aboutsummaryrefslogtreecommitdiffstats
path: root/verilog/Op.v
diff options
context:
space:
mode:
Diffstat (limited to 'verilog/Op.v')
-rw-r--r--verilog/Op.v1521
1 files changed, 1521 insertions, 0 deletions
diff --git a/verilog/Op.v b/verilog/Op.v
new file mode 100644
index 00000000..16d75426
--- /dev/null
+++ b/verilog/Op.v
@@ -0,0 +1,1521 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Operators and addressing modes. The abstract syntax and dynamic
+ semantics for the CminorSel, RTL, LTL and Mach languages depend on the
+ following types, defined in this library:
+- [condition]: boolean conditions for conditional branches;
+- [operation]: arithmetic and logical operations;
+- [addressing]: addressing modes for load and store operations.
+
+ These types are X86-64-specific and correspond roughly to what the
+ processor can compute in one instruction. In other terms, these
+ types reflect the state of the program after instruction selection.
+ For a processor-independent set of operations, see the abstract
+ syntax and dynamic semantics of the Cminor language.
+*)
+Require Import BoolEqual.
+Require Import Coqlib.
+Require Import AST.
+Require Import Integers.
+Require Import Floats.
+Require Import Values.
+Require Import Memory.
+Require Import Globalenvs.
+Require Import Events.
+
+Set Implicit Arguments.
+
+(** Conditions (boolean-valued operators). *)
+
+Inductive condition : Type :=
+ | Ccomp (c: comparison) (**r signed integer comparison *)
+ | Ccompu (c: comparison) (**r unsigned integer comparison *)
+ | Ccompimm (c: comparison) (n: int) (**r signed integer comparison with a constant *)
+ | Ccompuimm (c: comparison) (n: int) (**r unsigned integer comparison with a constant *)
+ | Ccompl (c: comparison) (**r signed 64-bit integer comparison *)
+ | Ccomplu (c: comparison) (**r unsigned 64-bit integer comparison *)
+ | Ccomplimm (c: comparison) (n: int64) (**r signed 64-bit integer comparison with a constant *)
+ | Ccompluimm (c: comparison) (n: int64) (**r unsigned 64-bit integer comparison with a constant *)
+ | Ccompf (c: comparison) (**r 64-bit floating-point comparison *)
+ | Cnotcompf (c: comparison) (**r negation of a floating-point comparison *)
+ | Ccompfs (c: comparison) (**r 32-bit floating-point comparison *)
+ | Cnotcompfs (c: comparison) (**r negation of a floating-point comparison *)
+ | Cmaskzero (n: int) (**r test [(arg & constant) == 0] *)
+ | Cmasknotzero (n: int). (**r test [(arg & constant) != 0] *)
+
+(** Addressing modes. [r1], [r2], etc, are the arguments to the
+ addressing. *)
+
+Inductive addressing: Type :=
+ | Aindexed: Z -> addressing (**r Address is [r1 + offset] *)
+ | Aindexed2: Z -> addressing (**r Address is [r1 + r2 + offset] *)
+ | Ascaled: Z -> Z -> addressing (**r Address is [r1 * scale + offset] *)
+ | Aindexed2scaled: Z -> Z -> addressing
+ (**r Address is [r1 + r2 * scale + offset] *)
+ | Aglobal: ident -> ptrofs -> addressing (**r Address is [symbol + offset] *)
+ | Abased: ident -> ptrofs -> addressing (**r Address is [symbol + offset + r1] *)
+ | Abasedscaled: Z -> ident -> ptrofs -> addressing (**r Address is [symbol + offset + r1 * scale] *)
+ | Ainstack: ptrofs -> addressing. (**r Address is [stack_pointer + offset] *)
+
+(** Arithmetic and logical operations. In the descriptions, [rd] is the
+ result of the operation and [r1], [r2], etc, are the arguments. *)
+
+Inductive operation : Type :=
+ | Omove (**r [rd = r1] *)
+ | Ointconst (n: int) (**r [rd] is set to the given integer constant *)
+ | Olongconst (n: int64) (**r [rd] is set to the given integer constant *)
+ | Ofloatconst (n: float) (**r [rd] is set to the given float constant *)
+ | Osingleconst (n: float32)(**r [rd] is set to the given float constant *)
+ | Oindirectsymbol (id: ident) (**r [rd] is set to the address of the symbol *)
+(*c 32-bit integer arithmetic: *)
+ | Ocast8signed (**r [rd] is 8-bit sign extension of [r1] *)
+ | Ocast8unsigned (**r [rd] is 8-bit zero extension of [r1] *)
+ | Ocast16signed (**r [rd] is 16-bit sign extension of [r1] *)
+ | Ocast16unsigned (**r [rd] is 16-bit zero extension of [r1] *)
+ | Oneg (**r [rd = - r1] *)
+ | Osub (**r [rd = r1 - r2] *)
+ | Omul (**r [rd = r1 * r2] *)
+ | Omulimm (n: int) (**r [rd = r1 * n] *)
+ | Omulhs (**r [rd = high part of r1 * r2, signed] *)
+ | Omulhu (**r [rd = high part of r1 * r2, unsigned] *)
+ | Odiv (**r [rd = r1 / r2] (signed) *)
+ | Odivu (**r [rd = r1 / r2] (unsigned) *)
+ | Omod (**r [rd = r1 % r2] (signed) *)
+ | Omodu (**r [rd = r1 % r2] (unsigned) *)
+ | Oand (**r [rd = r1 & r2] *)
+ | Oandimm (n: int) (**r [rd = r1 & n] *)
+ | Oor (**r [rd = r1 | r2] *)
+ | Oorimm (n: int) (**r [rd = r1 | n] *)
+ | Oxor (**r [rd = r1 ^ r2] *)
+ | Oxorimm (n: int) (**r [rd = r1 ^ n] *)
+ | Onot (**r [rd = ~r1] *)
+ | Oshl (**r [rd = r1 << r2] *)
+ | Oshlimm (n: int) (**r [rd = r1 << n] *)
+ | Oshr (**r [rd = r1 >> r2] (signed) *)
+ | Oshrimm (n: int) (**r [rd = r1 >> n] (signed) *)
+ | Oshrximm (n: int) (**r [rd = r1 / 2^n] (signed) *)
+ | Oshru (**r [rd = r1 >> r2] (unsigned) *)
+ | Oshruimm (n: int) (**r [rd = r1 >> n] (unsigned) *)
+ | Ororimm (n: int) (**r rotate right immediate *)
+ | Oshldimm (n: int) (**r [rd = r1 << n | r2 >> (32-n)] *)
+ | Olea (a: addressing) (**r effective address *)
+(*c 64-bit integer arithmetic: *)
+ | Omakelong (**r [rd = r1 << 32 | r2] *)
+ | Olowlong (**r [rd = low-word(r1)] *)
+ | Ohighlong (**r [rd = high-word(r1)] *)
+ | Ocast32signed (**r [rd] is 32-bit sign extension of [r1] *)
+ | Ocast32unsigned (**r [rd] is 32-bit zero extension of [r1] *)
+ | Onegl (**r [rd = - r1] *)
+ | Oaddlimm (n: int64) (**r [rd = r1 + n] *)
+ | Osubl (**r [rd = r1 - r2] *)
+ | Omull (**r [rd = r1 * r2] *)
+ | Omullimm (n: int64) (**r [rd = r1 * n] *)
+ | Omullhs (**r [rd = high part of r1 * r2, signed] *)
+ | Omullhu (**r [rd = high part of r1 * r2, unsigned] *)
+ | Odivl (**r [rd = r1 / r2] (signed) *)
+ | Odivlu (**r [rd = r1 / r2] (unsigned) *)
+ | Omodl (**r [rd = r1 % r2] (signed) *)
+ | Omodlu (**r [rd = r1 % r2] (unsigned) *)
+ | Oandl (**r [rd = r1 & r2] *)
+ | Oandlimm (n: int64) (**r [rd = r1 & n] *)
+ | Oorl (**r [rd = r1 | r2] *)
+ | Oorlimm (n: int64) (**r [rd = r1 | n] *)
+ | Oxorl (**r [rd = r1 ^ r2] *)
+ | Oxorlimm (n: int64) (**r [rd = r1 ^ n] *)
+ | Onotl (**r [rd = ~r1] *)
+ | Oshll (**r [rd = r1 << r2] *)
+ | Oshllimm (n: int) (**r [rd = r1 << n] *)
+ | Oshrl (**r [rd = r1 >> r2] (signed) *)
+ | Oshrlimm (n: int) (**r [rd = r1 >> n] (signed) *)
+ | Oshrxlimm (n: int) (**r [rd = r1 / 2^n] (signed) *)
+ | Oshrlu (**r [rd = r1 >> r2] (unsigned) *)
+ | Oshrluimm (n: int) (**r [rd = r1 >> n] (unsigned) *)
+ | Ororlimm (n: int) (**r rotate right immediate *)
+ | Oleal (a: addressing) (**r effective address *)
+(*c Floating-point arithmetic: *)
+ | Onegf (**r [rd = - r1] *)
+ | Oabsf (**r [rd = abs(r1)] *)
+ | Oaddf (**r [rd = r1 + r2] *)
+ | Osubf (**r [rd = r1 - r2] *)
+ | Omulf (**r [rd = r1 * r2] *)
+ | Odivf (**r [rd = r1 / r2] *)
+ | Onegfs (**r [rd = - r1] *)
+ | Oabsfs (**r [rd = abs(r1)] *)
+ | Oaddfs (**r [rd = r1 + r2] *)
+ | Osubfs (**r [rd = r1 - r2] *)
+ | Omulfs (**r [rd = r1 * r2] *)
+ | Odivfs (**r [rd = r1 / r2] *)
+ | Osingleoffloat (**r [rd] is [r1] truncated to single-precision float *)
+ | Ofloatofsingle (**r [rd] is [r1] extended to double-precision float *)
+(*c Conversions between int and float: *)
+ | Ointoffloat (**r [rd = signed_int_of_float64(r1)] *)
+ | Ofloatofint (**r [rd = float64_of_signed_int(r1)] *)
+ | Ointofsingle (**r [rd = signed_int_of_float32(r1)] *)
+ | Osingleofint (**r [rd = float32_of_signed_int(r1)] *)
+ | Olongoffloat (**r [rd = signed_long_of_float64(r1)] *)
+ | Ofloatoflong (**r [rd = float64_of_signed_long(r1)] *)
+ | Olongofsingle (**r [rd = signed_long_of_float32(r1)] *)
+ | Osingleoflong (**r [rd = float32_of_signed_long(r1)] *)
+(*c Boolean tests: *)
+ | Ocmp (cond: condition) (**r [rd = 1] if condition holds, [rd = 0] otherwise. *)
+ | Osel: condition -> typ -> operation.
+ (**r [rd = rs1] if condition holds, [rd = rs2] otherwise. *)
+
+(** Comparison functions (used in modules [CSE] and [Allocation]). *)
+
+Definition eq_condition (x y: condition) : {x=y} + {x<>y}.
+Proof.
+ generalize Int.eq_dec Int64.eq_dec; intro.
+ assert (forall (x y: comparison), {x=y}+{x<>y}). decide equality.
+ decide equality.
+Defined.
+
+Definition eq_addressing (x y: addressing) : {x=y} + {x<>y}.
+Proof.
+ generalize ident_eq Ptrofs.eq_dec zeq; intros.
+ decide equality.
+Defined.
+
+Definition beq_operation: forall (x y: operation), bool.
+Proof.
+ generalize Int.eq_dec Int64.eq_dec Float.eq_dec Float32.eq_dec ident_eq typ_eq eq_addressing eq_condition; boolean_equality.
+Defined.
+
+Definition eq_operation: forall (x y: operation), {x=y} + {x<>y}.
+Proof.
+ decidable_equality_from beq_operation.
+Defined.
+
+Global Opaque eq_condition eq_addressing eq_operation.
+
+(** In addressing modes, offsets are 32-bit signed integers, even in
+ 64-bit mode. The following function checks that an addressing
+ mode is valid, i.e. that the offsets are in range.
+ The check always succeeds in 32-bit mode because offsets are
+ always 32-bit integers and are normalized as 32-bit signed integers
+ during code generation (see [Asmgen.normalize_addrmode_32]).
+
+ Moreover, in 64-bit mode, we use RIP-relative addressing for
+ access to globals. (This is the "small code model" from the
+ x86_64 ELF ABI.) Thus, for addressing global variables,
+ the offset from the variable plus the RIP-relative offset
+ must fit in 32 bits. The "small code model" guarantees that
+ this will fit if the offset is between [-2^24] and [2^24-1],
+ under the assumption that no global variable is bigger than
+ [2^24] bytes. *)
+
+Definition offset_in_range (n: Z) : bool :=
+ zle Int.min_signed n && zle n Int.max_signed.
+
+Definition ptroffset_min := -16777216. (**r [-2^24] *)
+Definition ptroffset_max := 16777215. (**r [2^24 - 1] *)
+
+Definition ptroffset_in_range (n: ptrofs) : bool :=
+ let n := Ptrofs.signed n in zle ptroffset_min n && zle n ptroffset_max.
+
+Definition addressing_valid (a: addressing) : bool :=
+ if Archi.ptr64 then
+ match a with
+ | Aindexed n => offset_in_range n
+ | Aindexed2 n => offset_in_range n
+ | Ascaled sc ofs => offset_in_range ofs
+ | Aindexed2scaled sc ofs => offset_in_range ofs
+ | Aglobal s ofs => ptroffset_in_range ofs
+ | Abased s ofs => ptroffset_in_range ofs
+ | Abasedscaled sc s ofs => ptroffset_in_range ofs
+ | Ainstack ofs => offset_in_range (Ptrofs.signed ofs)
+ end
+ else true.
+
+(** * Evaluation functions *)
+
+(** Evaluation of conditions, operators and addressing modes applied
+ to lists of values. Return [None] when the computation can trigger an
+ error, e.g. integer division by zero. [eval_condition] returns a boolean,
+ [eval_operation] and [eval_addressing] return a value. *)
+
+Definition eval_condition (cond: condition) (vl: list val) (m: mem): option bool :=
+ match cond, vl with
+ | Ccomp c, v1 :: v2 :: nil => Val.cmp_bool c v1 v2
+ | Ccompu c, v1 :: v2 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 v2
+ | Ccompimm c n, v1 :: nil => Val.cmp_bool c v1 (Vint n)
+ | Ccompuimm c n, v1 :: nil => Val.cmpu_bool (Mem.valid_pointer m) c v1 (Vint n)
+ | Ccompl c, v1 :: v2 :: nil => Val.cmpl_bool c v1 v2
+ | Ccomplu c, v1 :: v2 :: nil => Val.cmplu_bool (Mem.valid_pointer m) c v1 v2
+ | Ccomplimm c n, v1 :: nil => Val.cmpl_bool c v1 (Vlong n)
+ | Ccompluimm c n, v1 :: nil => Val.cmplu_bool (Mem.valid_pointer m) c v1 (Vlong n)
+ | Ccompf c, v1 :: v2 :: nil => Val.cmpf_bool c v1 v2
+ | Cnotcompf c, v1 :: v2 :: nil => option_map negb (Val.cmpf_bool c v1 v2)
+ | Ccompfs c, v1 :: v2 :: nil => Val.cmpfs_bool c v1 v2
+ | Cnotcompfs c, v1 :: v2 :: nil => option_map negb (Val.cmpfs_bool c v1 v2)
+ | Cmaskzero n, v1 :: nil => Val.maskzero_bool v1 n
+ | Cmasknotzero n, v1 :: nil => option_map negb (Val.maskzero_bool v1 n)
+ | _, _ => None
+ end.
+
+Definition eval_addressing32
+ (F V: Type) (genv: Genv.t F V) (sp: val)
+ (addr: addressing) (vl: list val) : option val :=
+ match addr, vl with
+ | Aindexed n, v1::nil =>
+ Some (Val.add v1 (Vint (Int.repr n)))
+ | Aindexed2 n, v1::v2::nil =>
+ Some (Val.add (Val.add v1 v2) (Vint (Int.repr n)))
+ | Ascaled sc ofs, v1::nil =>
+ Some (Val.add (Val.mul v1 (Vint (Int.repr sc))) (Vint (Int.repr ofs)))
+ | Aindexed2scaled sc ofs, v1::v2::nil =>
+ Some(Val.add v1 (Val.add (Val.mul v2 (Vint (Int.repr sc))) (Vint (Int.repr ofs))))
+ | Aglobal s ofs, nil =>
+ if Archi.ptr64 then None else Some (Genv.symbol_address genv s ofs)
+ | Abased s ofs, v1::nil =>
+ if Archi.ptr64 then None else Some (Val.add (Genv.symbol_address genv s ofs) v1)
+ | Abasedscaled sc s ofs, v1::nil =>
+ if Archi.ptr64 then None else Some (Val.add (Genv.symbol_address genv s ofs) (Val.mul v1 (Vint (Int.repr sc))))
+ | Ainstack ofs, nil =>
+ if Archi.ptr64 then None else Some(Val.offset_ptr sp ofs)
+ | _, _ => None
+ end.
+
+Definition eval_addressing64
+ (F V: Type) (genv: Genv.t F V) (sp: val)
+ (addr: addressing) (vl: list val) : option val :=
+ match addr, vl with
+ | Aindexed n, v1::nil =>
+ Some (Val.addl v1 (Vlong (Int64.repr n)))
+ | Aindexed2 n, v1::v2::nil =>
+ Some (Val.addl (Val.addl v1 v2) (Vlong (Int64.repr n)))
+ | Ascaled sc ofs, v1::nil =>
+ Some (Val.addl (Val.mull v1 (Vlong (Int64.repr sc))) (Vlong (Int64.repr ofs)))
+ | Aindexed2scaled sc ofs, v1::v2::nil =>
+ Some(Val.addl v1 (Val.addl (Val.mull v2 (Vlong (Int64.repr sc))) (Vlong (Int64.repr ofs))))
+ | Aglobal s ofs, nil =>
+ if Archi.ptr64 then Some (Genv.symbol_address genv s ofs) else None
+ | Ainstack ofs, nil =>
+ if Archi.ptr64 then Some(Val.offset_ptr sp ofs) else None
+ | _, _ => None
+ end.
+
+Definition eval_addressing
+ (F V: Type) (genv: Genv.t F V) (sp: val)
+ (addr: addressing) (vl: list val) : option val :=
+ if Archi.ptr64
+ then eval_addressing64 genv sp addr vl
+ else eval_addressing32 genv sp addr vl.
+
+Definition eval_operation
+ (F V: Type) (genv: Genv.t F V) (sp: val)
+ (op: operation) (vl: list val) (m: mem): option val :=
+ match op, vl with
+ | Omove, v1::nil => Some v1
+ | Ointconst n, nil => Some (Vint n)
+ | Olongconst n, nil => Some (Vlong n)
+ | Ofloatconst n, nil => Some (Vfloat n)
+ | Osingleconst n, nil => Some (Vsingle n)
+ | Oindirectsymbol id, nil => Some (Genv.symbol_address genv id Ptrofs.zero)
+ | Ocast8signed, v1 :: nil => Some (Val.sign_ext 8 v1)
+ | Ocast8unsigned, v1 :: nil => Some (Val.zero_ext 8 v1)
+ | Ocast16signed, v1 :: nil => Some (Val.sign_ext 16 v1)
+ | Ocast16unsigned, v1 :: nil => Some (Val.zero_ext 16 v1)
+ | Oneg, v1::nil => Some (Val.neg v1)
+ | Osub, v1::v2::nil => Some (Val.sub v1 v2)
+ | Omul, v1::v2::nil => Some (Val.mul v1 v2)
+ | Omulimm n, v1::nil => Some (Val.mul v1 (Vint n))
+ | Omulhs, v1::v2::nil => Some (Val.mulhs v1 v2)
+ | Omulhu, v1::v2::nil => Some (Val.mulhu v1 v2)
+ | Odiv, v1::v2::nil => Val.divs v1 v2
+ | Odivu, v1::v2::nil => Val.divu v1 v2
+ | Omod, v1::v2::nil => Val.mods v1 v2
+ | Omodu, v1::v2::nil => Val.modu v1 v2
+ | Oand, v1::v2::nil => Some(Val.and v1 v2)
+ | Oandimm n, v1::nil => Some (Val.and v1 (Vint n))
+ | Oor, v1::v2::nil => Some(Val.or v1 v2)
+ | Oorimm n, v1::nil => Some (Val.or v1 (Vint n))
+ | Oxor, v1::v2::nil => Some(Val.xor v1 v2)
+ | Oxorimm n, v1::nil => Some (Val.xor v1 (Vint n))
+ | Onot, v1::nil => Some(Val.notint v1)
+ | Oshl, v1::v2::nil => Some (Val.shl v1 v2)
+ | Oshlimm n, v1::nil => Some (Val.shl v1 (Vint n))
+ | Oshr, v1::v2::nil => Some (Val.shr v1 v2)
+ | Oshrimm n, v1::nil => Some (Val.shr v1 (Vint n))
+ | Oshrximm n, v1::nil => Val.shrx v1 (Vint n)
+ | Oshru, v1::v2::nil => Some (Val.shru v1 v2)
+ | Oshruimm n, v1::nil => Some (Val.shru v1 (Vint n))
+ | Ororimm n, v1::nil => Some (Val.ror v1 (Vint n))
+ | Oshldimm n, v1::v2::nil => Some (Val.or (Val.shl v1 (Vint n))
+ (Val.shru v2 (Vint (Int.sub Int.iwordsize n))))
+ | Olea addr, _ => eval_addressing32 genv sp addr vl
+ | Omakelong, v1::v2::nil => Some(Val.longofwords v1 v2)
+ | Olowlong, v1::nil => Some(Val.loword v1)
+ | Ohighlong, v1::nil => Some(Val.hiword v1)
+ | Ocast32signed, v1 :: nil => Some (Val.longofint v1)
+ | Ocast32unsigned, v1 :: nil => Some (Val.longofintu v1)
+ | Onegl, v1::nil => Some (Val.negl v1)
+ | Oaddlimm n, v1::nil => Some (Val.addl v1 (Vlong n))
+ | Osubl, v1::v2::nil => Some (Val.subl v1 v2)
+ | Omull, v1::v2::nil => Some (Val.mull v1 v2)
+ | Omullimm n, v1::nil => Some (Val.mull v1 (Vlong n))
+ | Omullhs, v1::v2::nil => Some (Val.mullhs v1 v2)
+ | Omullhu, v1::v2::nil => Some (Val.mullhu v1 v2)
+ | Odivl, v1::v2::nil => Val.divls v1 v2
+ | Odivlu, v1::v2::nil => Val.divlu v1 v2
+ | Omodl, v1::v2::nil => Val.modls v1 v2
+ | Omodlu, v1::v2::nil => Val.modlu v1 v2
+ | Oandl, v1::v2::nil => Some(Val.andl v1 v2)
+ | Oandlimm n, v1::nil => Some (Val.andl v1 (Vlong n))
+ | Oorl, v1::v2::nil => Some(Val.orl v1 v2)
+ | Oorlimm n, v1::nil => Some (Val.orl v1 (Vlong n))
+ | Oxorl, v1::v2::nil => Some(Val.xorl v1 v2)
+ | Oxorlimm n, v1::nil => Some (Val.xorl v1 (Vlong n))
+ | Onotl, v1::nil => Some(Val.notl v1)
+ | Oshll, v1::v2::nil => Some (Val.shll v1 v2)
+ | Oshllimm n, v1::nil => Some (Val.shll v1 (Vint n))
+ | Oshrl, v1::v2::nil => Some (Val.shrl v1 v2)
+ | Oshrlimm n, v1::nil => Some (Val.shrl v1 (Vint n))
+ | Oshrxlimm n, v1::nil => Val.shrxl v1 (Vint n)
+ | Oshrlu, v1::v2::nil => Some (Val.shrlu v1 v2)
+ | Oshrluimm n, v1::nil => Some (Val.shrlu v1 (Vint n))
+ | Ororlimm n, v1::nil => Some (Val.rorl v1 (Vint n))
+ | Oleal addr, _ => eval_addressing64 genv sp addr vl
+ | Onegf, v1::nil => Some(Val.negf v1)
+ | Oabsf, v1::nil => Some(Val.absf v1)
+ | Oaddf, v1::v2::nil => Some(Val.addf v1 v2)
+ | Osubf, v1::v2::nil => Some(Val.subf v1 v2)
+ | Omulf, v1::v2::nil => Some(Val.mulf v1 v2)
+ | Odivf, v1::v2::nil => Some(Val.divf v1 v2)
+ | Onegfs, v1::nil => Some(Val.negfs v1)
+ | Oabsfs, v1::nil => Some(Val.absfs v1)
+ | Oaddfs, v1::v2::nil => Some(Val.addfs v1 v2)
+ | Osubfs, v1::v2::nil => Some(Val.subfs v1 v2)
+ | Omulfs, v1::v2::nil => Some(Val.mulfs v1 v2)
+ | Odivfs, v1::v2::nil => Some(Val.divfs v1 v2)
+ | Osingleoffloat, v1::nil => Some(Val.singleoffloat v1)
+ | Ofloatofsingle, v1::nil => Some(Val.floatofsingle v1)
+ | Ointoffloat, v1::nil => Val.intoffloat v1
+ | Ofloatofint, v1::nil => Val.floatofint v1
+ | Ointofsingle, v1::nil => Val.intofsingle v1
+ | Osingleofint, v1::nil => Val.singleofint v1
+ | Olongoffloat, v1::nil => Val.longoffloat v1
+ | Ofloatoflong, v1::nil => Val.floatoflong v1
+ | Olongofsingle, v1::nil => Val.longofsingle v1
+ | Osingleoflong, v1::nil => Val.singleoflong v1
+ | Ocmp c, _ => Some(Val.of_optbool (eval_condition c vl m))
+ | Osel c ty, v1::v2::vl => Some(Val.select (eval_condition c vl m) v1 v2 ty)
+ | _, _ => None
+ end.
+
+Remark eval_addressing_Aglobal:
+ forall (F V: Type) (genv: Genv.t F V) sp id ofs,
+ eval_addressing genv sp (Aglobal id ofs) nil = Some (Genv.symbol_address genv id ofs).
+Proof.
+ intros. unfold eval_addressing, eval_addressing32, eval_addressing64; destruct Archi.ptr64; auto.
+Qed.
+
+Remark eval_addressing_Ainstack:
+ forall (F V: Type) (genv: Genv.t F V) sp ofs,
+ eval_addressing genv sp (Ainstack ofs) nil = Some (Val.offset_ptr sp ofs).
+Proof.
+ intros. unfold eval_addressing, eval_addressing32, eval_addressing64; destruct Archi.ptr64; auto.
+Qed.
+
+Remark eval_addressing_Ainstack_inv:
+ forall (F V: Type) (genv: Genv.t F V) sp ofs vl v,
+ eval_addressing genv sp (Ainstack ofs) vl = Some v -> vl = nil /\ v = Val.offset_ptr sp ofs.
+Proof.
+ unfold eval_addressing, eval_addressing32, eval_addressing64;
+ intros; destruct Archi.ptr64; destruct vl; inv H; auto.
+Qed.
+
+Ltac FuncInv :=
+ match goal with
+ | H: (match ?x with nil => _ | _ :: _ => _ end = Some _) |- _ =>
+ destruct x; simpl in H; FuncInv
+ | H: (match ?v with Vundef => _ | Vint _ => _ | Vfloat _ => _ | Vptr _ _ => _ end = Some _) |- _ =>
+ destruct v; simpl in H; FuncInv
+ | H: (if Archi.ptr64 then _ else _) = Some _ |- _ =>
+ destruct Archi.ptr64 eqn:?; FuncInv
+ | H: (Some _ = Some _) |- _ =>
+ injection H; intros; clear H; FuncInv
+ | H: (None = Some _) |- _ =>
+ discriminate H
+ | _ =>
+ idtac
+ end.
+
+(** * Static typing of conditions, operators and addressing modes. *)
+
+Definition type_of_condition (c: condition) : list typ :=
+ match c with
+ | Ccomp _ => Tint :: Tint :: nil
+ | Ccompu _ => Tint :: Tint :: nil
+ | Ccompimm _ _ => Tint :: nil
+ | Ccompuimm _ _ => Tint :: nil
+ | Ccompl _ => Tlong :: Tlong :: nil
+ | Ccomplu _ => Tlong :: Tlong :: nil
+ | Ccomplimm _ _ => Tlong :: nil
+ | Ccompluimm _ _ => Tlong :: nil
+ | Ccompf _ => Tfloat :: Tfloat :: nil
+ | Cnotcompf _ => Tfloat :: Tfloat :: nil
+ | Ccompfs _ => Tsingle :: Tsingle :: nil
+ | Cnotcompfs _ => Tsingle :: Tsingle :: nil
+ | Cmaskzero _ => Tint :: nil
+ | Cmasknotzero _ => Tint :: nil
+ end.
+
+Definition type_of_addressing_gen (tyA: typ) (addr: addressing): list typ :=
+ match addr with
+ | Aindexed _ => tyA :: nil
+ | Aindexed2 _ => tyA :: tyA :: nil
+ | Ascaled _ _ => tyA :: nil
+ | Aindexed2scaled _ _ => tyA :: tyA :: nil
+ | Aglobal _ _ => nil
+ | Abased _ _ => tyA :: nil
+ | Abasedscaled _ _ _ => tyA :: nil
+ | Ainstack _ => nil
+ end.
+
+Definition type_of_addressing := type_of_addressing_gen Tptr.
+Definition type_of_addressing32 := type_of_addressing_gen Tint.
+Definition type_of_addressing64 := type_of_addressing_gen Tlong.
+
+Definition type_of_operation (op: operation) : list typ * typ :=
+ match op with
+ | Omove => (nil, Tint) (* treated specially *)
+ | Ointconst _ => (nil, Tint)
+ | Olongconst _ => (nil, Tlong)
+ | Ofloatconst f => (nil, Tfloat)
+ | Osingleconst f => (nil, Tsingle)
+ | Oindirectsymbol _ => (nil, Tptr)
+ | Ocast8signed => (Tint :: nil, Tint)
+ | Ocast8unsigned => (Tint :: nil, Tint)
+ | Ocast16signed => (Tint :: nil, Tint)
+ | Ocast16unsigned => (Tint :: nil, Tint)
+ | Oneg => (Tint :: nil, Tint)
+ | Osub => (Tint :: Tint :: nil, Tint)
+ | Omul => (Tint :: Tint :: nil, Tint)
+ | Omulimm _ => (Tint :: nil, Tint)
+ | Omulhs => (Tint :: Tint :: nil, Tint)
+ | Omulhu => (Tint :: Tint :: nil, Tint)
+ | Odiv => (Tint :: Tint :: nil, Tint)
+ | Odivu => (Tint :: Tint :: nil, Tint)
+ | Omod => (Tint :: Tint :: nil, Tint)
+ | Omodu => (Tint :: Tint :: nil, Tint)
+ | Oand => (Tint :: Tint :: nil, Tint)
+ | Oandimm _ => (Tint :: nil, Tint)
+ | Oor => (Tint :: Tint :: nil, Tint)
+ | Oorimm _ => (Tint :: nil, Tint)
+ | Oxor => (Tint :: Tint :: nil, Tint)
+ | Oxorimm _ => (Tint :: nil, Tint)
+ | Onot => (Tint :: nil, Tint)
+ | Oshl => (Tint :: Tint :: nil, Tint)
+ | Oshlimm _ => (Tint :: nil, Tint)
+ | Oshr => (Tint :: Tint :: nil, Tint)
+ | Oshrimm _ => (Tint :: nil, Tint)
+ | Oshrximm _ => (Tint :: nil, Tint)
+ | Oshru => (Tint :: Tint :: nil, Tint)
+ | Oshruimm _ => (Tint :: nil, Tint)
+ | Ororimm _ => (Tint :: nil, Tint)
+ | Oshldimm _ => (Tint :: Tint :: nil, Tint)
+ | Olea addr => (type_of_addressing32 addr, Tint)
+ | Omakelong => (Tint :: Tint :: nil, Tlong)
+ | Olowlong => (Tlong :: nil, Tint)
+ | Ohighlong => (Tlong :: nil, Tint)
+ | Ocast32signed => (Tint :: nil, Tlong)
+ | Ocast32unsigned => (Tint :: nil, Tlong)
+ | Onegl => (Tlong :: nil, Tlong)
+ | Oaddlimm _ => (Tlong :: nil, Tlong)
+ | Osubl => (Tlong :: Tlong :: nil, Tlong)
+ | Omull => (Tlong :: Tlong :: nil, Tlong)
+ | Omullimm _ => (Tlong :: nil, Tlong)
+ | Omullhs => (Tlong :: Tlong :: nil, Tlong)
+ | Omullhu => (Tlong :: Tlong :: nil, Tlong)
+ | Odivl => (Tlong :: Tlong :: nil, Tlong)
+ | Odivlu => (Tlong :: Tlong :: nil, Tlong)
+ | Omodl => (Tlong :: Tlong :: nil, Tlong)
+ | Omodlu => (Tlong :: Tlong :: nil, Tlong)
+ | Oandl => (Tlong :: Tlong :: nil, Tlong)
+ | Oandlimm _ => (Tlong :: nil, Tlong)
+ | Oorl => (Tlong :: Tlong :: nil, Tlong)
+ | Oorlimm _ => (Tlong :: nil, Tlong)
+ | Oxorl => (Tlong :: Tlong :: nil, Tlong)
+ | Oxorlimm _ => (Tlong :: nil, Tlong)
+ | Onotl => (Tlong :: nil, Tlong)
+ | Oshll => (Tlong :: Tint :: nil, Tlong)
+ | Oshllimm _ => (Tlong :: nil, Tlong)
+ | Oshrl => (Tlong :: Tint :: nil, Tlong)
+ | Oshrlimm _ => (Tlong :: nil, Tlong)
+ | Oshrxlimm _ => (Tlong :: nil, Tlong)
+ | Oshrlu => (Tlong :: Tint :: nil, Tlong)
+ | Oshrluimm _ => (Tlong :: nil, Tlong)
+ | Ororlimm _ => (Tlong :: nil, Tlong)
+ | Oleal addr => (type_of_addressing64 addr, Tlong)
+ | Onegf => (Tfloat :: nil, Tfloat)
+ | Oabsf => (Tfloat :: nil, Tfloat)
+ | Oaddf => (Tfloat :: Tfloat :: nil, Tfloat)
+ | Osubf => (Tfloat :: Tfloat :: nil, Tfloat)
+ | Omulf => (Tfloat :: Tfloat :: nil, Tfloat)
+ | Odivf => (Tfloat :: Tfloat :: nil, Tfloat)
+ | Onegfs => (Tsingle :: nil, Tsingle)
+ | Oabsfs => (Tsingle :: nil, Tsingle)
+ | Oaddfs => (Tsingle :: Tsingle :: nil, Tsingle)
+ | Osubfs => (Tsingle :: Tsingle :: nil, Tsingle)
+ | Omulfs => (Tsingle :: Tsingle :: nil, Tsingle)
+ | Odivfs => (Tsingle :: Tsingle :: nil, Tsingle)
+ | Osingleoffloat => (Tfloat :: nil, Tsingle)
+ | Ofloatofsingle => (Tsingle :: nil, Tfloat)
+ | Ointoffloat => (Tfloat :: nil, Tint)
+ | Ofloatofint => (Tint :: nil, Tfloat)
+ | Ointofsingle => (Tsingle :: nil, Tint)
+ | Osingleofint => (Tint :: nil, Tsingle)
+ | Olongoffloat => (Tfloat :: nil, Tlong)
+ | Ofloatoflong => (Tlong :: nil, Tfloat)
+ | Olongofsingle => (Tsingle :: nil, Tlong)
+ | Osingleoflong => (Tlong :: nil, Tsingle)
+ | Ocmp c => (type_of_condition c, Tint)
+ | Osel c ty => (ty :: ty :: type_of_condition c, ty)
+ end.
+
+(** Weak type soundness results for [eval_operation]:
+ the result values, when defined, are always of the type predicted
+ by [type_of_operation]. *)
+
+Section SOUNDNESS.
+
+Variable A V: Type.
+Variable genv: Genv.t A V.
+
+Remark type_add:
+ forall v1 v2, Val.has_type (Val.add v1 v2) Tint.
+Proof.
+ intros. unfold Val.has_type, Val.add. destruct Archi.ptr64, v1, v2; auto.
+Qed.
+
+Remark type_addl:
+ forall v1 v2, Val.has_type (Val.addl v1 v2) Tlong.
+Proof.
+ intros. unfold Val.has_type, Val.addl. destruct Archi.ptr64, v1, v2; auto.
+Qed.
+
+Lemma type_of_addressing64_sound:
+ forall addr vl sp v,
+ eval_addressing64 genv sp addr vl = Some v ->
+ Val.has_type v Tlong.
+Proof.
+ intros. destruct addr; simpl in H; FuncInv; subst; simpl; auto using type_addl.
+- unfold Genv.symbol_address; destruct (Genv.find_symbol genv i); simpl; auto.
+- destruct sp; simpl; auto.
+Qed.
+
+Lemma type_of_addressing32_sound:
+ forall addr vl sp v,
+ eval_addressing32 genv sp addr vl = Some v ->
+ Val.has_type v Tint.
+Proof.
+ intros. destruct addr; simpl in H; FuncInv; subst; simpl; auto using type_add.
+- unfold Genv.symbol_address; destruct (Genv.find_symbol genv i); simpl; auto.
+- destruct sp; simpl; auto.
+Qed.
+
+Corollary type_of_addressing_sound:
+ forall addr vl sp v,
+ eval_addressing genv sp addr vl = Some v ->
+ Val.has_type v Tptr.
+Proof.
+ unfold eval_addressing, Tptr; intros.
+ destruct Archi.ptr64; eauto using type_of_addressing64_sound, type_of_addressing32_sound.
+Qed.
+
+Lemma type_of_operation_sound:
+ forall op vl sp v m,
+ op <> Omove ->
+ eval_operation genv sp op vl m = Some v ->
+ Val.has_type v (snd (type_of_operation op)).
+Proof with (try exact I; try reflexivity).
+ intros.
+ destruct op; simpl in H0; FuncInv; subst; simpl.
+ congruence.
+ exact I.
+ exact I.
+ exact I.
+ exact I.
+ unfold Genv.symbol_address; destruct (Genv.find_symbol genv id)...
+ destruct v0...
+ destruct v0...
+ destruct v0...
+ destruct v0...
+ destruct v0...
+ unfold Val.sub, Val.has_type; destruct Archi.ptr64, v0, v1... destruct (eq_block b b0)...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1; simpl in *; inv H0.
+ destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2...
+ destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2...
+ destruct v0; destruct v1; simpl in *; inv H0.
+ destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2...
+ destruct v0; destruct v1; simpl in *; inv H0. destruct (Int.eq i0 Int.zero); inv H2...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0...
+ destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
+ destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)...
+ destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
+ destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)...
+ destruct v0; simpl in H0; try discriminate. destruct (Int.ltu n (Int.repr 31)); inv H0...
+ destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int.iwordsize)...
+ destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)...
+ destruct v0...
+ destruct v0; simpl... destruct (Int.ltu n Int.iwordsize)...
+ destruct v1; simpl... destruct (Int.ltu (Int.sub Int.iwordsize n) Int.iwordsize)...
+ eapply type_of_addressing32_sound; eauto.
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0...
+ destruct v0...
+ destruct v0...
+ destruct v0...
+ unfold Val.addl, Val.has_type; destruct Archi.ptr64, v0...
+ unfold Val.subl, Val.has_type; destruct Archi.ptr64, v0, v1... destruct (eq_block b b0)...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1; simpl in *; inv H0.
+ destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2...
+ destruct v0; destruct v1; simpl in *; inv H0. destruct (Int64.eq i0 Int64.zero); inv H2...
+ destruct v0; destruct v1; simpl in *; inv H0.
+ destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2...
+ destruct v0; destruct v1; simpl in *; inv H0. destruct (Int64.eq i0 Int64.zero); inv H2...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0...
+ destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int64.iwordsize')...
+ destruct v0; simpl... destruct (Int.ltu n Int64.iwordsize')...
+ destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int64.iwordsize')...
+ destruct v0; simpl... destruct (Int.ltu n Int64.iwordsize')...
+ destruct v0; inv H0. destruct (Int.ltu n (Int.repr 63)); inv H2...
+ destruct v0; destruct v1; simpl... destruct (Int.ltu i0 Int64.iwordsize')...
+ destruct v0; simpl... destruct (Int.ltu n Int64.iwordsize')...
+ destruct v0...
+ eapply type_of_addressing64_sound; eauto.
+ destruct v0...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0; destruct v1...
+ destruct v0...
+ destruct v0...
+ destruct v0; simpl in H0; inv H0. destruct (Float.to_int f); inv H2...
+ destruct v0; simpl in H0; inv H0...
+ destruct v0; simpl in H0; inv H0. destruct (Float32.to_int f); inv H2...
+ destruct v0; simpl in H0; inv H0...
+ destruct v0; simpl in H0; inv H0. destruct (Float.to_long f); inv H2...
+ destruct v0; simpl in H0; inv H0...
+ destruct v0; simpl in H0; inv H0. destruct (Float32.to_long f); inv H2...
+ destruct v0; simpl in H0; inv H0...
+ destruct (eval_condition cond vl m); simpl... destruct b...
+ unfold Val.select. destruct (eval_condition c vl m). apply Val.normalize_type. exact I.
+Qed.
+
+End SOUNDNESS.
+
+(** * Manipulating and transforming operations *)
+
+(** Recognition of move operations. *)
+
+Definition is_move_operation
+ (A: Type) (op: operation) (args: list A) : option A :=
+ match op, args with
+ | Omove, arg :: nil => Some arg
+ | _, _ => None
+ end.
+
+Lemma is_move_operation_correct:
+ forall (A: Type) (op: operation) (args: list A) (a: A),
+ is_move_operation op args = Some a ->
+ op = Omove /\ args = a :: nil.
+Proof.
+ intros until a. unfold is_move_operation; destruct op;
+ try (intros; discriminate).
+ destruct args. intros; discriminate.
+ destruct args. intros. intuition congruence.
+ intros; discriminate.
+Qed.
+
+(** [negate_condition cond] returns a condition that is logically
+ equivalent to the negation of [cond]. *)
+
+Definition negate_condition (cond: condition): condition :=
+ match cond with
+ | Ccomp c => Ccomp(negate_comparison c)
+ | Ccompu c => Ccompu(negate_comparison c)
+ | Ccompimm c n => Ccompimm (negate_comparison c) n
+ | Ccompuimm c n => Ccompuimm (negate_comparison c) n
+ | Ccompl c => Ccompl(negate_comparison c)
+ | Ccomplu c => Ccomplu(negate_comparison c)
+ | Ccomplimm c n => Ccomplimm (negate_comparison c) n
+ | Ccompluimm c n => Ccompluimm (negate_comparison c) n
+ | Ccompf c => Cnotcompf c
+ | Cnotcompf c => Ccompf c
+ | Ccompfs c => Cnotcompfs c
+ | Cnotcompfs c => Ccompfs c
+ | Cmaskzero n => Cmasknotzero n
+ | Cmasknotzero n => Cmaskzero n
+ end.
+
+Lemma eval_negate_condition:
+ forall cond vl m,
+ eval_condition (negate_condition cond) vl m = option_map negb (eval_condition cond vl m).
+Proof.
+ intros. destruct cond; simpl.
+ repeat (destruct vl; auto). apply Val.negate_cmp_bool.
+ repeat (destruct vl; auto). apply Val.negate_cmpu_bool.
+ repeat (destruct vl; auto). apply Val.negate_cmp_bool.
+ repeat (destruct vl; auto). apply Val.negate_cmpu_bool.
+ repeat (destruct vl; auto). apply Val.negate_cmpl_bool.
+ repeat (destruct vl; auto). apply Val.negate_cmplu_bool.
+ repeat (destruct vl; auto). apply Val.negate_cmpl_bool.
+ repeat (destruct vl; auto). apply Val.negate_cmplu_bool.
+ repeat (destruct vl; auto).
+ repeat (destruct vl; auto). destruct (Val.cmpf_bool c v v0) as [[]|]; auto.
+ repeat (destruct vl; auto).
+ repeat (destruct vl; auto). destruct (Val.cmpfs_bool c v v0) as [[]|]; auto.
+ destruct vl; auto. destruct vl; auto.
+ destruct vl; auto. destruct vl; auto. destruct (Val.maskzero_bool v n) as [[]|]; auto.
+Qed.
+
+(** Shifting stack-relative references. This is used in [Stacking]. *)
+
+Definition shift_stack_addressing (delta: Z) (addr: addressing) :=
+ match addr with
+ | Ainstack ofs => Ainstack (Ptrofs.add ofs (Ptrofs.repr delta))
+ | _ => addr
+ end.
+
+Definition shift_stack_operation (delta: Z) (op: operation) :=
+ match op with
+ | Olea addr => Olea (shift_stack_addressing delta addr)
+ | Oleal addr => Oleal (shift_stack_addressing delta addr)
+ | _ => op
+ end.
+
+Lemma type_shift_stack_addressing:
+ forall delta addr, type_of_addressing (shift_stack_addressing delta addr) = type_of_addressing addr.
+Proof.
+ intros. destruct addr; auto.
+Qed.
+
+Lemma type_shift_stack_operation:
+ forall delta op, type_of_operation (shift_stack_operation delta op) = type_of_operation op.
+Proof.
+ intros. destruct op; auto; simpl; decEq; destruct a; auto.
+Qed.
+
+Lemma eval_shift_stack_addressing32:
+ forall F V (ge: Genv.t F V) sp addr vl delta,
+ eval_addressing32 ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl =
+ eval_addressing32 ge (Vptr sp (Ptrofs.repr delta)) addr vl.
+Proof.
+ intros.
+ assert (A: forall i, Ptrofs.add Ptrofs.zero (Ptrofs.add i (Ptrofs.repr delta)) = Ptrofs.add (Ptrofs.repr delta) i).
+ { intros. rewrite Ptrofs.add_zero_l. apply Ptrofs.add_commut. }
+ destruct addr; simpl; rewrite ?A; reflexivity.
+Qed.
+
+Lemma eval_shift_stack_addressing64:
+ forall F V (ge: Genv.t F V) sp addr vl delta,
+ eval_addressing64 ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl =
+ eval_addressing64 ge (Vptr sp (Ptrofs.repr delta)) addr vl.
+Proof.
+ intros.
+ assert (A: forall i, Ptrofs.add Ptrofs.zero (Ptrofs.add i (Ptrofs.repr delta)) = Ptrofs.add (Ptrofs.repr delta) i).
+ { intros. rewrite Ptrofs.add_zero_l. apply Ptrofs.add_commut. }
+ destruct addr; simpl; rewrite ?A; reflexivity.
+Qed.
+
+Lemma eval_shift_stack_addressing:
+ forall F V (ge: Genv.t F V) sp addr vl delta,
+ eval_addressing ge (Vptr sp Ptrofs.zero) (shift_stack_addressing delta addr) vl =
+ eval_addressing ge (Vptr sp (Ptrofs.repr delta)) addr vl.
+Proof.
+ intros. unfold eval_addressing.
+ destruct Archi.ptr64; auto using eval_shift_stack_addressing32, eval_shift_stack_addressing64.
+Qed.
+
+Lemma eval_shift_stack_operation:
+ forall F V (ge: Genv.t F V) sp op vl m delta,
+ eval_operation ge (Vptr sp Ptrofs.zero) (shift_stack_operation delta op) vl m =
+ eval_operation ge (Vptr sp (Ptrofs.repr delta)) op vl m.
+Proof.
+ intros. destruct op; simpl; auto using eval_shift_stack_addressing32, eval_shift_stack_addressing64.
+Qed.
+
+(** Offset an addressing mode [addr] by a quantity [delta], so that
+ it designates the pointer [delta] bytes past the pointer designated
+ by [addr]. This may be undefined if an offset overflows, in which case
+ [None] is returned. *)
+
+Definition offset_addressing_total (addr: addressing) (delta: Z) : addressing :=
+ match addr with
+ | Aindexed n => Aindexed (n + delta)
+ | Aindexed2 n => Aindexed2 (n + delta)
+ | Ascaled sc n => Ascaled sc (n + delta)
+ | Aindexed2scaled sc n => Aindexed2scaled sc (n + delta)
+ | Aglobal s n => Aglobal s (Ptrofs.add n (Ptrofs.repr delta))
+ | Abased s n => Abased s (Ptrofs.add n (Ptrofs.repr delta))
+ | Abasedscaled sc s n => Abasedscaled sc s (Ptrofs.add n (Ptrofs.repr delta))
+ | Ainstack n => Ainstack (Ptrofs.add n (Ptrofs.repr delta))
+ end.
+
+Definition offset_addressing (addr: addressing) (delta: Z) : option addressing :=
+ let addr' := offset_addressing_total addr delta in
+ if addressing_valid addr' then Some addr' else None.
+
+Lemma eval_offset_addressing_total_32:
+ forall (F V: Type) (ge: Genv.t F V) sp addr args delta v,
+ eval_addressing32 ge sp addr args = Some v ->
+ eval_addressing32 ge sp (offset_addressing_total addr delta) args = Some(Val.add v (Vint (Int.repr delta))).
+Proof.
+ assert (A: forall x y, Int.add (Int.repr x) (Int.repr y) = Int.repr (x + y)).
+ { intros. apply Int.eqm_samerepr; auto with ints. }
+ assert (B: forall delta, Archi.ptr64 = false -> Ptrofs.repr delta = Ptrofs.of_int (Int.repr delta)).
+ { intros; symmetry; auto with ptrofs. }
+ intros. destruct addr; simpl in *; FuncInv; subst; simpl.
+- rewrite <- A, ! Val.add_assoc; auto.
+- rewrite <- A, ! Val.add_assoc; auto.
+- rewrite <- A, ! Val.add_assoc; auto.
+- rewrite <- A, ! Val.add_assoc; auto.
+- rewrite B, Genv.shift_symbol_address_32 by auto. auto.
+- rewrite B, Genv.shift_symbol_address_32 by auto. rewrite ! Val.add_assoc. do 2 f_equal. apply Val.add_commut.
+- rewrite B, Genv.shift_symbol_address_32 by auto. rewrite ! Val.add_assoc. do 2 f_equal. apply Val.add_commut.
+- destruct sp; simpl; auto. rewrite Heqb. rewrite Ptrofs.add_assoc. do 4 f_equal. symmetry; auto with ptrofs.
+Qed.
+
+Lemma eval_offset_addressing_total_64:
+ forall (F V: Type) (ge: Genv.t F V) sp addr args delta v,
+ eval_addressing64 ge sp addr args = Some v ->
+ eval_addressing64 ge sp (offset_addressing_total addr delta) args = Some(Val.addl v (Vlong (Int64.repr delta))).
+Proof.
+ assert (A: forall x y, Int64.add (Int64.repr x) (Int64.repr y) = Int64.repr (x + y)).
+ { intros. apply Int64.eqm_samerepr; auto with ints. }
+ assert (B: forall delta, Archi.ptr64 = true -> Ptrofs.repr delta = Ptrofs.of_int64 (Int64.repr delta)).
+ { intros; symmetry; auto with ptrofs. }
+ intros. destruct addr; simpl in *; FuncInv; subst; simpl.
+- rewrite <- A, ! Val.addl_assoc; auto.
+- rewrite <- A, ! Val.addl_assoc; auto.
+- rewrite <- A, ! Val.addl_assoc; auto.
+- rewrite <- A, ! Val.addl_assoc; auto.
+- rewrite B, Genv.shift_symbol_address_64 by auto. auto.
+- destruct sp; simpl; auto. rewrite Heqb. rewrite Ptrofs.add_assoc. do 4 f_equal. symmetry; auto with ptrofs.
+Qed.
+
+(** The following lemma is used only in [Allocproof] in cases where [Archi.ptr64 = false]. *)
+
+Lemma eval_offset_addressing:
+ forall (F V: Type) (ge: Genv.t F V) sp addr args delta addr' v,
+ offset_addressing addr delta = Some addr' ->
+ eval_addressing ge sp addr args = Some v ->
+ Archi.ptr64 = false ->
+ eval_addressing ge sp addr' args = Some(Val.add v (Vint (Int.repr delta))).
+Proof.
+ intros. unfold offset_addressing in H. destruct (addressing_valid (offset_addressing_total addr delta)); inv H.
+ unfold eval_addressing in *; rewrite H1 in *. apply eval_offset_addressing_total_32; auto.
+Qed.
+
+(** Operations that are so cheap to recompute that CSE should not factor them out. *)
+
+Definition is_trivial_op (op: operation) : bool :=
+ match op with
+ | Omove => true
+ | Ointconst _ => true
+ | Olongconst _ => true
+ | Olea (Aglobal _ _) => true
+ | Olea (Ainstack _) => true
+ | Oleal (Aglobal _ _) => true
+ | Oleal (Ainstack _) => true
+ | _ => false
+ end.
+
+(** Operations that depend on the memory state. *)
+
+Definition condition_depends_on_memory (c: condition) : bool :=
+ match c with
+ | Ccompu _ => negb Archi.ptr64
+ | Ccompuimm _ _ => negb Archi.ptr64
+ | Ccomplu _ => Archi.ptr64
+ | Ccompluimm _ _ => Archi.ptr64
+ | _ => false
+ end.
+
+Definition op_depends_on_memory (op: operation) : bool :=
+ match op with
+ | Ocmp c => condition_depends_on_memory c
+ | Osel c ty => condition_depends_on_memory c
+ | _ => false
+ end.
+
+Lemma condition_depends_on_memory_correct:
+ forall c args m1 m2,
+ condition_depends_on_memory c = false ->
+ eval_condition c args m1 = eval_condition c args m2.
+Proof.
+ intros until m2.
+ destruct c; simpl; intros SF; auto; rewrite ? negb_false_iff in SF;
+ unfold Val.cmpu_bool, Val.cmplu_bool; rewrite SF; reflexivity.
+Qed.
+
+Lemma op_depends_on_memory_correct:
+ forall (F V: Type) (ge: Genv.t F V) sp op args m1 m2,
+ op_depends_on_memory op = false ->
+ eval_operation ge sp op args m1 = eval_operation ge sp op args m2.
+Proof.
+ intros until m2. destruct op; simpl; try congruence; intros C.
+- f_equal; f_equal; apply condition_depends_on_memory_correct; auto.
+- destruct args; auto. destruct args; auto.
+ rewrite (condition_depends_on_memory_correct c args m1 m2 C).
+ auto.
+Qed.
+
+(** Global variables mentioned in an operation or addressing mode *)
+
+Definition globals_addressing (addr: addressing) : list ident :=
+ match addr with
+ | Aglobal s n => s :: nil
+ | Abased s n => s :: nil
+ | Abasedscaled sc s n => s :: nil
+ | _ => nil
+ end.
+
+Definition globals_operation (op: operation) : list ident :=
+ match op with
+ | Oindirectsymbol s => s :: nil
+ | Olea addr => globals_addressing addr
+ | Oleal addr => globals_addressing addr
+ | _ => nil
+ end.
+
+(** * Invariance and compatibility properties. *)
+
+(** [eval_operation] and [eval_addressing] depend on a global environment
+ for resolving references to global symbols. We show that they give
+ the same results if a global environment is replaced by another that
+ assigns the same addresses to the same symbols. *)
+
+Section GENV_TRANSF.
+
+Variable F1 F2 V1 V2: Type.
+Variable ge1: Genv.t F1 V1.
+Variable ge2: Genv.t F2 V2.
+Hypothesis agree_on_symbols:
+ forall (s: ident), Genv.find_symbol ge2 s = Genv.find_symbol ge1 s.
+
+Lemma eval_addressing32_preserved:
+ forall sp addr vl,
+ eval_addressing32 ge2 sp addr vl = eval_addressing32 ge1 sp addr vl.
+Proof.
+ intros.
+ unfold eval_addressing32, Genv.symbol_address; destruct addr; try rewrite agree_on_symbols;
+ reflexivity.
+Qed.
+
+Lemma eval_addressing64_preserved:
+ forall sp addr vl,
+ eval_addressing64 ge2 sp addr vl = eval_addressing64 ge1 sp addr vl.
+Proof.
+ intros.
+ unfold eval_addressing64, Genv.symbol_address; destruct addr; try rewrite agree_on_symbols;
+ reflexivity.
+Qed.
+
+Lemma eval_addressing_preserved:
+ forall sp addr vl,
+ eval_addressing ge2 sp addr vl = eval_addressing ge1 sp addr vl.
+Proof.
+ intros.
+ unfold eval_addressing; destruct Archi.ptr64; auto using eval_addressing32_preserved, eval_addressing64_preserved.
+Qed.
+
+Lemma eval_operation_preserved:
+ forall sp op vl m,
+ eval_operation ge2 sp op vl m = eval_operation ge1 sp op vl m.
+Proof.
+ intros.
+ unfold eval_operation; destruct op; auto using eval_addressing32_preserved, eval_addressing64_preserved.
+ unfold Genv.symbol_address. rewrite agree_on_symbols. auto.
+Qed.
+
+End GENV_TRANSF.
+
+(** Compatibility of the evaluation functions with value injections. *)
+
+Section EVAL_COMPAT.
+
+Variable F1 F2 V1 V2: Type.
+Variable ge1: Genv.t F1 V1.
+Variable ge2: Genv.t F2 V2.
+Variable f: meminj.
+
+Variable m1: mem.
+Variable m2: mem.
+
+Hypothesis valid_pointer_inj:
+ forall b1 ofs b2 delta,
+ f b1 = Some(b2, delta) ->
+ Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
+ Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.
+
+Hypothesis weak_valid_pointer_inj:
+ forall b1 ofs b2 delta,
+ f b1 = Some(b2, delta) ->
+ Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
+ Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.
+
+Hypothesis weak_valid_pointer_no_overflow:
+ forall b1 ofs b2 delta,
+ f b1 = Some(b2, delta) ->
+ Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
+ 0 <= Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) <= Ptrofs.max_unsigned.
+
+Hypothesis valid_different_pointers_inj:
+ forall b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
+ b1 <> b2 ->
+ Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true ->
+ Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true ->
+ f b1 = Some (b1', delta1) ->
+ f b2 = Some (b2', delta2) ->
+ b1' <> b2' \/
+ Ptrofs.unsigned (Ptrofs.add ofs1 (Ptrofs.repr delta1)) <> Ptrofs.unsigned (Ptrofs.add ofs2 (Ptrofs.repr delta2)).
+
+Ltac InvInject :=
+ match goal with
+ | [ H: Val.inject _ (Vint _) _ |- _ ] =>
+ inv H; InvInject
+ | [ H: Val.inject _ (Vfloat _) _ |- _ ] =>
+ inv H; InvInject
+ | [ H: Val.inject _ (Vptr _ _) _ |- _ ] =>
+ inv H; InvInject
+ | [ H: Val.inject_list _ nil _ |- _ ] =>
+ inv H; InvInject
+ | [ H: Val.inject_list _ (_ :: _) _ |- _ ] =>
+ inv H; InvInject
+ | _ => idtac
+ end.
+
+Lemma eval_condition_inj:
+ forall cond vl1 vl2 b,
+ Val.inject_list f vl1 vl2 ->
+ eval_condition cond vl1 m1 = Some b ->
+ eval_condition cond vl2 m2 = Some b.
+Proof.
+ intros. destruct cond; simpl in H0; FuncInv; InvInject; simpl; auto.
+- inv H3; inv H2; simpl in H0; inv H0; auto.
+- eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies.
+- inv H3; simpl in H0; inv H0; auto.
+- eauto 3 using Val.cmpu_bool_inject, Mem.valid_pointer_implies.
+- inv H3; inv H2; simpl in H0; inv H0; auto.
+- eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies.
+- inv H3; simpl in H0; inv H0; auto.
+- eauto 3 using Val.cmplu_bool_inject, Mem.valid_pointer_implies.
+- inv H3; inv H2; simpl in H0; inv H0; auto.
+- inv H3; inv H2; simpl in H0; inv H0; auto.
+- inv H3; inv H2; simpl in H0; inv H0; auto.
+- inv H3; inv H2; simpl in H0; inv H0; auto.
+- inv H3; try discriminate; auto.
+- inv H3; try discriminate; auto.
+Qed.
+
+Ltac TrivialExists :=
+ match goal with
+ | [ |- exists v2, Some ?v1 = Some v2 /\ Val.inject _ _ v2 ] =>
+ exists v1; split; auto
+ | _ => idtac
+ end.
+
+Lemma eval_addressing32_inj:
+ forall addr sp1 vl1 sp2 vl2 v1,
+ (forall id ofs,
+ In id (globals_addressing addr) ->
+ Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) ->
+ Val.inject f sp1 sp2 ->
+ Val.inject_list f vl1 vl2 ->
+ eval_addressing32 ge1 sp1 addr vl1 = Some v1 ->
+ exists v2, eval_addressing32 ge2 sp2 addr vl2 = Some v2 /\ Val.inject f v1 v2.
+Proof.
+ assert (A: forall v1 v2 v1' v2', Val.inject f v1 v1' -> Val.inject f v2 v2' -> Val.inject f (Val.mul v1 v2) (Val.mul v1' v2')).
+ { intros. inv H; simpl; auto. inv H0; auto. }
+ intros. destruct addr; simpl in *; FuncInv; InvInject; TrivialExists; eauto using Val.add_inject, Val.offset_ptr_inject with coqlib.
+Qed.
+
+Lemma eval_addressing64_inj:
+ forall addr sp1 vl1 sp2 vl2 v1,
+ (forall id ofs,
+ In id (globals_addressing addr) ->
+ Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) ->
+ Val.inject f sp1 sp2 ->
+ Val.inject_list f vl1 vl2 ->
+ eval_addressing64 ge1 sp1 addr vl1 = Some v1 ->
+ exists v2, eval_addressing64 ge2 sp2 addr vl2 = Some v2 /\ Val.inject f v1 v2.
+Proof.
+ assert (A: forall v1 v2 v1' v2', Val.inject f v1 v1' -> Val.inject f v2 v2' -> Val.inject f (Val.mull v1 v2) (Val.mull v1' v2')).
+ { intros. inv H; simpl; auto. inv H0; auto. }
+ intros. destruct addr; simpl in *; FuncInv; InvInject; TrivialExists; eauto using Val.addl_inject, Val.offset_ptr_inject with coqlib.
+Qed.
+
+Lemma eval_addressing_inj:
+ forall addr sp1 vl1 sp2 vl2 v1,
+ (forall id ofs,
+ In id (globals_addressing addr) ->
+ Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) ->
+ Val.inject f sp1 sp2 ->
+ Val.inject_list f vl1 vl2 ->
+ eval_addressing ge1 sp1 addr vl1 = Some v1 ->
+ exists v2, eval_addressing ge2 sp2 addr vl2 = Some v2 /\ Val.inject f v1 v2.
+Proof.
+ unfold eval_addressing; intros. destruct Archi.ptr64; eauto using eval_addressing32_inj, eval_addressing64_inj.
+Qed.
+
+Lemma eval_operation_inj:
+ forall op sp1 vl1 sp2 vl2 v1,
+ (forall id ofs,
+ In id (globals_operation op) ->
+ Val.inject f (Genv.symbol_address ge1 id ofs) (Genv.symbol_address ge2 id ofs)) ->
+ Val.inject f sp1 sp2 ->
+ Val.inject_list f vl1 vl2 ->
+ eval_operation ge1 sp1 op vl1 m1 = Some v1 ->
+ exists v2, eval_operation ge2 sp2 op vl2 m2 = Some v2 /\ Val.inject f v1 v2.
+Proof.
+ intros until v1; intros GL; intros. destruct op; simpl in H1; simpl; FuncInv; InvInject; TrivialExists.
+ apply GL; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ apply Val.sub_inject; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H3; simpl in H1; inv H1. simpl.
+ destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2. TrivialExists.
+ inv H4; inv H3; simpl in H1; inv H1. simpl.
+ destruct (Int.eq i0 Int.zero); inv H2. TrivialExists.
+ inv H4; inv H3; simpl in H1; inv H1. simpl.
+ destruct (Int.eq i0 Int.zero || Int.eq i (Int.repr Int.min_signed) && Int.eq i0 Int.mone); inv H2. TrivialExists.
+ inv H4; inv H3; simpl in H1; inv H1. simpl.
+ destruct (Int.eq i0 Int.zero); inv H2. TrivialExists.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
+ inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto.
+ inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
+ inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto.
+ inv H4; simpl in H1; try discriminate. simpl.
+ destruct (Int.ltu n (Int.repr 31)); inv H1. TrivialExists.
+ inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int.iwordsize); auto.
+ inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto. destruct (Int.ltu n Int.iwordsize); auto.
+ inv H2; simpl; auto. destruct (Int.ltu (Int.sub Int.iwordsize n) Int.iwordsize); auto.
+ eapply eval_addressing32_inj; eauto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ apply Val.addl_inject; auto.
+ apply Val.subl_inject; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H3; simpl in H1; inv H1. simpl.
+ destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2. TrivialExists.
+ inv H4; inv H3; simpl in H1; inv H1. simpl.
+ destruct (Int64.eq i0 Int64.zero); inv H2. TrivialExists.
+ inv H4; inv H3; simpl in H1; inv H1. simpl.
+ destruct (Int64.eq i0 Int64.zero || Int64.eq i (Int64.repr Int64.min_signed) && Int64.eq i0 Int64.mone); inv H2. TrivialExists.
+ inv H4; inv H3; simpl in H1; inv H1. simpl.
+ destruct (Int64.eq i0 Int64.zero); inv H2. TrivialExists.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto.
+ inv H4; simpl; auto. destruct (Int.ltu n Int64.iwordsize'); auto.
+ inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto.
+ inv H4; simpl; auto. destruct (Int.ltu n Int64.iwordsize'); auto.
+ inv H4; simpl in H1; try discriminate. simpl. destruct (Int.ltu n (Int.repr 63)); inv H1. TrivialExists.
+ inv H4; inv H2; simpl; auto. destruct (Int.ltu i0 Int64.iwordsize'); auto.
+ inv H4; simpl; auto. destruct (Int.ltu n Int64.iwordsize'); auto.
+ inv H4; simpl; auto.
+ eapply eval_addressing64_inj; eauto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; inv H2; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl; auto.
+ inv H4; simpl in H1; inv H1. simpl. destruct (Float.to_int f0); simpl in H2; inv H2.
+ exists (Vint i); auto.
+ inv H4; simpl in H1; inv H1. simpl. TrivialExists.
+ inv H4; simpl in H1; inv H1. simpl. destruct (Float32.to_int f0); simpl in H2; inv H2.
+ exists (Vint i); auto.
+ inv H4; simpl in H1; inv H1. simpl. TrivialExists.
+ inv H4; simpl in H1; inv H1. simpl. destruct (Float.to_long f0); simpl in H2; inv H2.
+ exists (Vlong i); auto.
+ inv H4; simpl in H1; inv H1. simpl. TrivialExists.
+ inv H4; simpl in H1; inv H1. simpl. destruct (Float32.to_long f0); simpl in H2; inv H2.
+ exists (Vlong i); auto.
+ inv H4; simpl in H1; inv H1. simpl. TrivialExists.
+ subst v1. destruct (eval_condition cond vl1 m1) eqn:?.
+ exploit eval_condition_inj; eauto. intros EQ; rewrite EQ.
+ destruct b; simpl; constructor.
+ simpl; constructor.
+ apply Val.select_inject; auto.
+ destruct (eval_condition c vl1 m1) eqn:?; auto.
+ right; symmetry; eapply eval_condition_inj; eauto.
+Qed.
+
+End EVAL_COMPAT.
+
+(** Compatibility of the evaluation functions with the ``is less defined'' relation over values. *)
+
+Section EVAL_LESSDEF.
+
+Variable F V: Type.
+Variable genv: Genv.t F V.
+
+Remark valid_pointer_extends:
+ forall m1 m2, Mem.extends m1 m2 ->
+ forall b1 ofs b2 delta,
+ Some(b1, 0) = Some(b2, delta) ->
+ Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
+ Mem.valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.
+Proof.
+ intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.valid_pointer_extends; eauto.
+Qed.
+
+Remark weak_valid_pointer_extends:
+ forall m1 m2, Mem.extends m1 m2 ->
+ forall b1 ofs b2 delta,
+ Some(b1, 0) = Some(b2, delta) ->
+ Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
+ Mem.weak_valid_pointer m2 b2 (Ptrofs.unsigned (Ptrofs.add ofs (Ptrofs.repr delta))) = true.
+Proof.
+ intros. inv H0. rewrite Ptrofs.add_zero. eapply Mem.weak_valid_pointer_extends; eauto.
+Qed.
+
+Remark weak_valid_pointer_no_overflow_extends:
+ forall m1 b1 ofs b2 delta,
+ Some(b1, 0) = Some(b2, delta) ->
+ Mem.weak_valid_pointer m1 b1 (Ptrofs.unsigned ofs) = true ->
+ 0 <= Ptrofs.unsigned ofs + Ptrofs.unsigned (Ptrofs.repr delta) <= Ptrofs.max_unsigned.
+Proof.
+ intros. inv H. rewrite Z.add_0_r. apply Ptrofs.unsigned_range_2.
+Qed.
+
+Remark valid_different_pointers_extends:
+ forall m1 b1 ofs1 b2 ofs2 b1' delta1 b2' delta2,
+ b1 <> b2 ->
+ Mem.valid_pointer m1 b1 (Ptrofs.unsigned ofs1) = true ->
+ Mem.valid_pointer m1 b2 (Ptrofs.unsigned ofs2) = true ->
+ Some(b1, 0) = Some (b1', delta1) ->
+ Some(b2, 0) = Some (b2', delta2) ->
+ b1' <> b2' \/
+ Ptrofs.unsigned(Ptrofs.add ofs1 (Ptrofs.repr delta1)) <> Ptrofs.unsigned(Ptrofs.add ofs2 (Ptrofs.repr delta2)).
+Proof.
+ intros. inv H2; inv H3. auto.
+Qed.
+
+Lemma eval_condition_lessdef:
+ forall cond vl1 vl2 b m1 m2,
+ Val.lessdef_list vl1 vl2 ->
+ Mem.extends m1 m2 ->
+ eval_condition cond vl1 m1 = Some b ->
+ eval_condition cond vl2 m2 = Some b.
+Proof.
+ intros. eapply eval_condition_inj with (f := fun b => Some(b, 0)) (m1 := m1).
+ apply valid_pointer_extends; auto.
+ apply weak_valid_pointer_extends; auto.
+ apply weak_valid_pointer_no_overflow_extends.
+ apply valid_different_pointers_extends; auto.
+ rewrite <- val_inject_list_lessdef. eauto. auto.
+Qed.
+
+Lemma eval_operation_lessdef:
+ forall sp op vl1 vl2 v1 m1 m2,
+ Val.lessdef_list vl1 vl2 ->
+ Mem.extends m1 m2 ->
+ eval_operation genv sp op vl1 m1 = Some v1 ->
+ exists v2, eval_operation genv sp op vl2 m2 = Some v2 /\ Val.lessdef v1 v2.
+Proof.
+ intros. rewrite val_inject_list_lessdef in H.
+ assert (exists v2 : val,
+ eval_operation genv sp op vl2 m2 = Some v2
+ /\ Val.inject (fun b => Some(b, 0)) v1 v2).
+ eapply eval_operation_inj with (m1 := m1) (sp1 := sp).
+ apply valid_pointer_extends; auto.
+ apply weak_valid_pointer_extends; auto.
+ apply weak_valid_pointer_no_overflow_extends.
+ apply valid_different_pointers_extends; auto.
+ intros. apply val_inject_lessdef. auto.
+ apply val_inject_lessdef; auto.
+ eauto.
+ auto.
+ destruct H2 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto.
+Qed.
+
+Lemma eval_addressing_lessdef:
+ forall sp addr vl1 vl2 v1,
+ Val.lessdef_list vl1 vl2 ->
+ eval_addressing genv sp addr vl1 = Some v1 ->
+ exists v2, eval_addressing genv sp addr vl2 = Some v2 /\ Val.lessdef v1 v2.
+Proof.
+ intros. rewrite val_inject_list_lessdef in H.
+ assert (exists v2 : val,
+ eval_addressing genv sp addr vl2 = Some v2
+ /\ Val.inject (fun b => Some(b, 0)) v1 v2).
+ eapply eval_addressing_inj with (sp1 := sp).
+ intros. rewrite <- val_inject_lessdef; auto.
+ rewrite <- val_inject_lessdef; auto.
+ eauto. auto.
+ destruct H1 as [v2 [A B]]. exists v2; split; auto. rewrite val_inject_lessdef; auto.
+Qed.
+
+End EVAL_LESSDEF.
+
+(** Compatibility of the evaluation functions with memory injections. *)
+
+Section EVAL_INJECT.
+
+Variable F V: Type.
+Variable genv: Genv.t F V.
+Variable f: meminj.
+Hypothesis globals: meminj_preserves_globals genv f.
+Variable sp1: block.
+Variable sp2: block.
+Variable delta: Z.
+Hypothesis sp_inj: f sp1 = Some(sp2, delta).
+
+Remark symbol_address_inject:
+ forall id ofs, Val.inject f (Genv.symbol_address genv id ofs) (Genv.symbol_address genv id ofs).
+Proof.
+ intros. unfold Genv.symbol_address. destruct (Genv.find_symbol genv id) eqn:?; auto.
+ exploit (proj1 globals); eauto. intros.
+ econstructor; eauto. rewrite Ptrofs.add_zero; auto.
+Qed.
+
+Lemma eval_condition_inject:
+ forall cond vl1 vl2 b m1 m2,
+ Val.inject_list f vl1 vl2 ->
+ Mem.inject f m1 m2 ->
+ eval_condition cond vl1 m1 = Some b ->
+ eval_condition cond vl2 m2 = Some b.
+Proof.
+ intros. eapply eval_condition_inj with (f := f) (m1 := m1); eauto.
+ intros; eapply Mem.valid_pointer_inject_val; eauto.
+ intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
+ intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
+ intros; eapply Mem.different_pointers_inject; eauto.
+Qed.
+
+Lemma eval_addressing_inject:
+ forall addr vl1 vl2 v1,
+ Val.inject_list f vl1 vl2 ->
+ eval_addressing genv (Vptr sp1 Ptrofs.zero) addr vl1 = Some v1 ->
+ exists v2,
+ eval_addressing genv (Vptr sp2 Ptrofs.zero) (shift_stack_addressing delta addr) vl2 = Some v2
+ /\ Val.inject f v1 v2.
+Proof.
+ intros.
+ rewrite eval_shift_stack_addressing.
+ eapply eval_addressing_inj with (sp1 := Vptr sp1 Ptrofs.zero); eauto.
+ intros. apply symbol_address_inject.
+ econstructor; eauto. rewrite Ptrofs.add_zero_l; auto.
+Qed.
+
+Lemma eval_operation_inject:
+ forall op vl1 vl2 v1 m1 m2,
+ Val.inject_list f vl1 vl2 ->
+ Mem.inject f m1 m2 ->
+ eval_operation genv (Vptr sp1 Ptrofs.zero) op vl1 m1 = Some v1 ->
+ exists v2,
+ eval_operation genv (Vptr sp2 Ptrofs.zero) (shift_stack_operation delta op) vl2 m2 = Some v2
+ /\ Val.inject f v1 v2.
+Proof.
+ intros.
+ rewrite eval_shift_stack_operation. simpl.
+ eapply eval_operation_inj with (sp1 := Vptr sp1 Ptrofs.zero) (m1 := m1); eauto.
+ intros; eapply Mem.valid_pointer_inject_val; eauto.
+ intros; eapply Mem.weak_valid_pointer_inject_val; eauto.
+ intros; eapply Mem.weak_valid_pointer_inject_no_overflow; eauto.
+ intros; eapply Mem.different_pointers_inject; eauto.
+ intros. apply symbol_address_inject.
+ econstructor; eauto. rewrite Ptrofs.add_zero_l; auto.
+Qed.
+
+End EVAL_INJECT.
+
+(** * Handling of builtin arguments *)
+
+Definition builtin_arg_ok_1
+ (A: Type) (ba: builtin_arg A) (c: builtin_arg_constraint) :=
+ match c, ba with
+ | OK_all, _ => true
+ | OK_const, (BA_int _ | BA_long _ | BA_float _ | BA_single _) => true
+ | OK_addrstack, BA_addrstack _ => true
+ | OK_addressing, BA_addrstack _ => true
+ | OK_addressing, BA_addrglobal _ _ => true
+ | OK_addressing, BA_addptr (BA _) (BA_int _ | BA_long _) => true
+ | _, _ => false
+ end.
+
+Definition builtin_arg_ok
+ (A: Type) (ba: builtin_arg A) (c: builtin_arg_constraint) :=
+ match ba with
+ | (BA _ | BA_splitlong (BA _) (BA _)) => true
+ | _ => builtin_arg_ok_1 ba c
+ end.