp_monotone.
+ rewrite Rabs_pos_eq by now apply F2R_ge_0.
+ rewrite (mag_unique_pos _ _ e).
+ apply He.
+ split.
+ apply Rle_trans with (1 := proj1 He).
+ apply F2R_le.
+ apply Z.le_succ_diag_r.
+ exact H.
+ * simpl in H.
+ rewrite H.
+ apply generic_format_FLT_bpow.
+ easy.
+ apply le_bpow with radix2.
+ apply Rlt_le.
+ apply Rle_lt_trans with (2 := proj2 He).
+ apply generic_format_ge_bpow with fexp.
+ intros e'.
+ apply Z.le_max_r.
+ now apply F2R_gt_0.
+ now apply generic_format_canonical.
+Qed.
+
+Definition Bpred x := Bopp (Bsucc (Bopp x)).
+
+Theorem is_nan_Bpred :
+ forall x,
+ is_nan (Bpred x) = is_nan x.
+Proof.
+intros x.
+unfold Bpred.
+rewrite is_nan_Bopp, is_nan_Bsucc.
+apply is_nan_Bopp.
+Qed.
+
+Theorem Bpred_correct :
+ forall x,
+ is_finite x = true ->
+ if Rlt_bool (- bpow radix2 emax) (pred radix2 fexp (B2R x)) then
+ B2R (Bpred x) = pred radix2 fexp (B2R x) /\
+ is_finite (Bpred x) = true /\
+ (Bsign (Bpred x) = Bsign x || negb (is_finite_strict x))%bool
+ else
+ B2SF (Bpred x) = S754_infinity true.
+Proof.
+intros x Fx.
+assert (Fox : is_finite (Bopp x) = true).
+{ now rewrite is_finite_Bopp. }
+rewrite <-(Ropp_involutive (B2R x)), <-B2R_Bopp.
+rewrite pred_opp, Rlt_bool_opp.
+generalize (Bsucc_correct _ Fox).
+case (Rlt_bool _ _).
+- intros (HR, (HF, HS)); unfold Bpred.
+ rewrite B2R_Bopp, HR, is_finite_Bopp.
+ rewrite <-(Bool.negb_involutive (Bsign x)), <-Bool.negb_andb.
+ apply (conj eq_refl).
+ apply (conj HF).
+ rewrite Bsign_Bopp, <-(Bsign_Bopp x), HS.
+ + now rewrite is_finite_strict_Bopp.
+ + now revert Fx; case x.
+ + now revert HF; case (Bsucc _).
+- now unfold Bpred; case (Bsucc _); intro s; case s.
+Qed.
+
+Definition Bpred_pos' x :=
+ match x with
+ | B754_finite _ mx _ _ =>
+ let d :=
+ if (mx~0 =? shift_pos (Z.to_pos prec) 1)%positive then
+ Bldexp mode_NE Bone (fexp (snd (Bfrexp x) - 1))
+ else
+ Bulp' x in
+ Bminus mode_NE x d
+ | _ => x
+ end.
+
+Theorem Bpred_pos'_correct :
+ (2 < emax)%Z ->
+ forall x,
+ (0 < B2R x)%R ->
+ Bpred_pos' x = Bpred x.
+Proof.
+intros Hp x Fx.
+assert (B2R (Bpred_pos' x) = pred_pos radix2 fexp (B2R x) /\
+ is_finite (Bpred_pos' x) = true /\
+ Bsign (Bpred_pos' x) = false) as [H1 [H2 H3]].
+{ generalize (Bfrexp_correct x).
+ destruct x as [sx|sx| |sx mx ex Bx] ; try elim (Rlt_irrefl _ Fx).
+ intros Hfrexpx.
+ assert (Hsx : sx = false).
+ { apply gt_0_F2R in Fx.
+ revert Fx.
+ now case sx. }
+ clear Fx.
+ rewrite Hsx in Hfrexpx |- *; clear Hsx sx.
+ specialize (Hfrexpx (eq_refl _)).
+ simpl in Hfrexpx; rewrite B2R_SF2B in Hfrexpx.
+ destruct Hfrexpx as (Hfrexpx_bounds, (Hfrexpx_eq, Hfrexpx_exp)).
+ apply Hp.
+ unfold Bpred_pos', Bfrexp.
+ simpl (snd (_, snd _)).
+ rewrite Hfrexpx_exp.
+ set (x' := B754_finite _ _ _ _).
+ set (xr := F2R _).
+ assert (Nzxr : xr <> 0%R).
+ { unfold xr, F2R; simpl.
+ rewrite <-(Rmult_0_l (bpow radix2 ex)); intro H.
+ apply Rmult_eq_reg_r in H; [|apply Rgt_not_eq, bpow_gt_0].
+ apply eq_IZR in H; lia. }
+ assert (Hulp := Bulp_correct x' (eq_refl _)).
+ rewrite <- (Bulp'_correct Hp x') in Hulp by easy.
+ assert (Hldexp := Bldexp_correct mode_NE Bone (fexp (mag radix2 xr - 1))).
+ rewrite Bone_correct, Rmult_1_l in Hldexp.
+ assert (Fbpowxr : generic_format radix2 fexp
+ (bpow radix2 (fexp (mag radix2 xr - 1)))).
+ { apply generic_format_bpow, Z.max_lub.
+ - unfold Prec_gt_0 in prec_gt_0_; lia.
+ - apply Z.le_max_r. }
+ assert (H : Rlt_bool (Rabs
+ (round radix2 fexp (round_mode mode_NE)
+ (bpow radix2 (fexp (mag radix2 xr - 1)))))
+ (bpow radix2 emax) = true); [|rewrite H in Hldexp; clear H].
+ { apply Rlt_bool_true; rewrite round_generic;
+ [|apply valid_rnd_round_mode|apply Fbpowxr].
+ rewrite Rabs_pos_eq; [|apply bpow_ge_0]; apply bpow_lt.
+ apply Z.max_lub_lt; [|unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia].
+ apply (Zplus_lt_reg_r _ _ (prec + 1)); ring_simplify.
+ rewrite Z.add_1_r; apply Zle_lt_succ, mag_le_bpow.
+ - exact Nzxr.
+ - apply (Rlt_le_trans _ (bpow radix2 emax)).
+ + change xr with (B2R x'); apply abs_B2R_lt_emax.
+ + apply bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia. }
+ set (d := if (mx~0 =? _)%positive then _ else _).
+ assert (Hminus := Bminus_correct mode_NE x' d (eq_refl _)).
+ assert (Fd : is_finite d = true).
+ { unfold d; case (_ =? _)%positive.
+ - now rewrite (proj1 (proj2 Hldexp)), is_finite_Bone.
+ - now rewrite (proj1 (proj2 Hulp)). }
+ specialize (Hminus Fd).
+ assert (Px : (0 <= B2R x')%R).
+ { unfold B2R, x', F2R; simpl.
+ now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. }
+ assert (Pd : (0 <= B2R d)%R).
+ { unfold d; case (_ =? _)%positive.
+ - rewrite (proj1 Hldexp).
+ now rewrite round_generic; [apply bpow_ge_0|apply valid_rnd_N|].
+ - rewrite (proj1 Hulp); apply ulp_ge_0. }
+ assert (Hdlex : (B2R d <= B2R x')%R).
+ { unfold d; case (_ =? _)%positive.
+ - rewrite (proj1 Hldexp).
+ rewrite round_generic; [|now apply valid_rnd_N|now simpl].
+ apply (Rle_trans _ (bpow radix2 (mag radix2 xr - 1))).
+ + apply bpow_le, Z.max_lub.
+ * unfold Prec_gt_0 in prec_gt_0_; lia.
+ * apply (Zplus_le_reg_r _ _ 1); ring_simplify.
+ apply mag_ge_bpow.
+ replace (_ - 1)%Z with emin by ring.
+ now change xr with (B2R x'); apply abs_B2R_ge_emin.
+ + rewrite <-(Rabs_pos_eq _ Px).
+ now change xr with (B2R x'); apply bpow_mag_le.
+ - rewrite (proj1 Hulp); apply ulp_le_id.
+ + assert (B2R x' <> 0%R); [exact Nzxr|lra].
+ + apply generic_format_B2R. }
+ assert (H : Rlt_bool
+ (Rabs
+ (round radix2 fexp
+ (round_mode mode_NE) (B2R x' - B2R d)))
+ (bpow radix2 emax) = true); [|rewrite H in Hminus; clear H].
+ { apply Rlt_bool_true.
+ rewrite <-round_NE_abs; [|now apply FLT_exp_valid].
+ rewrite Rabs_pos_eq; [|lra].
+ apply (Rle_lt_trans _ (B2R x')).
+ - apply round_le_generic;
+ [now apply FLT_exp_valid|now apply valid_rnd_N| |lra].
+ apply generic_format_B2R.
+ - apply (Rle_lt_trans _ _ _ (Rle_abs _)), abs_B2R_lt_emax. }
+ rewrite (proj1 Hminus).
+ rewrite (proj1 (proj2 Hminus)).
+ rewrite (proj2 (proj2 Hminus)).
+ split; [|split; [reflexivity|now case (Rcompare_spec _ _); [lra| |]]].
+ unfold pred_pos, d.
+ case (Pos.eqb_spec _ _); intro Hd; case (Req_bool_spec _ _); intro Hpred.
+ + rewrite (proj1 Hldexp).
+ rewrite (round_generic _ _ _ _ Fbpowxr).
+ change xr with (B2R x').
+ replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
+ * rewrite round_generic; [reflexivity|now apply valid_rnd_N|].
+ apply generic_format_pred_pos;
+ [now apply FLT_exp_valid|apply generic_format_B2R|].
+ change xr with (B2R x') in Nzxr; lra.
+ * now unfold pred_pos; rewrite Req_bool_true.
+ + exfalso; apply Hpred.
+ assert (Hmx : IZR (Z.pos mx) = bpow radix2 (prec - 1)).
+ { apply (Rmult_eq_reg_l 2); [|lra]; rewrite <-mult_IZR.
+ change (2 * Z.pos mx)%Z with (Z.pos mx~0); rewrite Hd.
+ rewrite shift_pos_correct, Z.mul_1_r.
+ change (IZR (Z.pow_pos _ _)) with (bpow radix2 (Z.pos (Z.to_pos prec))).
+ rewrite Z2Pos.id; [|exact prec_gt_0_].
+ change 2%R with (bpow radix2 1); rewrite <-bpow_plus.
+ f_equal; ring. }
+ unfold x' at 1; unfold B2R at 1; unfold F2R; simpl.
+ rewrite Hmx, <-bpow_plus; f_equal.
+ apply (Z.add_reg_l 1); ring_simplify; symmetry; apply mag_unique_pos.
+ unfold F2R; simpl; rewrite Hmx, <-bpow_plus; split.
+ * right; f_equal; ring.
+ * apply bpow_lt; lia.
+ + rewrite (proj1 Hulp).
+ assert (H : ulp radix2 fexp (B2R x')
+ = bpow radix2 (fexp (mag radix2 (B2R x') - 1)));
+ [|rewrite H; clear H].
+ { unfold ulp; rewrite Req_bool_false; [|now simpl].
+ unfold cexp; f_equal.
+ assert (H : (mag radix2 (B2R x') <= emin + prec)%Z).
+ { assert (Hcm : canonical_mantissa mx ex = true).
+ { now generalize Bx; unfold bounded; rewrite Bool.andb_true_iff. }
+ apply (canonical_canonical_mantissa false) in Hcm.
+ revert Hcm; fold emin; unfold canonical, cexp; simpl.
+ change (F2R _) with (B2R x'); intro Hex.
+ apply Z.nlt_ge; intro H'; apply Hd.
+ apply Pos2Z.inj_pos; rewrite shift_pos_correct, Z.mul_1_r.
+ apply eq_IZR; change (IZR (Z.pow_pos _ _))
+ with (bpow radix2 (Z.pos (Z.to_pos prec))).
+ rewrite Z2Pos.id; [|exact prec_gt_0_].
+ change (Z.pos mx~0) with (2 * Z.pos mx)%Z.
+ rewrite Z.mul_comm, mult_IZR.
+ apply (Rmult_eq_reg_r (bpow radix2 (ex - 1)));
+ [|apply Rgt_not_eq, bpow_gt_0].
+ change 2%R with (bpow radix2 1); rewrite Rmult_assoc, <-!bpow_plus.
+ replace (1 + _)%Z with ex by ring.
+ unfold B2R at 1, F2R in Hpred; simpl in Hpred; rewrite Hpred.
+ change (F2R _) with (B2R x'); rewrite Hex.
+ unfold fexp, FLT_exp; rewrite Z.max_l; [f_equal; ring|lia]. }
+ now unfold fexp, FLT_exp; do 2 (rewrite Z.max_r; [|lia]). }
+ replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
+ * rewrite round_generic; [reflexivity|apply valid_rnd_N|].
+ apply generic_format_pred_pos;
+ [now apply FLT_exp_valid| |change xr with (B2R x') in Nzxr; lra].
+ apply generic_format_B2R.
+ * now unfold pred_pos; rewrite Req_bool_true.
+ + rewrite (proj1 Hulp).
+ replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
+ * rewrite round_generic; [reflexivity|now apply valid_rnd_N|].
+ apply generic_format_pred_pos;
+ [now apply FLT_exp_valid|apply generic_format_B2R|].
+ change xr with (B2R x') in Nzxr; lra.
+ * now unfold pred_pos; rewrite Req_bool_false. }
+assert (is_finite x = true /\ Bsign x = false) as [H4 H5].
+{ clear -Fx.
+ destruct x as [| | |sx mx ex Hx] ; try elim Rlt_irrefl with (1 := Fx).
+ repeat split.
+ destruct sx.
+ elim Rlt_not_le with (1 := Fx).
+ now apply F2R_le_0.
+ easy. }
+generalize (Bpred_correct x H4).
+rewrite Rlt_bool_true ; cycle 1.
+{ apply Rlt_le_trans with 0%R.
+ rewrite <- Ropp_0.
+ apply Ropp_lt_contravar.
+ apply bpow_gt_0.
+ apply pred_ge_0.
+ now apply FLT_exp_valid.
+ exact Fx.
+ apply generic_format_B2R. }
+intros [H7 [H8 H9]].
+apply eq_sym.
+apply B2R_Bsign_inj ; try easy.
+rewrite H7, H1.
+apply pred_eq_pos.
+now apply Rlt_le.
+rewrite H9, H3.
+rewrite is_finite_strict_B2R by now apply Rgt_not_eq.
+now rewrite H5.
+Qed.
+
+Definition Bsucc' x :=
+ match x with
+ | B754_zero _ => Bldexp mode_NE Bone emin
+ | B754_infinity false => x
+ | B754_infinity true => Bopp Bmax_float
+ | B754_nan => B754_nan
+ | B754_finite false _ _ _ => Bplus mode_NE x (Bulp x)
+ | B754_finite true _ _ _ => Bopp (Bpred_pos' (Bopp x))
+ end.
+
+Theorem Bsucc'_correct :
+ (2 < emax)%Z ->
+ forall x,
+ is_finite x = true ->
+ Bsucc' x = Bsucc x.
+Proof.
+intros Hp x Fx.
+destruct x as [sx|sx| |sx mx ex Bx] ; try easy.
+{ generalize (Bldexp_correct mode_NE Bone emin).
+ rewrite Bone_correct, Rmult_1_l.
+ rewrite round_generic.
+ rewrite Rlt_bool_true.
+ simpl.
+ intros [H1 [H2 H3]].
+ apply B2R_inj.
+ apply is_finite_strict_B2R.
+ rewrite H1.
+ apply Rgt_not_eq.
+ apply bpow_gt_0.
+ easy.
+ rewrite H1.
+ apply eq_sym, F2R_bpow.
+ rewrite Rabs_pos_eq.
+ apply bpow_lt.
+ unfold emin.
+ generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
+ lia.
+ apply bpow_ge_0.
+ apply valid_rnd_N.
+ apply generic_format_bpow.
+ unfold fexp.
+ rewrite Z.max_r.
+ apply Z.le_refl.
+ generalize (prec_gt_0 prec).
+ lia. }
+set (x := B754_finite sx mx ex Bx).
+assert (H:
+ if Rlt_bool (succ radix2 fexp (B2R x)) (bpow radix2 emax) then
+ B2R (Bsucc' x) = succ radix2 fexp (B2R x) /\
+ is_finite (Bsucc' x) = true /\
+ Bsign (Bsucc' x) = sx
+ else
+ B2SF (Bsucc' x) = S754_infinity false).
+{
+ assert (Hsucc : succ radix2 fexp 0 = bpow radix2 emin).
+ { rewrite succ_0.
+ now apply ulp_FLT_0. }
+ unfold Bsucc', x; destruct sx.
+ + case Rlt_bool_spec; intro Hover.
+ * rewrite B2R_Bopp; simpl (Bopp (B754_finite _ _ _ _)).
+ rewrite is_finite_Bopp.
+ set (ox := B754_finite false mx ex Bx).
+ assert (Hpred := Bpred_correct ox eq_refl).
+ rewrite Bpred_pos'_correct ; cycle 1.
+ exact Hp.
+ now apply F2R_gt_0.
+ rewrite Rlt_bool_true in Hpred.
+ rewrite (proj1 Hpred), (proj1 (proj2 Hpred)).
+ split.
+ rewrite <- succ_opp.
+ simpl.
+ now rewrite <- F2R_opp.
+ apply (conj eq_refl).
+ rewrite Bsign_Bopp, (proj2 (proj2 Hpred)).
+ easy.
+ generalize (proj1 (proj2 Hpred)).
+ now case Bpred.
+ apply Rlt_le_trans with 0%R.
+ rewrite <- Ropp_0.
+ apply Ropp_lt_contravar, bpow_gt_0.
+ apply pred_ge_0.
+ now apply FLT_exp_valid.
+ now apply F2R_gt_0.
+ apply generic_format_B2R.
+ * exfalso; revert Hover; apply Rlt_not_le.
+ apply (Rle_lt_trans _ (succ radix2 fexp 0)).
+ { apply succ_le; [now apply FLT_exp_valid|apply generic_format_B2R|
+ apply generic_format_0|].
+ unfold B2R, F2R; simpl; change (Z.neg mx) with (- Z.pos mx)%Z.
+ rewrite opp_IZR, <-Ropp_mult_distr_l, <-Ropp_0; apply Ropp_le_contravar.
+ now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. }
+ rewrite Hsucc; apply bpow_lt.
+ unfold emin.
+ generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
+ lia.
+ + fold x.
+ assert (Hulp := Bulp_correct x (eq_refl _)).
+ assert (Hplus := Bplus_correct mode_NE x (Bulp x) (eq_refl _)).
+ rewrite (proj1 (proj2 Hulp)) in Hplus; specialize (Hplus (eq_refl _)).
+ assert (Px : (0 <= B2R x)%R).
+ { now apply F2R_ge_0. }
+ assert (Hsucc' : (succ radix2 fexp (B2R x)
+ = B2R x + ulp radix2 fexp (B2R x))%R).
+ { now unfold succ; rewrite (Rle_bool_true _ _ Px). }
+ rewrite (proj1 Hulp), <- Hsucc' in Hplus.
+ rewrite round_generic in Hplus;
+ [|apply valid_rnd_N| now apply generic_format_succ;
+ [apply FLT_exp_valid|apply generic_format_B2R]].
+ rewrite Rabs_pos_eq in Hplus; [|apply (Rle_trans _ _ _ Px), succ_ge_id].
+ revert Hplus; case Rlt_bool_spec; intros Hover Hplus.
+ * split; [now simpl|split; [now simpl|]].
+ rewrite (proj2 (proj2 Hplus)); case Rcompare_spec.
+ { intro H; exfalso; revert H.
+ apply Rle_not_lt, (Rle_trans _ _ _ Px), succ_ge_id. }
+ { intro H; exfalso; revert H; apply Rgt_not_eq, Rlt_gt.
+ apply (Rlt_le_trans _ (B2R x)); [|apply succ_ge_id].
+ now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0]. }
+ now simpl.
+ * now rewrite (proj1 Hplus). }
+generalize (Bsucc_correct x Fx).
+revert H.
+case Rlt_bool_spec ; intros H.
+intros [H1 [H2 H3]] [H4 [H5 H6]].
+apply B2R_Bsign_inj ; try easy.
+now rewrite H4.
+rewrite H3, H6.
+simpl.
+now case sx.
+intros H1 H2.
+apply B2SF_inj.
+now rewrite H1, H2.
+Qed.
+
+End Binary.
+
+Arguments B754_zero {prec} {emax}.
+Arguments B754_infinity {prec} {emax}.
+Arguments B754_nan {prec} {emax}.
+Arguments B754_finite {prec} {emax}.
+
+Arguments SF2B {prec} {emax}.
+Arguments B2SF {prec} {emax}.
+Arguments B2R {prec} {emax}.
+
+Arguments is_finite_strict {prec} {emax}.
+Arguments is_finite {prec} {emax}.
+Arguments is_nan {prec} {emax}.
+
+Arguments erase {prec} {emax}.
+Arguments Bsign {prec} {emax}.
+Arguments Bcompare {prec} {emax}.
+Arguments Beqb {prec} {emax}.
+Arguments Bltb {prec} {emax}.
+Arguments Bleb {prec} {emax}.
+Arguments Bopp {prec} {emax}.
+Arguments Babs {prec} {emax}.
+Arguments Bone {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bmax_float {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+
+Arguments Bplus {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bminus {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bmult {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bfma {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bdiv {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bsqrt {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+
+Arguments Bldexp {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bnormfr_mantissa {prec} {emax}.
+Arguments Bfrexp {prec} {emax} {prec_gt_0_}.
+Arguments Bulp {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bulp' {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bsucc {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bpred {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
+Arguments Bpred_pos' {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.