aboutsummaryrefslogtreecommitdiffstats
path: root/verilog/SelectOpproof.v
diff options
context:
space:
mode:
Diffstat (limited to 'verilog/SelectOpproof.v')
-rw-r--r--verilog/SelectOpproof.v1027
1 files changed, 1027 insertions, 0 deletions
diff --git a/verilog/SelectOpproof.v b/verilog/SelectOpproof.v
new file mode 100644
index 00000000..961f602c
--- /dev/null
+++ b/verilog/SelectOpproof.v
@@ -0,0 +1,1027 @@
+(* *********************************************************************)
+(* *)
+(* The Compcert verified compiler *)
+(* *)
+(* Xavier Leroy, INRIA Paris-Rocquencourt *)
+(* *)
+(* Copyright Institut National de Recherche en Informatique et en *)
+(* Automatique. All rights reserved. This file is distributed *)
+(* under the terms of the INRIA Non-Commercial License Agreement. *)
+(* *)
+(* *********************************************************************)
+
+(** Correctness of instruction selection for operators *)
+
+Require Import Coqlib.
+Require Import AST Integers Floats.
+Require Import Values Memory Builtins Globalenvs.
+Require Import Cminor Op CminorSel.
+Require Import SelectOp.
+
+Local Open Scope cminorsel_scope.
+
+(** * Useful lemmas and tactics *)
+
+(** The following are trivial lemmas and custom tactics that help
+ perform backward (inversion) and forward reasoning over the evaluation
+ of operator applications. *)
+
+Ltac EvalOp := eapply eval_Eop; eauto with evalexpr.
+
+Ltac InvEval1 :=
+ match goal with
+ | [ H: (eval_expr _ _ _ _ _ (Eop _ Enil) _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: Enil)) _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_expr _ _ _ _ _ (Eop _ (_ ::: _ ::: Enil)) _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_exprlist _ _ _ _ _ Enil _) |- _ ] =>
+ inv H; InvEval1
+ | [ H: (eval_exprlist _ _ _ _ _ (_ ::: _) _) |- _ ] =>
+ inv H; InvEval1
+ | _ =>
+ idtac
+ end.
+
+Ltac InvEval2 :=
+ match goal with
+ | [ H: (eval_operation _ _ _ nil _ = Some _) |- _ ] =>
+ simpl in H; FuncInv
+ | [ H: (eval_operation _ _ _ (_ :: nil) _ = Some _) |- _ ] =>
+ simpl in H; FuncInv
+ | [ H: (eval_operation _ _ _ (_ :: _ :: nil) _ = Some _) |- _ ] =>
+ simpl in H; FuncInv
+ | [ H: (eval_operation _ _ _ (_ :: _ :: _ :: nil) _ = Some _) |- _ ] =>
+ simpl in H; FuncInv
+ | _ =>
+ idtac
+ end.
+
+Ltac InvEval := InvEval1; InvEval2; InvEval2; subst.
+
+Ltac TrivialExists :=
+ match goal with
+ | [ |- exists v, _ /\ Val.lessdef ?a v ] => exists a; split; [EvalOp | auto]
+ end.
+
+(** * Correctness of the smart constructors *)
+
+Section CMCONSTR.
+
+Variable ge: genv.
+Variable sp: val.
+Variable e: env.
+Variable m: mem.
+
+(** We now show that the code generated by "smart constructor" functions
+ such as [SelectOp.notint] behaves as expected. Continuing the
+ [notint] example, we show that if the expression [e]
+ evaluates to some integer value [Vint n], then [SelectOp.notint e]
+ evaluates to a value [Vint (Int.not n)] which is indeed the integer
+ negation of the value of [e].
+
+ All proofs follow a common pattern:
+- Reasoning by case over the result of the classification functions
+ (such as [add_match] for integer addition), gathering additional
+ information on the shape of the argument expressions in the non-default
+ cases.
+- Inversion of the evaluations of the arguments, exploiting the additional
+ information thus gathered.
+- Equational reasoning over the arithmetic operations performed,
+ using the lemmas from the [Int] and [Float] modules.
+- Construction of an evaluation derivation for the expression returned
+ by the smart constructor.
+*)
+
+Definition unary_constructor_sound (cstr: expr -> expr) (sem: val -> val) : Prop :=
+ forall le a x,
+ eval_expr ge sp e m le a x ->
+ exists v, eval_expr ge sp e m le (cstr a) v /\ Val.lessdef (sem x) v.
+
+Definition binary_constructor_sound (cstr: expr -> expr -> expr) (sem: val -> val -> val) : Prop :=
+ forall le a x b y,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ exists v, eval_expr ge sp e m le (cstr a b) v /\ Val.lessdef (sem x y) v.
+
+Lemma eval_Olea_ptr:
+ forall a el m,
+ eval_operation ge sp (Olea_ptr a) el m = eval_addressing ge sp a el.
+Proof.
+ unfold Olea_ptr, eval_addressing; intros. destruct Archi.ptr64; auto.
+Qed.
+
+Theorem eval_addrsymbol:
+ forall le id ofs,
+ exists v, eval_expr ge sp e m le (addrsymbol id ofs) v /\ Val.lessdef (Genv.symbol_address ge id ofs) v.
+Proof.
+ intros. unfold addrsymbol. exists (Genv.symbol_address ge id ofs); split; auto.
+ destruct (symbol_is_external id).
+ predSpec Ptrofs.eq Ptrofs.eq_spec ofs Ptrofs.zero.
+ subst. EvalOp.
+ EvalOp. econstructor. EvalOp. simpl; eauto. econstructor.
+ unfold Olea_ptr; destruct Archi.ptr64 eqn:SF; simpl;
+ [ rewrite <- Genv.shift_symbol_address_64 by auto | rewrite <- Genv.shift_symbol_address_32 by auto ];
+ f_equal; f_equal;
+ rewrite Ptrofs.add_zero_l;
+ [ apply Ptrofs.of_int64_to_int64 | apply Ptrofs.of_int_to_int ];
+ auto.
+ EvalOp. (*rewrite eval_Olea_ptr. apply eval_addressing_Aglobal. *)
+Qed.
+
+Theorem eval_addrstack:
+ forall le ofs,
+ exists v, eval_expr ge sp e m le (addrstack ofs) v /\ Val.lessdef (Val.offset_ptr sp ofs) v.
+Proof.
+ intros. unfold addrstack. TrivialExists. (*rewrite eval_Olea_ptr. apply eval_addressing_Ainstack.*)
+Qed.
+
+Theorem eval_notint: unary_constructor_sound notint Val.notint.
+Proof.
+ unfold notint; red; intros until x. case (notint_match a); intros; InvEval.
+- TrivialExists.
+- rewrite Val.not_xor. rewrite Val.xor_assoc. TrivialExists.
+- TrivialExists.
+Qed.
+
+Theorem eval_addimm:
+ forall n, unary_constructor_sound (addimm n) (fun x => Val.add x (Vint n)).
+Proof.
+ red; unfold addimm; intros until x.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+- subst n. intros. exists x; split; auto.
+ destruct x; simpl; rewrite ?Int.add_zero, ?Ptrofs.add_zero; auto.
+- case (addimm_match a); intros; InvEval.
++ TrivialExists; simpl. rewrite Int.add_commut. auto.
++ inv H0. simpl in H6. TrivialExists. simpl.
+ erewrite eval_offset_addressing_total_32 by eauto. rewrite Int.repr_signed; auto.
++ TrivialExists. simpl. rewrite Int.repr_signed; auto.
+Qed.
+
+Theorem eval_add: binary_constructor_sound add Val.add.
+Proof.
+ assert (A: forall x y, Int.repr (x + y) = Int.add (Int.repr x) (Int.repr y)).
+ { intros; apply Int.eqm_samerepr; auto with ints. }
+ assert (B: forall id ofs n, Archi.ptr64 = false ->
+ Genv.symbol_address ge id (Ptrofs.add ofs (Ptrofs.repr n)) =
+ Val.add (Genv.symbol_address ge id ofs) (Vint (Int.repr n))).
+ { intros. replace (Ptrofs.repr n) with (Ptrofs.of_int (Int.repr n)) by auto with ptrofs.
+ apply Genv.shift_symbol_address_32; auto. }
+ red; intros until y.
+ unfold add; case (add_match a b); intros; InvEval.
+- rewrite Val.add_commut. apply eval_addimm; auto.
+- apply eval_addimm; auto.
+- TrivialExists. simpl. rewrite A, Val.add_permut_4. auto.
+- TrivialExists. simpl. rewrite A, Val.add_assoc. decEq; decEq. rewrite Val.add_permut. auto.
+- TrivialExists. simpl. rewrite A, Val.add_permut_4. rewrite <- Val.add_permut. rewrite <- Val.add_assoc. auto.
+- TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite ! Val.add_assoc.
+ rewrite (Val.add_commut v1). rewrite Val.add_permut. rewrite Val.add_assoc. auto.
+- TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite Val.add_assoc. do 2 f_equal. apply Val.add_commut.
+- TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite !Val.add_assoc.
+ rewrite (Val.add_commut (Vint (Int.repr n1))). rewrite Val.add_permut. do 2 f_equal. apply Val.add_commut.
+- TrivialExists. simpl. rewrite Heqb0. rewrite B by auto. rewrite !Val.add_assoc.
+ rewrite (Val.add_commut (Vint (Int.repr n2))). rewrite Val.add_permut. auto.
+- TrivialExists. simpl. rewrite Val.add_permut. rewrite Val.add_assoc.
+ decEq; decEq. apply Val.add_commut.
+- TrivialExists.
+- TrivialExists. simpl. repeat rewrite Val.add_assoc. decEq; decEq. apply Val.add_commut.
+- TrivialExists. simpl. rewrite Val.add_assoc; auto.
+- TrivialExists. simpl.
+ unfold Val.add; destruct Archi.ptr64, x, y; auto.
+ + rewrite Int.add_zero; auto.
+ + rewrite Int.add_zero; auto.
+ + rewrite Ptrofs.add_assoc, Ptrofs.add_zero. auto.
+ + rewrite Ptrofs.add_assoc, Ptrofs.add_zero. auto.
+Qed.
+
+Theorem eval_sub: binary_constructor_sound sub Val.sub.
+Proof.
+ red; intros until y.
+ unfold sub; case (sub_match a b); intros; InvEval.
+- rewrite Val.sub_add_opp. apply eval_addimm; auto.
+- rewrite Val.sub_add_l. rewrite Val.sub_add_r.
+ rewrite Val.add_assoc. simpl. rewrite Int.add_commut. rewrite <- Int.sub_add_opp.
+ replace (Int.repr (n1 - n2)) with (Int.sub (Int.repr n1) (Int.repr n2)).
+ apply eval_addimm; EvalOp.
+ apply Int.eqm_samerepr; auto with ints.
+- rewrite Val.sub_add_l. apply eval_addimm; EvalOp.
+- rewrite Val.sub_add_r. replace (Int.repr (-n2)) with (Int.neg (Int.repr n2)). apply eval_addimm; EvalOp.
+ apply Int.eqm_samerepr; auto with ints.
+- TrivialExists.
+Qed.
+
+Theorem eval_negint: unary_constructor_sound negint Val.neg.
+Proof.
+ red; intros until x. unfold negint. case (negint_match a); intros; InvEval.
+- TrivialExists.
+- TrivialExists.
+Qed.
+
+Theorem eval_shlimm:
+ forall n, unary_constructor_sound (fun a => shlimm a n)
+ (fun x => Val.shl x (Vint n)).
+Proof.
+ red; intros until x. unfold shlimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shl_zero; auto.
+ destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
+ destruct (shlimm_match a); intros; InvEval.
+- exists (Vint (Int.shl n1 n)); split. EvalOp.
+ simpl. rewrite LT. auto.
+- destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
++ exists (Val.shl v1 (Vint (Int.add n n1))); split. EvalOp.
+ destruct v1; simpl; auto.
+ rewrite Heqb.
+ destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
+ destruct (Int.ltu n Int.iwordsize) eqn:?; simpl; auto.
+ rewrite Int.add_commut. rewrite Int.shl_shl; auto. rewrite Int.add_commut; auto.
++ TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
+ simpl. auto.
+- destruct (shift_is_scale n).
++ econstructor; split. EvalOp. simpl. eauto.
+ rewrite ! Int.repr_unsigned.
+ destruct v1; simpl; auto. rewrite LT.
+ rewrite Int.shl_mul. rewrite Int.mul_add_distr_l. rewrite (Int.shl_mul (Int.repr n1)). auto.
++ TrivialExists. econstructor. EvalOp. simpl; eauto. constructor. auto.
+- destruct (shift_is_scale n).
++ econstructor; split. EvalOp. simpl. eauto.
+ destruct x; simpl; auto. rewrite LT.
+ rewrite Int.repr_unsigned. rewrite Int.add_zero. rewrite Int.shl_mul. auto.
++ TrivialExists.
+- intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
+ auto.
+Qed.
+
+Theorem eval_shruimm:
+ forall n, unary_constructor_sound (fun a => shruimm a n)
+ (fun x => Val.shru x (Vint n)).
+Proof.
+ red; intros until x. unfold shruimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shru_zero; auto.
+ destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
+ destruct (shruimm_match a); intros; InvEval.
+- exists (Vint (Int.shru n1 n)); split. EvalOp.
+ simpl. rewrite LT; auto.
+- destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
++ exists (Val.shru v1 (Vint (Int.add n n1))); split. EvalOp.
+ subst. destruct v1; simpl; auto.
+ rewrite Heqb.
+ destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
+ rewrite LT. rewrite Int.add_commut. rewrite Int.shru_shru; auto. rewrite Int.add_commut; auto.
++ TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
+ simpl. auto.
+- TrivialExists.
+- intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
+ auto.
+Qed.
+
+Theorem eval_shrimm:
+ forall n, unary_constructor_sound (fun a => shrimm a n)
+ (fun x => Val.shr x (Vint n)).
+Proof.
+ red; intros until x. unfold shrimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros; subst. exists x; split; auto. destruct x; simpl; auto. rewrite Int.shr_zero; auto.
+ destruct (Int.ltu n Int.iwordsize) eqn:LT; simpl.
+ destruct (shrimm_match a); intros; InvEval.
+- exists (Vint (Int.shr n1 n)); split. EvalOp.
+ simpl. rewrite LT; auto.
+- destruct (Int.ltu (Int.add n n1) Int.iwordsize) eqn:?.
++ exists (Val.shr v1 (Vint (Int.add n n1))); split. EvalOp.
+ subst. destruct v1; simpl; auto.
+ rewrite Heqb.
+ destruct (Int.ltu n1 Int.iwordsize) eqn:?; simpl; auto.
+ rewrite LT.
+ rewrite Int.add_commut. rewrite Int.shr_shr; auto. rewrite Int.add_commut; auto.
++ TrivialExists. econstructor. EvalOp. simpl; eauto. constructor.
+ simpl. auto.
+- TrivialExists.
+- intros; TrivialExists. constructor. eauto. constructor. EvalOp. simpl; eauto. constructor.
+ auto.
+Qed.
+
+Lemma eval_mulimm_base:
+ forall n, unary_constructor_sound (mulimm_base n) (fun x => Val.mul x (Vint n)).
+Proof.
+ intros; red; intros; unfold mulimm_base.
+ generalize (Int.one_bits_decomp n) (Int.one_bits_range n); intros D R.
+ destruct (Int.one_bits n) as [ | i l].
+ TrivialExists.
+ destruct l as [ | j l ].
+ replace (Val.mul x (Vint n)) with (Val.shl x (Vint i)). apply eval_shlimm; auto.
+ destruct x; auto; simpl. rewrite D; simpl; rewrite Int.add_zero.
+ rewrite R by auto with coqlib. rewrite Int.shl_mul. auto.
+ destruct l as [ | k l ].
+ exploit (eval_shlimm i (x :: le) (Eletvar 0) x). constructor; auto. intros [v1 [A1 B1]].
+ exploit (eval_shlimm j (x :: le) (Eletvar 0) x). constructor; auto. intros [v2 [A2 B2]].
+ exploit eval_add. eexact A1. eexact A2. intros [v3 [A3 B3]].
+ exists v3; split. econstructor; eauto.
+ rewrite D; simpl; rewrite Int.add_zero.
+ replace (Vint (Int.add (Int.shl Int.one i) (Int.shl Int.one j)))
+ with (Val.add (Val.shl Vone (Vint i)) (Val.shl Vone (Vint j))).
+ rewrite Val.mul_add_distr_r.
+ repeat rewrite Val.shl_mul.
+ apply Val.lessdef_trans with (Val.add v1 v2); auto. apply Val.add_lessdef; auto.
+ simpl. rewrite ! R by auto with coqlib. auto.
+ TrivialExists.
+Qed.
+
+Theorem eval_mulimm:
+ forall n, unary_constructor_sound (mulimm n) (fun x => Val.mul x (Vint n)).
+Proof.
+ intros; red; intros until x; unfold mulimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros. exists (Vint Int.zero); split. EvalOp.
+ destruct x; simpl; auto. subst n. rewrite Int.mul_zero. auto.
+ predSpec Int.eq Int.eq_spec n Int.one.
+ intros. exists x; split; auto.
+ destruct x; simpl; auto. subst n. rewrite Int.mul_one. auto.
+- case (mulimm_match a); intros; InvEval.
++ TrivialExists. simpl. rewrite Int.mul_commut; auto.
++ rewrite Val.mul_add_distr_l.
+ exploit eval_mulimm_base; eauto. instantiate (1 := n). intros [v' [A1 B1]].
+ exploit (eval_addimm (Int.mul n (Int.repr n2)) le (mulimm_base n t2) v'). auto. intros [v'' [A2 B2]].
+ exists v''; split; auto. eapply Val.lessdef_trans. eapply Val.add_lessdef; eauto.
+ rewrite Val.mul_commut; auto.
++ apply eval_mulimm_base; auto.
+Qed.
+
+Theorem eval_mul: binary_constructor_sound mul Val.mul.
+Proof.
+ red; intros until y.
+ unfold mul; case (mul_match a b); intros; InvEval.
+- rewrite Val.mul_commut. apply eval_mulimm. auto.
+- apply eval_mulimm. auto.
+- TrivialExists.
+Qed.
+
+Theorem eval_mulhs: binary_constructor_sound mulhs Val.mulhs.
+Proof.
+ unfold mulhs; red; intros; TrivialExists.
+Qed.
+
+Theorem eval_mulhu: binary_constructor_sound mulhu Val.mulhu.
+Proof.
+ unfold mulhu; red; intros; TrivialExists.
+Qed.
+
+Theorem eval_andimm:
+ forall n, unary_constructor_sound (andimm n) (fun x => Val.and x (Vint n)).
+Proof.
+ intros; red; intros until x. unfold andimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros. exists (Vint Int.zero); split. EvalOp.
+ destruct x; simpl; auto. subst n. rewrite Int.and_zero. auto.
+ predSpec Int.eq Int.eq_spec n Int.mone.
+ intros. exists x; split; auto.
+ destruct x; simpl; auto. subst n. rewrite Int.and_mone. auto.
+ case (andimm_match a); intros; InvEval.
+- TrivialExists. simpl. rewrite Int.and_commut; auto.
+- TrivialExists. simpl. rewrite Val.and_assoc. rewrite Int.and_commut. auto.
+- rewrite Val.zero_ext_and. TrivialExists. rewrite Val.and_assoc.
+ rewrite Int.and_commut. auto. omega.
+- rewrite Val.zero_ext_and. TrivialExists. rewrite Val.and_assoc.
+ rewrite Int.and_commut. auto. omega.
+- TrivialExists.
+Qed.
+
+Theorem eval_and: binary_constructor_sound and Val.and.
+Proof.
+ red; intros until y; unfold and; case (and_match a b); intros; InvEval.
+- rewrite Val.and_commut. apply eval_andimm; auto.
+- apply eval_andimm; auto.
+- TrivialExists.
+Qed.
+
+Theorem eval_orimm:
+ forall n, unary_constructor_sound (orimm n) (fun x => Val.or x (Vint n)).
+Proof.
+ intros; red; intros until x. unfold orimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros. exists x; split. auto.
+ destruct x; simpl; auto. subst n. rewrite Int.or_zero. auto.
+ predSpec Int.eq Int.eq_spec n Int.mone.
+ intros. exists (Vint Int.mone); split. EvalOp.
+ destruct x; simpl; auto. subst n. rewrite Int.or_mone. auto.
+ destruct (orimm_match a); intros; InvEval.
+- TrivialExists. simpl. rewrite Int.or_commut; auto.
+- subst. rewrite Val.or_assoc. simpl. rewrite Int.or_commut. TrivialExists.
+- TrivialExists.
+Qed.
+
+Remark eval_same_expr:
+ forall a1 a2 le v1 v2,
+ same_expr_pure a1 a2 = true ->
+ eval_expr ge sp e m le a1 v1 ->
+ eval_expr ge sp e m le a2 v2 ->
+ a1 = a2 /\ v1 = v2.
+Proof.
+ intros until v2.
+ destruct a1; simpl; try (intros; discriminate).
+ destruct a2; simpl; try (intros; discriminate).
+ case (ident_eq i i0); intros.
+ subst i0. inversion H0. inversion H1. split. auto. congruence.
+ discriminate.
+Qed.
+
+Remark int_add_sub_eq:
+ forall x y z, Int.add x y = z -> Int.sub z x = y.
+Proof.
+ intros. subst z. rewrite Int.sub_add_l. rewrite Int.sub_idem. apply Int.add_zero_l.
+Qed.
+
+Lemma eval_or: binary_constructor_sound or Val.or.
+Proof.
+ red; intros until y; unfold or; case (or_match a b); intros.
+ (* intconst *)
+- InvEval. rewrite Val.or_commut. apply eval_orimm; auto.
+- InvEval. apply eval_orimm; auto.
+- (* shlimm - shruimm *)
+ predSpec Int.eq Int.eq_spec (Int.add n1 n2) Int.iwordsize.
+ destruct (same_expr_pure t1 t2) eqn:?.
+ InvEval. exploit eval_same_expr; eauto. intros [EQ1 EQ2]; subst.
+ exists (Val.ror v0 (Vint n2)); split. EvalOp.
+ destruct v0; simpl; auto.
+ destruct (Int.ltu n1 Int.iwordsize) eqn:?; auto.
+ destruct (Int.ltu n2 Int.iwordsize) eqn:?; auto.
+ simpl. rewrite <- Int.or_ror; auto.
+ InvEval. econstructor; split; eauto. EvalOp.
+ simpl. erewrite int_add_sub_eq; eauto.
+ TrivialExists.
+- (* shruimm - shlimm *)
+ predSpec Int.eq Int.eq_spec (Int.add n1 n2) Int.iwordsize.
+ destruct (same_expr_pure t1 t2) eqn:?.
+ InvEval. exploit eval_same_expr; eauto. intros [EQ1 EQ2]; subst.
+ exists (Val.ror v1 (Vint n2)); split. EvalOp.
+ destruct v1; simpl; auto.
+ destruct (Int.ltu n2 Int.iwordsize) eqn:?; auto.
+ destruct (Int.ltu n1 Int.iwordsize) eqn:?; auto.
+ simpl. rewrite Int.or_commut. rewrite <- Int.or_ror; auto.
+ InvEval. econstructor; split; eauto. EvalOp.
+ simpl. erewrite int_add_sub_eq; eauto.
+ rewrite Val.or_commut; auto.
+ TrivialExists.
+- (* default *)
+ TrivialExists.
+Qed.
+
+Theorem eval_xorimm:
+ forall n, unary_constructor_sound (xorimm n) (fun x => Val.xor x (Vint n)).
+Proof.
+ intros; red; intros until x. unfold xorimm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ intros. exists x; split. auto.
+ destruct x; simpl; auto. subst n. rewrite Int.xor_zero. auto.
+ destruct (xorimm_match a); intros; InvEval.
+- TrivialExists. simpl. rewrite Int.xor_commut; auto.
+- rewrite Val.xor_assoc. simpl. rewrite Int.xor_commut. TrivialExists.
+- rewrite Val.not_xor. rewrite Val.xor_assoc.
+ rewrite (Val.xor_commut (Vint Int.mone)). TrivialExists.
+- TrivialExists.
+Qed.
+
+Theorem eval_xor: binary_constructor_sound xor Val.xor.
+Proof.
+ red; intros until y; unfold xor; case (xor_match a b); intros; InvEval.
+- rewrite Val.xor_commut. apply eval_xorimm; auto.
+- apply eval_xorimm; auto.
+- TrivialExists.
+Qed.
+
+Theorem eval_divs_base:
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.divs x y = Some z ->
+ exists v, eval_expr ge sp e m le (divs_base a b) v /\ Val.lessdef z v.
+Proof.
+ intros. unfold divs_base. exists z; split. EvalOp. auto.
+Qed.
+
+Theorem eval_divu_base:
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.divu x y = Some z ->
+ exists v, eval_expr ge sp e m le (divu_base a b) v /\ Val.lessdef z v.
+Proof.
+ intros. unfold divu_base. exists z; split. EvalOp. auto.
+Qed.
+
+Theorem eval_mods_base:
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.mods x y = Some z ->
+ exists v, eval_expr ge sp e m le (mods_base a b) v /\ Val.lessdef z v.
+Proof.
+ intros. unfold mods_base. exists z; split. EvalOp. auto.
+Qed.
+
+Theorem eval_modu_base:
+ forall le a b x y z,
+ eval_expr ge sp e m le a x ->
+ eval_expr ge sp e m le b y ->
+ Val.modu x y = Some z ->
+ exists v, eval_expr ge sp e m le (modu_base a b) v /\ Val.lessdef z v.
+Proof.
+ intros. unfold modu_base. exists z; split. EvalOp. auto.
+Qed.
+
+Theorem eval_shrximm:
+ forall le a n x z,
+ eval_expr ge sp e m le a x ->
+ Val.shrx x (Vint n) = Some z ->
+ exists v, eval_expr ge sp e m le (shrximm a n) v /\ Val.lessdef z v.
+Proof.
+ intros. unfold shrximm.
+ predSpec Int.eq Int.eq_spec n Int.zero.
+ subst n. exists x; split; auto.
+ destruct x; simpl in H0; try discriminate.
+ destruct (Int.ltu Int.zero (Int.repr 31)); inv H0.
+ replace (Int.shrx i Int.zero) with i. auto.
+ unfold Int.shrx, Int.divs. rewrite Int.shl_zero.
+ change (Int.signed Int.one) with 1. rewrite Z.quot_1_r. rewrite Int.repr_signed; auto.
+ econstructor; split. EvalOp. auto.
+Qed.
+
+Theorem eval_shl: binary_constructor_sound shl Val.shl.
+Proof.
+ red; intros until y; unfold shl; case (shl_match b); intros.
+- InvEval. apply eval_shlimm; auto.
+- TrivialExists.
+Qed.
+
+Theorem eval_shr: binary_constructor_sound shr Val.shr.
+Proof.
+ red; intros until y; unfold shr; case (shr_match b); intros.
+- InvEval. apply eval_shrimm; auto.
+- TrivialExists.
+Qed.
+
+Theorem eval_shru: binary_constructor_sound shru Val.shru.
+Proof.
+ red; intros until y; unfold shru; case (shru_match b); intros.
+- InvEval. apply eval_shruimm; auto.
+- TrivialExists.
+Qed.
+
+Theorem eval_negf: unary_constructor_sound negf Val.negf.
+Proof.
+ red; intros. TrivialExists.
+Qed.
+
+Theorem eval_absf: unary_constructor_sound absf Val.absf.
+Proof.
+ red; intros. TrivialExists.
+Qed.
+
+Theorem eval_addf: binary_constructor_sound addf Val.addf.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Theorem eval_subf: binary_constructor_sound subf Val.subf.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Theorem eval_mulf: binary_constructor_sound mulf Val.mulf.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Theorem eval_negfs: unary_constructor_sound negfs Val.negfs.
+Proof.
+ red; intros. TrivialExists.
+Qed.
+
+Theorem eval_absfs: unary_constructor_sound absfs Val.absfs.
+Proof.
+ red; intros. TrivialExists.
+Qed.
+
+Theorem eval_addfs: binary_constructor_sound addfs Val.addfs.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Theorem eval_subfs: binary_constructor_sound subfs Val.subfs.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Theorem eval_mulfs: binary_constructor_sound mulfs Val.mulfs.
+Proof.
+ red; intros; TrivialExists.
+Qed.
+
+Section COMP_IMM.
+
+Variable default: comparison -> int -> condition.
+Variable intsem: comparison -> int -> int -> bool.
+Variable sem: comparison -> val -> val -> val.
+
+Hypothesis sem_int: forall c x y, sem c (Vint x) (Vint y) = Val.of_bool (intsem c x y).
+Hypothesis sem_undef: forall c v, sem c Vundef v = Vundef.
+Hypothesis sem_eq: forall x y, sem Ceq (Vint x) (Vint y) = Val.of_bool (Int.eq x y).
+Hypothesis sem_ne: forall x y, sem Cne (Vint x) (Vint y) = Val.of_bool (negb (Int.eq x y)).
+Hypothesis sem_default: forall c v n, sem c v (Vint n) = Val.of_optbool (eval_condition (default c n) (v :: nil) m).
+
+Lemma eval_compimm:
+ forall le c a n2 x,
+ eval_expr ge sp e m le a x ->
+ exists v, eval_expr ge sp e m le (compimm default intsem c a n2) v
+ /\ Val.lessdef (sem c x (Vint n2)) v.
+Proof.
+ intros until x.
+ unfold compimm; case (compimm_match c a); intros.
+- (* constant *)
+ InvEval. rewrite sem_int. TrivialExists. simpl. destruct (intsem c0 n1 n2); auto.
+- (* eq cmp *)
+ InvEval. inv H. simpl in H5. inv H5.
+ destruct (Int.eq_dec n2 Int.zero). subst n2. TrivialExists.
+ simpl. rewrite eval_negate_condition.
+ destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto.
+ rewrite sem_undef; auto.
+ destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists.
+ simpl. destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_eq; auto.
+ rewrite sem_undef; auto.
+ exists (Vint Int.zero); split. EvalOp.
+ destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; rewrite sem_eq; rewrite Int.eq_false; auto.
+ rewrite sem_undef; auto.
+- (* ne cmp *)
+ InvEval. inv H. simpl in H5. inv H5.
+ destruct (Int.eq_dec n2 Int.zero). subst n2. TrivialExists.
+ simpl. destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto.
+ rewrite sem_undef; auto.
+ destruct (Int.eq_dec n2 Int.one). subst n2. TrivialExists.
+ simpl. rewrite eval_negate_condition. destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; simpl; rewrite sem_ne; auto.
+ rewrite sem_undef; auto.
+ exists (Vint Int.one); split. EvalOp.
+ destruct (eval_condition c0 vl m); simpl.
+ unfold Vtrue, Vfalse. destruct b; rewrite sem_ne; rewrite Int.eq_false; auto.
+ rewrite sem_undef; auto.
+- (* eq andimm *)
+ destruct (Int.eq_dec n2 Int.zero). InvEval; subst.
+ econstructor; split. EvalOp. simpl; eauto.
+ destruct v1; simpl; try (rewrite sem_undef; auto). rewrite sem_eq.
+ destruct (Int.eq (Int.and i n1) Int.zero); auto.
+ TrivialExists. simpl. rewrite sem_default. auto.
+- (* ne andimm *)
+ destruct (Int.eq_dec n2 Int.zero). InvEval; subst.
+ econstructor; split. EvalOp. simpl; eauto.
+ destruct v1; simpl; try (rewrite sem_undef; auto). rewrite sem_ne.
+ destruct (Int.eq (Int.and i n1) Int.zero); auto.
+ TrivialExists. simpl. rewrite sem_default. auto.
+- (* default *)
+ TrivialExists. simpl. rewrite sem_default. auto.
+Qed.
+
+Hypothesis sem_swap:
+ forall c x y, sem (swap_comparison c) x y = sem c y x.
+
+Lemma eval_compimm_swap:
+ forall le c a n2 x,
+ eval_expr ge sp e m le a x ->
+ exists v, eval_expr ge sp e m le (compimm default intsem (swap_comparison c) a n2) v
+ /\ Val.lessdef (sem c (Vint n2) x) v.
+Proof.
+ intros. rewrite <- sem_swap. eapply eval_compimm; eauto.
+Qed.
+
+End COMP_IMM.
+
+Theorem eval_comp:
+ forall c, binary_constructor_sound (comp c) (Val.cmp c).
+Proof.
+ intros; red; intros until y. unfold comp; case (comp_match a b); intros; InvEval.
+ eapply eval_compimm_swap; eauto.
+ intros. unfold Val.cmp. rewrite Val.swap_cmp_bool; auto.
+ eapply eval_compimm; eauto.
+ TrivialExists.
+Qed.
+
+Theorem eval_compu:
+ forall c, binary_constructor_sound (compu c) (Val.cmpu (Mem.valid_pointer m) c).
+Proof.
+ intros; red; intros until y. unfold compu; case (compu_match a b); intros; InvEval.
+ eapply eval_compimm_swap; eauto.
+ intros. unfold Val.cmpu. rewrite Val.swap_cmpu_bool; auto.
+ eapply eval_compimm; eauto.
+ TrivialExists.
+Qed.
+
+Theorem eval_compf:
+ forall c, binary_constructor_sound (compf c) (Val.cmpf c).
+Proof.
+ intros; red; intros. unfold compf. TrivialExists.
+Qed.
+
+Theorem eval_compfs:
+ forall c, binary_constructor_sound (compfs c) (Val.cmpfs c).
+Proof.
+ intros; red; intros. unfold compfs. TrivialExists.
+Qed.
+
+Theorem eval_cast8signed: unary_constructor_sound cast8signed (Val.sign_ext 8).
+Proof.
+ red; intros until x. unfold cast8signed. case (cast8signed_match a); intros; InvEval.
+ TrivialExists.
+ TrivialExists.
+Qed.
+
+Theorem eval_cast8unsigned: unary_constructor_sound cast8unsigned (Val.zero_ext 8).
+Proof.
+ red; intros until x. unfold cast8unsigned. destruct (cast8unsigned_match a); intros; InvEval.
+ TrivialExists.
+ subst. rewrite Val.zero_ext_and. rewrite Val.and_assoc.
+ rewrite Int.and_commut. apply eval_andimm; auto. omega.
+ TrivialExists.
+Qed.
+
+Theorem eval_cast16signed: unary_constructor_sound cast16signed (Val.sign_ext 16).
+Proof.
+ red; intros until x. unfold cast16signed. case (cast16signed_match a); intros; InvEval.
+ TrivialExists.
+ TrivialExists.
+Qed.
+
+Theorem eval_cast16unsigned: unary_constructor_sound cast16unsigned (Val.zero_ext 16).
+Proof.
+ red; intros until x. unfold cast16unsigned. destruct (cast16unsigned_match a); intros; InvEval.
+ TrivialExists.
+ subst. rewrite Val.zero_ext_and. rewrite Val.and_assoc.
+ rewrite Int.and_commut. apply eval_andimm; auto. omega.
+ TrivialExists.
+Qed.
+
+Theorem eval_select:
+ forall le ty cond al vl a1 v1 a2 v2 a b,
+ select ty cond al a1 a2 = Some a ->
+ eval_exprlist ge sp e m le al vl ->
+ eval_expr ge sp e m le a1 v1 ->
+ eval_expr ge sp e m le a2 v2 ->
+ eval_condition cond vl m = Some b ->
+ exists v,
+ eval_expr ge sp e m le a v
+ /\ Val.lessdef (Val.select (Some b) v1 v2 ty) v.
+Proof.
+ unfold select; intros.
+ destruct (select_supported ty); try discriminate.
+ destruct (select_swap cond); inv H.
+- exists (Val.select (Some (negb b)) v2 v1 ty); split.
+ apply eval_Eop with (v2 :: v1 :: vl).
+ constructor; auto. constructor; auto.
+ simpl. rewrite eval_negate_condition, H3; auto.
+ destruct b; auto.
+- exists (Val.select (Some b) v1 v2 ty); split.
+ apply eval_Eop with (v1 :: v2 :: vl).
+ constructor; auto. constructor; auto.
+ simpl. rewrite H3; auto.
+ auto.
+Qed.
+
+Theorem eval_singleoffloat: unary_constructor_sound singleoffloat Val.singleoffloat.
+Proof.
+ red; intros. unfold singleoffloat. TrivialExists.
+Qed.
+
+Theorem eval_floatofsingle: unary_constructor_sound floatofsingle Val.floatofsingle.
+Proof.
+ red; intros. unfold floatofsingle. TrivialExists.
+Qed.
+
+Theorem eval_intoffloat:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.intoffloat x = Some y ->
+ exists v, eval_expr ge sp e m le (intoffloat a) v /\ Val.lessdef y v.
+Proof.
+ intros; unfold intoffloat. TrivialExists.
+Qed.
+
+Theorem eval_floatofint:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.floatofint x = Some y ->
+ exists v, eval_expr ge sp e m le (floatofint a) v /\ Val.lessdef y v.
+Proof.
+ intros until y; unfold floatofint. case (floatofint_match a); intros; InvEval.
+ TrivialExists.
+ TrivialExists.
+Qed.
+
+Theorem eval_intuoffloat:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.intuoffloat x = Some y ->
+ exists v, eval_expr ge sp e m le (intuoffloat a) v /\ Val.lessdef y v.
+Proof.
+ intros. destruct x; simpl in H0; try discriminate.
+ destruct (Float.to_intu f) as [n|] eqn:?; simpl in H0; inv H0.
+ exists (Vint n); split; auto. unfold intuoffloat.
+ destruct Archi.splitlong.
+- set (im := Int.repr Int.half_modulus).
+ set (fm := Float.of_intu im).
+ assert (eval_expr ge sp e m (Vfloat fm :: Vfloat f :: le) (Eletvar (S O)) (Vfloat f)).
+ constructor. auto.
+ assert (eval_expr ge sp e m (Vfloat fm :: Vfloat f :: le) (Eletvar O) (Vfloat fm)).
+ constructor. auto.
+ econstructor. eauto.
+ econstructor. instantiate (1 := Vfloat fm). EvalOp.
+ eapply eval_Econdition with (va := Float.cmp Clt f fm).
+ eauto with evalexpr.
+ destruct (Float.cmp Clt f fm) eqn:?.
+ exploit Float.to_intu_to_int_1; eauto. intro EQ.
+ EvalOp. simpl. rewrite EQ; auto.
+ exploit Float.to_intu_to_int_2; eauto.
+ change Float.ox8000_0000 with im. fold fm. intro EQ.
+ set (t2 := subf (Eletvar (S O)) (Eletvar O)).
+ set (t3 := intoffloat t2).
+ exploit (eval_subf (Vfloat fm :: Vfloat f :: le) (Eletvar (S O)) (Vfloat f) (Eletvar O)); eauto.
+ fold t2. intros [v2 [A2 B2]]. simpl in B2. inv B2.
+ exploit (eval_addimm Float.ox8000_0000 (Vfloat fm :: Vfloat f :: le) t3).
+ unfold t3. unfold intoffloat. EvalOp. simpl. rewrite EQ. simpl. eauto.
+ intros [v4 [A4 B4]]. simpl in B4. inv B4.
+ rewrite Int.sub_add_opp in A4. rewrite Int.add_assoc in A4.
+ rewrite (Int.add_commut (Int.neg im)) in A4.
+ rewrite Int.add_neg_zero in A4.
+ rewrite Int.add_zero in A4.
+ auto.
+- apply Float.to_intu_to_long in Heqo. repeat econstructor. eauto.
+ simpl. rewrite Heqo; reflexivity.
+ simpl. unfold Int64.loword. rewrite Int64.unsigned_repr, Int.repr_unsigned; auto.
+ assert (Int.modulus < Int64.max_unsigned) by reflexivity.
+ generalize (Int.unsigned_range n); omega.
+Qed.
+
+Theorem eval_floatofintu:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.floatofintu x = Some y ->
+ exists v, eval_expr ge sp e m le (floatofintu a) v /\ Val.lessdef y v.
+Proof.
+ intros until y; unfold floatofintu. case (floatofintu_match a); intros.
+- InvEval. TrivialExists.
+- destruct x; simpl in H0; try discriminate. inv H0.
+ exists (Vfloat (Float.of_intu i)); split; auto.
+ destruct Archi.splitlong.
++ econstructor. eauto.
+ set (fm := Float.of_intu Float.ox8000_0000).
+ assert (eval_expr ge sp e m (Vint i :: le) (Eletvar O) (Vint i)).
+ constructor. auto.
+ eapply eval_Econdition with (va := Int.ltu i Float.ox8000_0000).
+ eauto with evalexpr.
+ destruct (Int.ltu i Float.ox8000_0000) eqn:?.
+ rewrite Float.of_intu_of_int_1; auto.
+ unfold floatofint. EvalOp.
+ exploit (eval_addimm (Int.neg Float.ox8000_0000) (Vint i :: le) (Eletvar 0)); eauto.
+ simpl. intros [v [A B]]. inv B.
+ unfold addf. EvalOp.
+ constructor. unfold floatofint. EvalOp. simpl; eauto.
+ constructor. EvalOp. simpl; eauto. constructor. simpl; eauto.
+ fold fm. rewrite Float.of_intu_of_int_2; auto.
+ rewrite Int.sub_add_opp. auto.
++ rewrite Float.of_intu_of_long. repeat econstructor. eauto. reflexivity.
+Qed.
+
+Theorem eval_intofsingle:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.intofsingle x = Some y ->
+ exists v, eval_expr ge sp e m le (intofsingle a) v /\ Val.lessdef y v.
+Proof.
+ intros; unfold intofsingle. TrivialExists.
+Qed.
+
+Theorem eval_singleofint:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.singleofint x = Some y ->
+ exists v, eval_expr ge sp e m le (singleofint a) v /\ Val.lessdef y v.
+Proof.
+ intros until y; unfold singleofint. case (singleofint_match a); intros; InvEval.
+ TrivialExists.
+ TrivialExists.
+Qed.
+
+Theorem eval_intuofsingle:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.intuofsingle x = Some y ->
+ exists v, eval_expr ge sp e m le (intuofsingle a) v /\ Val.lessdef y v.
+Proof.
+ intros. destruct x; simpl in H0; try discriminate.
+ destruct (Float32.to_intu f) as [n|] eqn:?; simpl in H0; inv H0.
+ unfold intuofsingle. apply eval_intuoffloat with (Vfloat (Float.of_single f)).
+ unfold floatofsingle. EvalOp.
+ simpl. change (Float.of_single f) with (Float32.to_double f).
+ erewrite Float32.to_intu_double; eauto. auto.
+Qed.
+
+Theorem eval_singleofintu:
+ forall le a x y,
+ eval_expr ge sp e m le a x ->
+ Val.singleofintu x = Some y ->
+ exists v, eval_expr ge sp e m le (singleofintu a) v /\ Val.lessdef y v.
+Proof.
+ intros until y; unfold singleofintu. case (singleofintu_match a); intros.
+ InvEval. TrivialExists.
+ destruct x; simpl in H0; try discriminate. inv H0.
+ exploit eval_floatofintu. eauto. simpl. reflexivity.
+ intros (v & A & B).
+ exists (Val.singleoffloat v); split.
+ unfold singleoffloat; EvalOp.
+ inv B; simpl. rewrite Float32.of_intu_double. auto.
+Qed.
+
+Theorem eval_addressing:
+ forall le chunk a v b ofs,
+ eval_expr ge sp e m le a v ->
+ v = Vptr b ofs ->
+ match addressing chunk a with (mode, args) =>
+ exists vl,
+ eval_exprlist ge sp e m le args vl /\
+ eval_addressing ge sp mode vl = Some v
+ end.
+Proof.
+ intros until ofs.
+ assert (A: v = Vptr b ofs -> eval_addressing ge sp (Aindexed 0) (v :: nil) = Some v).
+ { intros. subst v. unfold eval_addressing.
+ destruct Archi.ptr64 eqn:SF; simpl; rewrite SF; rewrite Ptrofs.add_zero; auto. }
+ assert (D: forall a,
+ eval_expr ge sp e m le a v ->
+ v = Vptr b ofs ->
+ exists vl, eval_exprlist ge sp e m le (a ::: Enil) vl
+ /\ eval_addressing ge sp (Aindexed 0) vl = Some v).
+ { intros. exists (v :: nil); split. constructor; auto. constructor. auto. }
+ unfold addressing; case (addressing_match a); intros.
+- destruct (negb Archi.ptr64 && addressing_valid addr) eqn:E.
++ inv H. InvBooleans. apply negb_true_iff in H. unfold eval_addressing; rewrite H.
+ exists vl; auto.
++ apply D; auto.
+- destruct (Archi.ptr64 && addressing_valid addr) eqn:E.
++ inv H. InvBooleans. unfold eval_addressing; rewrite H.
+ exists vl; auto.
++ apply D; auto.
+- apply D; auto.
+Qed.
+
+Theorem eval_builtin_arg_addr:
+ forall addr al vl v,
+ eval_exprlist ge sp e m nil al vl ->
+ Op.eval_addressing ge sp addr vl = Some v ->
+ CminorSel.eval_builtin_arg ge sp e m (builtin_arg_addr addr al) v.
+Proof.
+ intros until v. unfold builtin_arg_addr; case (builtin_arg_addr_match addr al); intros; InvEval.
+- set (v2 := if Archi.ptr64 then Vlong (Int64.repr n) else Vint (Int.repr n)).
+ assert (EQ: v = if Archi.ptr64 then Val.addl v1 v2 else Val.add v1 v2).
+ { unfold Op.eval_addressing in H0; unfold v2; destruct Archi.ptr64; simpl in H0; inv H0; auto. }
+ rewrite EQ. constructor. constructor; auto. unfold v2; destruct Archi.ptr64; constructor.
+- rewrite eval_addressing_Aglobal in H0. inv H0. constructor.
+- rewrite eval_addressing_Ainstack in H0. inv H0. constructor.
+- constructor. econstructor. eauto. rewrite eval_Olea_ptr. auto.
+Qed.
+
+Theorem eval_builtin_arg:
+ forall a v,
+ eval_expr ge sp e m nil a v ->
+ CminorSel.eval_builtin_arg ge sp e m (builtin_arg a) v.
+Proof.
+ intros until v. unfold builtin_arg; case (builtin_arg_match a); intros; InvEval.
+- constructor.
+- constructor.
+- destruct Archi.ptr64 eqn:SF.
++ constructor; auto.
++ inv H. eapply eval_builtin_arg_addr. eauto. unfold Op.eval_addressing; rewrite SF; assumption.
+- destruct Archi.ptr64 eqn:SF.
++ inv H. eapply eval_builtin_arg_addr. eauto. unfold Op.eval_addressing; rewrite SF; assumption.
++ constructor; auto.
+- simpl in H5. inv H5. constructor.
+- constructor; auto.
+- inv H. InvEval. rewrite eval_addressing_Aglobal in H6. inv H6. constructor; auto.
+- inv H. InvEval. rewrite eval_addressing_Ainstack in H6. inv H6. constructor; auto.
+- constructor; auto.
+Qed.
+
+(** Platform-specific known builtins *)
+
+Theorem eval_platform_builtin:
+ forall bf al a vl v le,
+ platform_builtin bf al = Some a ->
+ eval_exprlist ge sp e m le al vl ->
+ platform_builtin_sem bf vl = Some v ->
+ exists v', eval_expr ge sp e m le a v' /\ Val.lessdef v v'.
+Proof.
+ intros. discriminate.
+Qed.
+
+End CMCONSTR.