aboutsummaryrefslogtreecommitdiffstats
path: root/arm/TargetPrinter.ml
blob: 505c32656fcd4e2131dd3506b46b593ad2436cb3 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the INRIA Non-Commercial License Agreement.     *)
(*                                                                     *)
(* *********************************************************************)

(* Printing ARM assembly code in asm syntax *)

open Printf
open Datatypes
open Camlcoq
open Sections
open AST
open Memdata
open Asm
open PrintAsmaux

(* Type for the ABI versions *)
type float_abi_type =
  | Hard
  | Soft

(* Module type for the options *)
module type PRINTER_OPTIONS =
    sig
      val float_abi: float_abi_type
      val vfpv3: bool
      val hardware_idiv: bool
     end

(* Module containing the printing functions *)

module Target (Opt: PRINTER_OPTIONS) : TARGET =
  struct
(* Code generation options. *)
    
    let literals_in_code = ref true     (* to be turned into a proper option *)
    
(* Basic printing functions *)
        
    let print_label oc lbl = elf_label oc (transl_label lbl)
        
    let comment = "@"

    let symbol = elf_symbol

    let symbol_offset oc (symb, ofs) =
      symbol oc symb;
      let ofs = camlint_of_coqint ofs in
      if ofs <> 0l then fprintf oc " + %ld" ofs

    let int_reg_name = function
      | IR0 -> "r0" | IR1 -> "r1" | IR2 -> "r2" | IR3 -> "r3"
      | IR4 -> "r4" | IR5 -> "r5" | IR6 -> "r6" | IR7 -> "r7"
      | IR8 -> "r8" | IR9 -> "r9" | IR10 -> "r10" | IR11 -> "r11"
      | IR12 -> "r12" | IR13 -> "sp" | IR14 -> "lr"
            
    let float_reg_name = function
      | FR0 -> "d0"  | FR1 -> "d1"  | FR2 -> "d2"  | FR3 -> "d3"
      | FR4 -> "d4"  | FR5 -> "d5"  | FR6 -> "d6"  | FR7 -> "d7"
      | FR8 -> "d8"  | FR9 -> "d9"  | FR10 -> "d10"  | FR11 -> "d11"
      | FR12 -> "d12"  | FR13 -> "d13"  | FR14 -> "d14"  | FR15 -> "d15"
            
    let single_float_reg_index = function
      | FR0 -> 0  | FR1 -> 2  | FR2 -> 4  | FR3 -> 6
      | FR4 -> 8  | FR5 -> 10  | FR6 -> 12  | FR7 -> 14
      | FR8 -> 16  | FR9 -> 18  | FR10 -> 20  | FR11 -> 22
      | FR12 -> 24  | FR13 -> 26  | FR14 -> 28  | FR15 -> 30
            
    let single_float_reg_name = function
      | FR0 -> "s0"  | FR1 -> "s2"  | FR2 -> "s4"  | FR3 -> "s6"
      | FR4 -> "s8"  | FR5 -> "s10"  | FR6 -> "s12"  | FR7 -> "s14"
      | FR8 -> "s16"  | FR9 -> "s18"  | FR10 -> "s20"  | FR11 -> "s22"
      | FR12 -> "s24"  | FR13 -> "s26"  | FR14 -> "s28"  | FR15 -> "s30"
            
    let ireg oc r = output_string oc (int_reg_name r)
    let freg oc r = output_string oc (float_reg_name r)
    let freg_single oc r = output_string oc (single_float_reg_name r)
        
    let preg oc = function
      | IR r -> ireg oc r
      | FR r -> freg oc r
      | _    -> assert false
            
    let condition_name = function
      | TCeq -> "eq"
      | TCne -> "ne"
      | TChs -> "hs"
      | TClo -> "lo"
      | TCmi -> "mi"
      | TCpl -> "pl"
      | TChi -> "hi"
      | TCls -> "ls"
      | TCge -> "ge"
      | TClt -> "lt"
      | TCgt -> "gt"
      | TCle -> "le"
            
    let neg_condition_name = function
      | TCeq -> "ne"
      | TCne -> "eq"
      | TChs -> "lo"
      | TClo -> "hs"
      | TCmi -> "pl"
      | TCpl -> "mi"
      | TChi -> "ls"
      | TCls -> "hi"
      | TCge -> "lt"
      | TClt -> "ge"
      | TCgt -> "le"
      | TCle -> "gt"
            
(* In Thumb2 mode, some arithmetic instructions have shorter encodings
   if they carry the "S" flag (update condition flags):
       add   (but not sp + imm)
       and
       asr
       bic
       eor
       lsl
       lsr
       mov
       mvn
       orr
       rsb
       sub    (but not sp - imm)
   The proof of Asmgen shows that CompCert-generated code behaves the
   same whether flags are updated or not by those instructions.  The
   following printing function adds a "S" suffix if we are in Thumb2
   mode. *)

    let thumbS oc =
      if !Clflags.option_mthumb then output_char oc 's'

(* Names of sections *)

    let name_of_section = function
      | Section_text -> ".text"
      | Section_data i | Section_small_data i ->
          if i then ".data" else "COMM"
      | Section_const i | Section_small_const i ->
          if i then ".section	.rodata" else "COMM"
      | Section_string -> ".section	.rodata"
      | Section_literal -> ".text"
      | Section_jumptable -> ".text"
      | Section_user(s, wr, ex) ->
          sprintf ".section	\"%s\",\"a%s%s\",%%progbits"
            s (if wr then "w" else "") (if ex then "x" else "")
      | Section_debug_info
      | Section_debug_abbrev -> "" (* Dummy value *)
            
    let section oc sec =
      fprintf oc "	%s\n" (name_of_section sec)
        
(* Record current code position and latest position at which to
   emit float and symbol constants. *)
        
    let currpos = ref 0
    let size_constants = ref 0
    let max_pos_constants = ref max_int
        
    let distance_to_emit_constants () =
      if !literals_in_code
      then !max_pos_constants - (!currpos + !size_constants)
      else max_int
          
(* Associate labels to floating-point constants and to symbols *)
          
    let float_labels = (Hashtbl.create 39 : (int64, int) Hashtbl.t)
    let float32_labels = (Hashtbl.create 39 : (int32, int) Hashtbl.t)
        
    let label_float bf =
      try
        Hashtbl.find float_labels bf
      with Not_found ->
        let lbl' = new_label() in
        Hashtbl.add float_labels bf lbl';
        size_constants := !size_constants + 8;
        max_pos_constants := min !max_pos_constants (!currpos + 1024);
        lbl'
          
    let label_float32 bf =
      try
        Hashtbl.find float32_labels bf
      with Not_found ->
        let lbl' = new_label() in
        Hashtbl.add float32_labels bf lbl';
        size_constants := !size_constants + 4;
        max_pos_constants := min !max_pos_constants (!currpos + 1024);
        lbl'
          
    let symbol_labels =
      (Hashtbl.create 39 : (ident * Integers.Int.int, int) Hashtbl.t)
        
    let label_symbol id ofs =
      try
        Hashtbl.find symbol_labels (id, ofs)
      with Not_found ->
        let lbl' = new_label() in
        Hashtbl.add symbol_labels (id, ofs) lbl';
        size_constants := !size_constants + 4;
        max_pos_constants := min !max_pos_constants (!currpos + 4096);
        lbl'
          
    let reset_constants () =
      Hashtbl.clear float_labels;
      Hashtbl.clear float32_labels;
      Hashtbl.clear symbol_labels;
      size_constants := 0;
      max_pos_constants := max_int
          
    let emit_constants oc =
      fprintf oc "	.balign	4\n";
      Hashtbl.iter
        (fun bf lbl ->
          (* Little-endian floats *)
          let bfhi = Int64.shift_right_logical bf 32
          and bflo = Int64.logand bf 0xFFFF_FFFFL in
          fprintf oc ".L%d:	.word	0x%Lx, 0x%Lx\n" lbl bflo bfhi)
        float_labels;
      Hashtbl.iter
        (fun bf lbl ->
          fprintf oc ".L%d:	.word	0x%lx\n" lbl bf)
        float32_labels;
      Hashtbl.iter
        (fun (id, ofs) lbl ->
          fprintf oc ".L%d:	.word	%a\n"
            lbl symbol_offset (id, ofs))
        symbol_labels;
      reset_constants ()
        
(* Generate code to load the address of id + ofs in register r *)
        
    let loadsymbol oc r id ofs =
      if !Clflags.option_mthumb then begin
        fprintf oc "	movw	%a, #:lower16:%a\n"
          ireg r symbol_offset (id, ofs);
        fprintf oc "	movt	%a, #:upper16:%a\n"
          ireg r symbol_offset (id, ofs); 2
      end else begin
        let lbl = label_symbol id ofs in
        fprintf oc "	ldr	%a, .L%d @ %a\n" 
          ireg r lbl symbol_offset (id, ofs); 1
      end
          
(* Emit instruction sequences that set or offset a register by a constant. *)
(* No S suffix because they are applied to SP most of the time. *)
          
    let movimm oc dst n =
      match Asmgen.decompose_int n with
      | [] -> assert false
      | hd::tl as l ->
          fprintf oc "	mov	%s, #%a\n" dst coqint hd;
          List.iter
            (fun n -> fprintf oc "	orr	%s, %s, #%a\n" dst dst coqint n)
            tl;
          List.length l
            
    let addimm oc dst src n =
      match Asmgen.decompose_int n with
      | [] -> assert false
      | hd::tl as l ->
          fprintf oc "	add	%s, %s, #%a\n" dst src coqint hd;
          List.iter
            (fun n -> fprintf oc "	add	%s, %s, #%a\n" dst dst coqint n)
            tl;
          List.length l
            
    let subimm oc dst src n =
      match Asmgen.decompose_int n with
      | [] -> assert false
      | hd::tl as l ->
          fprintf oc "	sub	%s, %s, #%a\n" dst src coqint hd;
          List.iter
            (fun n -> fprintf oc "	sub	%s, %s, #%a\n" dst dst coqint n)
            tl;
          List.length l
            
(* Recognition of float constants appropriate for VMOV.
   a normalized binary floating point encoding with 1 sign bit, 4
   bits of fraction and a 3-bit exponent *)
   
    let is_immediate_float64 bits =
      let exp = (Int64.(to_int (shift_right_logical bits 52)) land 0x7FF) - 1023 in
      let mant = Int64.logand bits 0xF_FFFF_FFFF_FFFFL in
      exp >= -3 && exp <= 4 && Int64.logand mant 0xF_0000_0000_0000L = mant
        
   let is_immediate_float32 bits =
     let exp = (Int32.(to_int (shift_right_logical bits 23)) land 0xFF) - 127 in
     let mant = Int32.logand bits 0x7F_FFFFl in
     exp >= -3 && exp <= 4 && Int32.logand mant 0x78_0000l = mant
       

(* Emit .file / .loc debugging directives *)
       
    let print_file_line oc file line =
      print_file_line oc comment file line
        
    let print_location oc loc =
      if loc <> Cutil.no_loc then print_file_line oc (fst loc) (snd loc)
          
(* Built-ins.  They come in two flavors: 
   - annotation statements: take their arguments in registers or stack
     locations; generate no code;
   - inlined by the compiler: take their arguments in arbitrary
     registers.
*)

(* Handling of annotations *)

    let print_annot_stmt oc txt targs args =
      if Str.string_match re_file_line txt 0 then begin
        print_file_line oc (Str.matched_group 1 txt)
          (int_of_string (Str.matched_group 2 txt))
      end else begin
        fprintf oc "%s annotation: " comment;
        print_annot_stmt preg "sp" oc txt targs args
      end
          
    let print_annot_val oc txt args res =
      fprintf oc "%s annotation: " comment;
      print_annot_val preg oc txt args;
      match args, res with
      | [IR src], [IR dst] ->
          if dst = src then 0 else (fprintf oc "	mov	%a, %a\n" ireg dst ireg src; 1)
      | [FR src], [FR dst] ->
          if dst = src then 0 else (fprintf oc "	vmov.f64	%a, %a\n" freg dst freg src; 1)
      | _, _ -> assert false
            
(* Handling of memcpy *)

(* The ARM has strict alignment constraints for 2 and 4 byte accesses.
   8-byte accesses must be 4-aligned. *)
            
    let print_builtin_memcpy_small oc sz al src dst =
      let rec copy ofs sz ninstr =
        if sz >= 8 && al >= 4 && !Clflags.option_ffpu then begin
          fprintf oc "	vldr	%a, [%a, #%d]\n" freg FR7 ireg src ofs;
          fprintf oc "	vstr	%a, [%a, #%d]\n" freg FR7 ireg dst ofs;
          copy (ofs + 8) (sz - 8) (ninstr + 2)
        end else if sz >= 4 && al >= 4 then begin
          fprintf oc "	ldr	%a, [%a, #%d]\n" ireg IR14 ireg src ofs;
          fprintf oc "	str	%a, [%a, #%d]\n" ireg IR14 ireg dst ofs;
          copy (ofs + 4) (sz - 4) (ninstr + 2)
        end else if sz >= 2 && al >= 2 then begin
          fprintf oc "	ldrh	%a, [%a, #%d]\n" ireg IR14 ireg src ofs;
          fprintf oc "	strh	%a, [%a, #%d]\n" ireg IR14 ireg dst ofs;
          copy (ofs + 2) (sz - 2) (ninstr + 2)
        end else if sz >= 1 then begin
          fprintf oc "	ldrb	%a, [%a, #%d]\n" ireg IR14 ireg src ofs;
          fprintf oc "	strb	%a, [%a, #%d]\n" ireg IR14 ireg dst ofs;
          copy (ofs + 1) (sz - 1) (ninstr + 2)
        end else
          ninstr in
      copy 0 sz 0

    let print_builtin_memcpy_big oc sz al src dst =
      assert (sz >= al);
      assert (sz mod al = 0);
      assert (src = IR2);
      assert (dst = IR3);
      let (load, store, chunksize) =
        if al >= 4 then ("ldr", "str", 4)
        else if al = 2 then ("ldrh", "strh", 2)
        else ("ldrb", "strb", 1) in
      let n = movimm oc "r14" (coqint_of_camlint (Int32.of_int (sz / chunksize))) in
      let lbl = new_label() in
      fprintf oc ".L%d:	%s	%a, [%a], #%d\n" lbl load ireg IR12 ireg src chunksize;
      fprintf oc "	subs	%a, %a, #1\n" ireg IR14 ireg IR14;
      fprintf oc "	%s	%a, [%a], #%d\n" store ireg IR12 ireg dst chunksize;
      fprintf oc "	bne	.L%d\n" lbl;
      n + 4

    let print_builtin_memcpy oc sz al args =
      let (dst, src) =
        match args with [IR d; IR s] -> (d, s) | _ -> assert false in
      fprintf oc "%s begin builtin __builtin_memcpy_aligned, size = %d, alignment = %d\n"
        comment sz al;
      let n =
        if sz <= 32
        then print_builtin_memcpy_small oc sz al src dst
        else print_builtin_memcpy_big oc sz al src dst in
      fprintf oc "%s end builtin __builtin_memcpy_aligned\n" comment; n

(* Handling of volatile reads and writes *)

    let print_builtin_vload_common oc chunk args res =
      match chunk, args, res with
      | Mint8unsigned, [IR addr], [IR res] ->
          fprintf oc "	ldrb	%a, [%a, #0]\n" ireg res ireg addr; 1
      | Mint8signed, [IR addr], [IR res] ->
          fprintf oc "	ldrsb	%a, [%a, #0]\n" ireg res ireg addr; 1
      | Mint16unsigned, [IR addr], [IR res] ->
          fprintf oc "	ldrh	%a, [%a, #0]\n" ireg res ireg addr; 1
      | Mint16signed, [IR addr], [IR res] ->
          fprintf oc "	ldrsh	%a, [%a, #0]\n" ireg res ireg addr; 1
      | Mint32, [IR addr], [IR res] ->
          fprintf oc "	ldr	%a, [%a, #0]\n" ireg res ireg addr; 1
      | Mint64, [IR addr], [IR res1; IR res2] ->
          if addr <> res2 then begin
            fprintf oc "	ldr	%a, [%a, #0]\n" ireg res2 ireg addr;
            fprintf oc "	ldr	%a, [%a, #4]\n" ireg res1 ireg addr
          end else begin
            fprintf oc "	ldr	%a, [%a, #4]\n" ireg res1 ireg addr;
            fprintf oc "	ldr	%a, [%a, #0]\n" ireg res2 ireg addr
          end; 2
      | Mfloat32, [IR addr], [FR res] ->
          fprintf oc "	vldr	%a, [%a, #0]\n" freg_single res ireg addr; 1
      | Mfloat64, [IR addr], [FR res] ->
          fprintf oc "	vldr	%a, [%a, #0]\n" freg res ireg addr; 1
      | _ ->
          assert false

    let print_builtin_vload oc chunk args res =
      fprintf oc "%s begin builtin __builtin_volatile_read\n" comment;
      let n = print_builtin_vload_common oc chunk args res in
      fprintf oc "%s end builtin __builtin_volatile_read\n" comment; n

    let print_builtin_vload_global oc chunk id ofs args res =
      fprintf oc "%s begin builtin __builtin_volatile_read\n" comment;
      let n1 = loadsymbol oc IR14 id ofs in
      let n2 = print_builtin_vload_common oc chunk [IR IR14] res in
      fprintf oc "%s end builtin __builtin_volatile_read\n" comment; n1 + n2

    let print_builtin_vstore_common oc chunk args =
      match chunk, args with
      | (Mint8signed | Mint8unsigned), [IR  addr; IR src] ->
          fprintf oc "	strb	%a, [%a, #0]\n" ireg src ireg addr; 1
      | (Mint16signed | Mint16unsigned), [IR  addr; IR src] ->
          fprintf oc "	strh	%a, [%a, #0]\n" ireg src ireg addr; 1
      | Mint32, [IR  addr; IR src] ->
          fprintf oc "	str	%a, [%a, #0]\n" ireg src ireg addr; 1
      | Mint64, [IR  addr; IR src1; IR src2] ->
          fprintf oc "	str	%a, [%a, #0]\n" ireg src2 ireg addr;
          fprintf oc "	str	%a, [%a, #4]\n" ireg src1 ireg addr; 2
      | Mfloat32, [IR  addr; FR src] ->
          fprintf oc "	vstr	%a, [%a, #0]\n" freg_single src ireg addr; 1
      | Mfloat64, [IR  addr; FR src] ->
          fprintf oc "	vstr	%a, [%a, #0]\n" freg src ireg addr; 1
      | _ ->
          assert false

    let print_builtin_vstore oc chunk args =
      fprintf oc "%s begin builtin __builtin_volatile_write\n" comment;
      let n = print_builtin_vstore_common oc chunk args in
      fprintf oc "%s end builtin __builtin_volatile_write\n" comment; n

    let print_builtin_vstore_global oc chunk id ofs args =
      fprintf oc "%s begin builtin __builtin_volatile_write\n" comment;
      let n1 = loadsymbol oc IR14 id ofs in
      let n2 = print_builtin_vstore_common oc chunk (IR IR14 :: args) in
      fprintf oc "%s end builtin __builtin_volatile_write\n" comment; n1 + n2

(* Handling of varargs *)

    let align n a = (n + a - 1) land (-a)

    let rec next_arg_location ir ofs = function
      | [] ->
          Int32.of_int (ir * 4 + ofs)
      | (Tint | Tsingle | Tany32) :: l ->
          if ir < 4
          then next_arg_location (ir + 1) ofs l
          else next_arg_location ir (ofs + 4) l
      | (Tfloat | Tlong | Tany64) :: l ->
          if ir < 3
          then next_arg_location (align ir 2 + 2) ofs l
          else next_arg_location ir (align ofs 8 + 8) l

    let print_builtin_va_start oc r =
      if not (!current_function_sig).sig_cc.cc_vararg then
        invalid_arg "Fatal error: va_start used in non-vararg function";
      let ofs =
        Int32.add
          (next_arg_location 0 0 (!current_function_sig).sig_args)
          !current_function_stacksize in
      let n = addimm oc "r14" "sp" (coqint_of_camlint ofs) in
      fprintf oc "	str	r14, [%a, #0]\n" ireg r;
      n + 1

(* Auxiliary for 64-bit integer arithmetic built-ins.  They expand to
   two instructions, one computing the low 32 bits of the result,
   followed by another computing the high 32 bits.  In cases where
   the first instruction would overwrite arguments to the second
   instruction, we must go through IR14 to hold the low 32 bits of the result.
 *)

    let print_int64_arith oc conflict rl fn =
      if conflict then begin
        let n = fn IR14 in
        fprintf oc "	mov%t	%a, %a\n" thumbS ireg rl ireg IR14;
        n + 1
      end else
        fn rl

(* Handling of compiler-inlined builtins *)

    let print_builtin_inline oc name args res =
      fprintf oc "%s begin %s\n" comment name;
      let n = match name, args, res with
        (* Integer arithmetic *)
      | ("__builtin_bswap" | "__builtin_bswap32"), [IR a1], [IR res] ->
          fprintf oc "	rev	%a, %a\n" ireg res ireg a1; 1
      | "__builtin_bswap16", [IR a1], [IR res] ->
          fprintf oc "	rev16	%a, %a\n" ireg res ireg a1; 1
      | "__builtin_clz", [IR a1], [IR res] ->
          fprintf oc "	clz	%a, %a\n" ireg res ireg a1; 1
            (* Float arithmetic *)
      | "__builtin_fabs", [FR a1], [FR res] ->
          fprintf oc "	vabs.f64 %a, %a\n" freg res freg a1; 1
      | "__builtin_fsqrt", [FR a1], [FR res] ->
          fprintf oc "	vsqrt.f64 %a, %a\n" freg res freg a1; 1
            (* 64-bit integer arithmetic *)
      | "__builtin_negl", [IR ah; IR al], [IR rh; IR rl] ->
          print_int64_arith oc (rl = ah) rl (fun rl ->
            fprintf oc "	rsbs	%a, %a, #0\n" ireg rl ireg al;
            (* No "rsc" instruction in Thumb2.  Emulate based on
               rsc a, b, #0 == a <- AddWithCarry(~b, 0, carry)
               == mvn a, b; adc a, a, #0 *)
            if !Clflags.option_mthumb then begin
              fprintf oc "	mvn	%a, %a\n" ireg rh ireg ah;
              fprintf oc "	adc	%a, %a, #0\n" ireg rh ireg rh; 3
            end else begin
              fprintf oc "	rsc	%a, %a, #0\n" ireg rh ireg ah; 2
            end)
      | "__builtin_addl", [IR ah; IR al; IR bh; IR bl], [IR rh; IR rl] ->
          print_int64_arith oc (rl = ah || rl = bh) rl (fun rl ->
            fprintf oc "	adds	%a, %a, %a\n" ireg rl ireg al ireg bl;
            fprintf oc "	adc	%a, %a, %a\n" ireg rh ireg ah ireg bh; 2)
      | "__builtin_subl", [IR ah; IR al; IR bh; IR bl], [IR rh; IR rl] ->
          print_int64_arith oc (rl = ah || rl = bh) rl (fun rl ->
            fprintf oc "	subs	%a, %a, %a\n" ireg rl ireg al ireg bl;
            fprintf oc "	sbc	%a, %a, %a\n" ireg rh ireg ah ireg bh; 2)
      | "__builtin_mull", [IR a; IR b], [IR rh; IR rl] ->
          fprintf oc "	umull   %a, %a, %a, %a\n" ireg rl ireg rh ireg a ireg b; 1
            (* Memory accesses *)
      | "__builtin_read16_reversed", [IR a1], [IR res] ->
          fprintf oc "	ldrh	%a, [%a, #0]\n" ireg res ireg a1;
          fprintf oc "	rev16	%a, %a\n" ireg res ireg res; 2
      | "__builtin_read32_reversed", [IR a1], [IR res] ->
          fprintf oc "	ldr	%a, [%a, #0]\n" ireg res ireg a1;
          fprintf oc "	rev	%a, %a\n" ireg res ireg res; 2
      | "__builtin_write16_reversed", [IR a1; IR a2], _ ->
          fprintf oc "	rev16	%a, %a\n" ireg IR14 ireg a2;
          fprintf oc "	strh	%a, [%a, #0]\n" ireg IR14 ireg a1; 2
      | "__builtin_write32_reversed", [IR a1; IR a2], _ ->
          fprintf oc "	rev	%a, %a\n" ireg IR14 ireg a2;
          fprintf oc "	str	%a, [%a, #0]\n" ireg IR14 ireg a1; 2
            (* Synchronization *)
      | "__builtin_membar", [], _ ->
          0
      | "__builtin_dmb", [], _ ->
          fprintf oc "	dmb\n"; 1
      | "__builtin_dsb", [], _ ->
          fprintf oc "	dsb\n"; 1
      | "__builtin_isb", [], _ ->
          fprintf oc "	isb\n"; 1

            (* Vararg stuff *)
      | "__builtin_va_start", [IR a], _ ->
          print_builtin_va_start oc a
            (* Catch-all *)
      | _ ->
          invalid_arg ("unrecognized builtin " ^ name)
      in
      fprintf oc "%s end %s\n" comment name;
      n

(* Fixing up calling conventions *)

    type direction = Incoming | Outgoing

    module FixupEABI = struct

      let ireg_param = function
        | 0 -> IR0 | 1 -> IR1 | 2 -> IR2 | 3 -> IR3 | _ -> assert false

      let freg_param = function
        | 0 -> FR0 | 1 -> FR1 | 2 -> FR2 | 3 -> FR3 | _ -> assert false

      let fixup_double oc dir f i1 i2 =
        match dir with
        | Incoming ->     (* f <- (i1, i2)  *)
            fprintf oc "	vmov	%a, %a, %a\n" freg f ireg i1 ireg i2
        | Outgoing ->     (* (i1, i2) <- f *)
            fprintf oc "	vmov	%a, %a, %a\n" ireg i1 ireg i2 freg f

      let fixup_single oc dir f i =
        match dir with
        | Incoming ->     (* f <- i *)
            fprintf oc "	vmov	%a, %a\n" freg_single f ireg i
        | Outgoing ->     (* i <- f *)
            fprintf oc "	vmov	%a, %a\n" ireg i freg_single f

      let fixup_conventions oc dir tyl =
        let rec fixup i tyl =
          if i >= 4 then 0 else
          match tyl with
          | [] -> 0
          | (Tint | Tany32) :: tyl' ->
              fixup (i+1) tyl'
          | Tlong :: tyl' ->
              fixup (((i + 1) land (-2)) + 2) tyl'
          | (Tfloat | Tany64) :: tyl' ->
              let i = (i + 1) land (-2) in
              if i >= 4 then 0 else begin
                fixup_double oc dir (freg_param i) (ireg_param i) (ireg_param (i+1));
                1 + fixup (i+2) tyl'
              end
          | Tsingle :: tyl' ->
              fixup_single oc dir (freg_param i) (ireg_param i);
              1 + fixup (i+1) tyl'
        in fixup 0 tyl

      let fixup_arguments oc dir sg =
        fixup_conventions oc dir sg.sig_args

      let fixup_result oc dir sg =
        fixup_conventions oc dir (proj_sig_res sg :: [])

    end

    module FixupHF = struct

      type fsize = Single | Double

      let rec find_single used pos =
        if pos >= Array.length used then pos
        else if used.(pos) then find_single used (pos + 1)
        else begin used.(pos) <- true; pos end

      let rec find_double used pos =
        if pos + 1 >= Array.length used then pos
        else if used.(pos) || used.(pos + 1) then find_double used (pos + 2)
        else begin used.(pos) <- true; used.(pos + 1) <- true; pos / 2 end

      let rec fixup_actions used fr tyl =
        match tyl with
        | [] -> []
        | (Tint | Tlong | Tany32) :: tyl' -> fixup_actions used fr tyl'
        | (Tfloat | Tany64) :: tyl' ->
            if fr >= 8 then [] else begin
              let dr = find_double used 0 in
              assert (dr < 8);
              (fr, Double, dr) :: fixup_actions used (fr + 1) tyl'
            end
        | Tsingle :: tyl' ->
            if fr >= 8 then [] else begin
              let sr = find_single used 0 in
              assert (sr < 16);
              (fr, Single, sr) :: fixup_actions used (fr + 1) tyl'
            end

      let rec fixup_outgoing oc = function
        | [] -> 0
        | (fr, Double, dr) :: act ->
            if fr = dr then fixup_outgoing oc act else begin
              fprintf oc "	vmov.f64 d%d, d%d\n" dr fr;
              1 + fixup_outgoing oc act
            end
        | (fr, Single, sr) :: act ->
            fprintf oc "	vmov.f32 s%d, s%d\n" sr (2*fr);
            1 + fixup_outgoing oc act

      let rec fixup_incoming oc = function
        | [] -> 0
        | (fr, Double, dr) :: act ->
            let n = fixup_incoming oc act in
            if fr = dr then n else begin
              fprintf oc "	vmov.f64 d%d, d%d\n" fr dr;
              1 + n
            end
        | (fr, Single, sr) :: act ->
            let n = fixup_incoming oc act in
            if fr = sr then n else begin
              fprintf oc "	vmov.f32 s%d, s%d\n" (2*fr) sr;
              1 + n
            end

      let fixup_arguments oc dir sg =
        if sg.sig_cc.cc_vararg then
          FixupEABI.fixup_arguments oc dir sg
        else begin
          let act = fixup_actions (Array.make 16 false) 0 sg.sig_args in
          match dir with
          | Outgoing -> fixup_outgoing oc act
          | Incoming -> fixup_incoming oc act
        end

      let fixup_result oc dir sg =
        if sg.sig_cc.cc_vararg then
          FixupEABI.fixup_result oc dir sg
        else
          0
    end

    let (fixup_arguments, fixup_result) =
      match Opt.float_abi with
      | Soft -> (FixupEABI.fixup_arguments, FixupEABI.fixup_result)
      | Hard -> (FixupHF.fixup_arguments, FixupHF.fixup_result)
            
(* Printing of instructions *)

    let shift_op oc = function
      | SOimm n -> fprintf oc "#%a" coqint n
      | SOreg r -> ireg oc r
      | SOlsl(r, n) -> fprintf oc "%a, lsl #%a" ireg r coqint n
      | SOlsr(r, n) -> fprintf oc "%a, lsr #%a" ireg r coqint n
      | SOasr(r, n) -> fprintf oc "%a, asr #%a" ireg r coqint n
      | SOror(r, n) -> fprintf oc "%a, ror #%a" ireg r coqint n

    let print_instruction oc = function
        (* Core instructions *)
      | Padd(r1, r2, so) ->
          fprintf oc "	add%s	%a, %a, %a\n"
            (if !Clflags.option_mthumb && r2 <> IR14 then "s" else "")
            ireg r1 ireg r2 shift_op so; 1
      | Pand(r1, r2, so) ->
          fprintf oc "	and%t	%a, %a, %a\n"
            thumbS ireg r1 ireg r2 shift_op so; 1
      | Pasr(r1, r2, r3) ->
          fprintf oc "	asr%t	%a, %a, %a\n"
            thumbS ireg r1 ireg r2 ireg r3; 1
      | Pb lbl ->
          fprintf oc "	b	%a\n" print_label lbl; 1
      | Pbc(bit, lbl) ->
          fprintf oc "	b%s	%a\n" (condition_name bit) print_label lbl; 1
      | Pbsymb(id, sg) ->
          let n = fixup_arguments oc Outgoing sg in
          fprintf oc "	b	%a\n" symbol id;
          n + 1
      | Pbreg(r, sg) ->
          let n = 
            if r = IR14
            then fixup_result oc Outgoing sg
            else fixup_arguments oc Outgoing sg in
          fprintf oc "	bx	%a\n" ireg r;
          n + 1
      | Pblsymb(id, sg) ->
          let n1 = fixup_arguments oc Outgoing sg in
          fprintf oc "	bl	%a\n" symbol id;
          let n2 = fixup_result oc Incoming sg in
          n1 + 1 + n2
      | Pblreg(r, sg) ->
          let n1 = fixup_arguments oc Outgoing sg in
          fprintf oc "	blx	%a\n" ireg r;
          let n2 = fixup_result oc Incoming sg in
          n1 + 1 + n2
      | Pbic(r1, r2, so) ->
          fprintf oc "	bic%t	%a, %a, %a\n"
            thumbS ireg r1 ireg r2 shift_op so; 1
      | Pcmp(r1, so) ->
          fprintf oc "	cmp	%a, %a\n" ireg r1 shift_op so; 1
      | Peor(r1, r2, so) ->
          fprintf oc "	eor%t	%a, %a, %a\n"
            thumbS ireg r1 ireg r2 shift_op so; 1
      | Pldr(r1, r2, sa) | Pldr_a(r1, r2, sa) ->
          fprintf oc "	ldr	%a, [%a, %a]\n" ireg r1 ireg r2 shift_op sa; 1
      | Pldrb(r1, r2, sa) ->
          fprintf oc "	ldrb	%a, [%a, %a]\n" ireg r1 ireg r2 shift_op sa; 1
      | Pldrh(r1, r2, sa) ->
          fprintf oc "	ldrh	%a, [%a, %a]\n" ireg r1 ireg r2 shift_op sa; 1
      | Pldrsb(r1, r2, sa) ->
          fprintf oc "	ldrsb	%a, [%a, %a]\n" ireg r1 ireg r2 shift_op sa; 1
      | Pldrsh(r1, r2, sa) ->
          fprintf oc "	ldrsh	%a, [%a, %a]\n" ireg r1 ireg r2 shift_op sa; 1
      | Plsl(r1, r2, r3) ->
          fprintf oc "	lsl%t	%a, %a, %a\n"
            thumbS ireg r1 ireg r2 ireg r3; 1
      | Plsr(r1, r2, r3) ->
          fprintf oc "	lsr%t	%a, %a, %a\n"
            thumbS ireg r1 ireg r2 ireg r3; 1
      | Pmla(r1, r2, r3, r4) ->
          fprintf oc "	mla	%a, %a, %a, %a\n" ireg r1 ireg r2 ireg r3 ireg r4; 1
      | Pmov(r1, so) ->
          fprintf oc "	mov%t	%a, %a\n" thumbS ireg r1 shift_op so; 1
      | Pmovw(r1, n) ->
          fprintf oc "	movw	%a, #%a\n" ireg r1 coqint n; 1
      | Pmovt(r1, n) ->
          fprintf oc "	movt	%a, #%a\n" ireg r1 coqint n; 1
      | Pmul(r1, r2, r3) ->
          fprintf oc "	mul	%a, %a, %a\n" ireg r1 ireg r2 ireg r3; 1
      | Pmvn(r1, so) ->
          fprintf oc "	mvn%t	%a, %a\n" thumbS ireg r1 shift_op so; 1
      | Porr(r1, r2, so) ->
          fprintf oc "	orr%t	%a, %a, %a\n"
            thumbS ireg r1 ireg r2 shift_op so; 1
      | Prsb(r1, r2, so) ->
          fprintf oc "	rsb%t	%a, %a, %a\n"
            thumbS ireg r1 ireg r2 shift_op so; 1
      | Pstr(r1, r2, sa) | Pstr_a(r1, r2, sa) ->
          fprintf oc "	str	%a, [%a, %a]\n" ireg r1 ireg r2 shift_op sa;
          begin match r1, r2, sa with
          | IR14, IR13, SOimm n -> cfi_rel_offset oc "lr" (camlint_of_coqint n)
          | _ -> ()
          end;
          1
      | Pstrb(r1, r2, sa) ->
          fprintf oc "	strb	%a, [%a, %a]\n" ireg r1 ireg r2 shift_op sa; 1
      | Pstrh(r1, r2, sa) ->
          fprintf oc "	strh	%a, [%a, %a]\n" ireg r1 ireg r2 shift_op sa; 1
      | Psdiv ->
          if Opt.hardware_idiv then begin
            fprintf oc "	sdiv	r0, r0, r1\n"; 1
          end else begin
            fprintf oc "	bl	__aeabi_idiv\n"; 1
          end
      | Psbfx(r1, r2, lsb, sz) ->
          fprintf oc "	sbfx	%a, %a, #%a, #%a\n" ireg r1 ireg r2 coqint lsb coqint sz; 1
      | Psmull(r1, r2, r3, r4) ->
          fprintf oc "	smull	%a, %a, %a, %a\n" ireg r1 ireg r2 ireg r3 ireg r4; 1
      | Psub(r1, r2, so) ->
          fprintf oc "	sub%t	%a, %a, %a\n"
            thumbS ireg r1 ireg r2 shift_op so; 1
      | Pudiv ->
          if Opt.hardware_idiv then begin
            fprintf oc "	udiv	r0, r0, r1\n"; 1
          end else begin
            fprintf oc "	bl	__aeabi_uidiv\n"; 1
          end
      | Pumull(r1, r2, r3, r4) ->
          fprintf oc "	umull	%a, %a, %a, %a\n" ireg r1 ireg r2 ireg r3 ireg r4; 1
            (* Floating-point VFD instructions *)
      | Pfcpyd(r1, r2) ->
          fprintf oc "	vmov.f64 %a, %a\n" freg r1 freg r2; 1
      | Pfabsd(r1, r2) ->
          fprintf oc "	vabs.f64 %a, %a\n" freg r1 freg r2; 1
      | Pfnegd(r1, r2) ->
          fprintf oc "	vneg.f64 %a, %a\n" freg r1 freg r2; 1
      | Pfaddd(r1, r2, r3) ->
          fprintf oc "	vadd.f64 %a, %a, %a\n" freg r1 freg r2 freg r3; 1
      | Pfdivd(r1, r2, r3) ->
          fprintf oc "	vdiv.f64 %a, %a, %a\n" freg r1 freg r2 freg r3; 1
      | Pfmuld(r1, r2, r3) ->
          fprintf oc "	vmul.f64 %a, %a, %a\n" freg r1 freg r2 freg r3; 1
      | Pfsubd(r1, r2, r3) ->
          fprintf oc "	vsub.f64 %a, %a, %a\n" freg r1 freg r2 freg r3; 1
      | Pflid(r1, f) ->
          let f = camlint64_of_coqint(Floats.Float.to_bits f) in
          if Opt.vfpv3 && is_immediate_float64 f then begin
            fprintf oc "	vmov.f64 %a, #%F\n"
              freg r1 (Int64.float_of_bits f); 1
              (* immediate floats have at most 4 bits of fraction, so they
                 should print exactly with OCaml's F decimal format. *)
          end else if !literals_in_code then begin
            let lbl = label_float f in
            fprintf oc "	vldr	%a, .L%d @ %.12g\n"
              freg r1 lbl (Int64.float_of_bits f); 1
          end else begin
            let lbl = label_float f in
            fprintf oc "	movw	r14, #:lower16:.L%d\n" lbl;
            fprintf oc "	movt	r14, #:upper16:.L%d\n" lbl;
            fprintf oc "	vldr	%a, [r14, #0] @ %.12g\n"
              freg r1 (Int64.float_of_bits f); 3
          end
      | Pfcmpd(r1, r2) ->
          fprintf oc "	vcmp.f64 %a, %a\n" freg r1 freg r2;
          fprintf oc "	vmrs APSR_nzcv, FPSCR\n"; 2
      | Pfcmpzd(r1) ->
          fprintf oc "	vcmp.f64 %a, #0\n" freg r1;
          fprintf oc "	vmrs APSR_nzcv, FPSCR\n"; 2
      | Pfsitod(r1, r2) ->
          fprintf oc "	vmov	%a, %a\n" freg_single r1 ireg r2;
          fprintf oc "	vcvt.f64.s32 %a, %a\n" freg r1 freg_single r1; 2
      | Pfuitod(r1, r2) ->
          fprintf oc "	vmov	%a, %a\n" freg_single r1 ireg r2;
          fprintf oc "	vcvt.f64.u32 %a, %a\n" freg r1 freg_single r1; 2
      | Pftosizd(r1, r2) ->
          fprintf oc "	vcvt.s32.f64 %a, %a\n" freg_single FR6 freg r2;
          fprintf oc "	vmov	%a, %a\n" ireg r1 freg_single FR6; 2
      | Pftouizd(r1, r2) ->
          fprintf oc "	vcvt.u32.f64 %a, %a\n" freg_single FR6 freg r2;
          fprintf oc "	vmov	%a, %a\n" ireg r1 freg_single FR6; 2
      | Pfabss(r1, r2) ->
          fprintf oc "	vabs.f32 %a, %a\n" freg_single r1 freg_single r2; 1
      | Pfnegs(r1, r2) ->
          fprintf oc "	vneg.f32 %a, %a\n" freg_single r1 freg_single r2; 1
      | Pfadds(r1, r2, r3) ->
          fprintf oc "	vadd.f32 %a, %a, %a\n" freg_single r1 freg_single r2 freg_single r3; 1
      | Pfdivs(r1, r2, r3) ->
          fprintf oc "	vdiv.f32 %a, %a, %a\n" freg_single r1 freg_single r2 freg_single r3; 1
      | Pfmuls(r1, r2, r3) ->
          fprintf oc "	vmul.f32 %a, %a, %a\n" freg_single r1 freg_single r2 freg_single r3; 1
      | Pfsubs(r1, r2, r3) ->
          fprintf oc "	vsub.f32 %a, %a, %a\n" freg_single r1 freg_single r2 freg_single r3; 1
      | Pflis(r1, f) ->
          let f = camlint_of_coqint(Floats.Float32.to_bits f) in
          if Opt.vfpv3 && is_immediate_float32 f then begin
            fprintf oc "	vmov.f32 %a, #%F\n"
              freg_single r1 (Int32.float_of_bits f); 1
              (* immediate floats have at most 4 bits of fraction, so they
                 should print exactly with OCaml's F decimal format. *)
          end else if !literals_in_code then begin
            let lbl = label_float32 f in
            fprintf oc "	vldr	%a, .L%d @ %.12g\n"
              freg_single r1 lbl (Int32.float_of_bits f); 1
          end else begin
            fprintf oc "	movw	r14, #%ld\n" (Int32.logand f 0xFFFFl);
            fprintf oc "	movt	r14, #%ld\n" (Int32.shift_right_logical f 16);
            fprintf oc "	vmov	%a, r14 @ %.12g\n"
              freg_single r1 (Int32.float_of_bits f); 3
          end
      | Pfcmps(r1, r2) ->
          fprintf oc "	vcmp.f32 %a, %a\n" freg_single r1 freg_single r2;
          fprintf oc "	vmrs APSR_nzcv, FPSCR\n"; 2
      | Pfcmpzs(r1) ->
          fprintf oc "	vcmp.f32 %a, #0\n" freg_single r1;
          fprintf oc "	vmrs APSR_nzcv, FPSCR\n"; 2
      | Pfsitos(r1, r2) ->
          fprintf oc "	vmov	%a, %a\n" freg_single r1 ireg r2;
          fprintf oc "	vcvt.f32.s32 %a, %a\n" freg_single r1 freg_single r1; 2
      | Pfuitos(r1, r2) ->
          fprintf oc "	vmov	%a, %a\n" freg_single r1 ireg r2;
          fprintf oc "	vcvt.f32.u32 %a, %a\n" freg_single r1 freg_single r1; 2
      | Pftosizs(r1, r2) ->
          fprintf oc "	vcvt.s32.f32 %a, %a\n" freg_single FR6 freg_single r2;
          fprintf oc "	vmov	%a, %a\n" ireg r1 freg_single FR6; 2
      | Pftouizs(r1, r2) ->
          fprintf oc "	vcvt.u32.f32 %a, %a\n" freg_single FR6 freg_single r2;
          fprintf oc "	vmov	%a, %a\n" ireg r1 freg_single FR6; 2
      | Pfcvtsd(r1, r2) ->
          fprintf oc "	vcvt.f32.f64 %a, %a\n" freg_single r1 freg r2; 1
      | Pfcvtds(r1, r2) ->
          fprintf oc "	vcvt.f64.f32 %a, %a\n" freg r1 freg_single r2; 1
      | Pfldd(r1, r2, n) | Pfldd_a(r1, r2, n) ->
          fprintf oc "	vldr	%a, [%a, #%a]\n" freg r1 ireg r2 coqint n; 1
      | Pflds(r1, r2, n) ->
          fprintf oc "	vldr	%a, [%a, #%a]\n" freg_single r1 ireg r2 coqint n; 1
      | Pfstd(r1, r2, n) | Pfstd_a(r1, r2, n) ->
          fprintf oc "	vstr	%a, [%a, #%a]\n" freg r1 ireg r2 coqint n; 1
      | Pfsts(r1, r2, n) ->
          fprintf oc "	vstr	%a, [%a, #%a]\n" freg_single r1 ireg r2 coqint n; 1
            (* Pseudo-instructions *)
      | Pallocframe(sz, ofs) ->
          fprintf oc "	mov	r12, sp\n";
          if (!current_function_sig).sig_cc.cc_vararg then begin
            fprintf oc "	push	{r0, r1, r2, r3}\n";
            cfi_adjust oc 16l
          end;
          let sz' = camlint_of_coqint sz in
          let ninstr = subimm oc "sp" "sp" sz in
          cfi_adjust oc sz';
          fprintf oc "	str	r12, [sp, #%a]\n" coqint ofs;
          current_function_stacksize := sz';
          ninstr + (if (!current_function_sig).sig_cc.cc_vararg then 3 else 2)
      | Pfreeframe(sz, ofs) ->
          let sz =
            if (!current_function_sig).sig_cc.cc_vararg
            then coqint_of_camlint (Int32.add 16l (camlint_of_coqint sz))
            else sz in
          if Asmgen.is_immed_arith sz
          then fprintf oc "	add	sp, sp, #%a\n" coqint sz
          else fprintf oc "	ldr	sp, [sp, #%a]\n" coqint ofs; 1
      | Plabel lbl ->
          fprintf oc "%a:\n" print_label lbl; 0
      | Ploadsymbol(r1, id, ofs) ->
          loadsymbol oc r1 id ofs
      | Pmovite(cond, r1, ifso, ifnot) ->
          fprintf oc "	ite	%s\n" (condition_name cond);
          fprintf oc "	mov%s	%a, %a\n"
            (condition_name cond) ireg r1 shift_op ifso;
          fprintf oc "	mov%s	%a, %a\n"
            (neg_condition_name cond) ireg r1 shift_op ifnot; 2
      | Pbtbl(r, tbl) ->
          if !Clflags.option_mthumb then begin
            let lbl = new_label() in
            fprintf oc "	adr	r14, .L%d\n" lbl;
            fprintf oc "	add	r14, r14, %a, lsl #2\n" ireg r;
            fprintf oc "	mov	pc, r14\n";
            fprintf oc ".L%d:\n" lbl;
            List.iter
              (fun l -> fprintf oc "	b.w	%a\n" print_label l)
              tbl;
            3 + List.length tbl
          end else begin
            fprintf oc "	add	pc, pc, %a, lsl #2\n" ireg r;
            fprintf oc "	nop\n";
            List.iter
              (fun l -> fprintf oc "	b	%a\n" print_label l)
              tbl;
            2 + List.length tbl
          end
      | Pbuiltin(ef, args, res) ->
          begin match ef with
          | EF_builtin(name, sg) ->
              print_builtin_inline oc (extern_atom name) args res
          | EF_vload chunk ->
              print_builtin_vload oc chunk args res
          | EF_vstore chunk ->
              print_builtin_vstore oc chunk args
          | EF_vload_global(chunk, id, ofs) ->
              print_builtin_vload_global oc chunk id ofs args res
          | EF_vstore_global(chunk, id, ofs) ->
              print_builtin_vstore_global oc chunk id ofs args
          | EF_memcpy(sz, al) ->
              print_builtin_memcpy oc (Int32.to_int (camlint_of_coqint sz))
                (Int32.to_int (camlint_of_coqint al)) args
          | EF_annot_val(txt, targ) ->
              print_annot_val oc (extern_atom txt) args res
          | EF_inline_asm(txt, sg, clob) ->
              fprintf oc "%s begin inline assembly\n\t" comment;
              print_inline_asm preg oc (extern_atom txt) sg args res;
              fprintf oc "%s end inline assembly\n" comment;
              5 (* hoping this is an upper bound...  *)
          | _ ->
              assert false
          end
      | Pannot(ef, args) ->
          begin match ef with
          | EF_annot(txt, targs) ->
              print_annot_stmt oc (extern_atom txt) targs args; 0
          | _ ->
              assert false
          end

    let no_fallthrough = function
      | Pb _ -> true
      | Pbsymb _ -> true
      | Pbreg _ -> true
      | _ -> false

    let rec print_instructions oc instrs =
      match instrs with
      | [] -> ()
      | i :: il ->
          let n = print_instruction oc i in
          currpos := !currpos + n * 4;
          let d = distance_to_emit_constants() in
          if d < 256 && no_fallthrough i then
            emit_constants oc
          else if d < 16 then begin
            let lbl = new_label() in
            fprintf oc "	b	.L%d\n" lbl;
            emit_constants oc;
            fprintf oc ".L%d:\n" lbl
          end;
          print_instructions oc il

    let get_section_names name =
      let (text, lit) =
        match C2C.atom_sections name with
        | t :: l :: _ -> (t, l)
        | _    -> (Section_text, Section_literal) in
      text,lit,Section_jumptable

    let print_align oc alignment =
      fprintf oc "	.balign %d\n" alignment

    let print_jumptable _ _ = ()

    let cfi_startproc = cfi_startproc

    let cfi_endproc = cfi_endproc

    let print_optional_fun_info oc =
      if !Clflags.option_mthumb then
        fprintf oc "	.thumb_func\n"

    let print_fun_info oc name =
      fprintf oc "	.type	%a, %%function\n" symbol name;
      fprintf oc "	.size	%a, . - %a\n" symbol name symbol name

    let print_var_info oc name =
      fprintf oc "	.type	%a, %%object\n" symbol name;
      fprintf oc "	.size	%a, . - %a\n" symbol name symbol name

    let print_comm_symb oc sz name align =
      if C2C.atom_is_static name then
        fprintf oc "	.local	%a\n" symbol name;
      fprintf oc "	.comm	%a, %s, %d\n"
        symbol name
        (Z.to_string sz)
        align

    let print_instructions oc fn =
      current_function_sig := fn.fn_sig;
      ignore (fixup_arguments oc Incoming fn.fn_sig);
      print_instructions oc fn.fn_code;
      if !literals_in_code then emit_constants oc

    let emit_constants oc lit =
      if not !literals_in_code && !size_constants > 0 then begin
        section oc lit;
        emit_constants oc
      end

(* Data *)

    let print_init oc = function
      | Init_int8 n ->
          fprintf oc "	.byte	%ld\n" (camlint_of_coqint n)
      | Init_int16 n ->
          fprintf oc "	.short	%ld\n" (camlint_of_coqint n)
      | Init_int32 n ->
          fprintf oc "	.word	%ld\n" (camlint_of_coqint n)
      | Init_int64 n ->
          fprintf oc "	.quad	%Ld\n" (camlint64_of_coqint n)
      | Init_float32 n ->
          fprintf oc "	.word	0x%lx %s %.15g \n" (camlint_of_coqint (Floats.Float32.to_bits n))
	    comment (camlfloat_of_coqfloat n)
      | Init_float64 n ->
          fprintf oc "	.quad	%Ld %s %.18g\n" (camlint64_of_coqint (Floats.Float.to_bits n))
	    comment (camlfloat_of_coqfloat n)
      | Init_space n ->
          if Z.gt n Z.zero then
            fprintf oc "	.space	%s\n" (Z.to_string n)
      | Init_addrof(symb, ofs) ->
          fprintf oc "	.word	%a\n" symbol_offset (symb, ofs)
            
    let print_prologue oc =
      fprintf oc "	.syntax	unified\n";
      fprintf oc "	.arch	%s\n"
        (match Configuration.model with
        | "armv6" -> "armv6"
        | "armv7a" -> "armv7-a"
        | "armv7r" -> "armv7-r"
        | "armv7m" -> "armv7-m"
        | _ -> "armv7");
      fprintf oc "	.fpu	%s\n"
        (if Opt.vfpv3 then "vfpv3-d16" else "vfpv2");
      fprintf oc "	.%s\n" (if !Clflags.option_mthumb then "thumb" else "arm")

    let print_epilogue oc = ()

    let default_falignment = 4

    let get_start_addr () = -1 (* Dummy constant *)

    let get_end_addr () = -1 (* Dummy constant *)

    let get_stmt_list_addr () = -1 (* Dummy constant *)

    module DwarfAbbrevs = DwarfUtil.DefaultAbbrevs (* Dummy Abbrev types *)
        
    let label = elf_label
       
    let new_label = new_label
        
    let print_file_loc _ _ = () (* Dummy function *)
  end

let sel_target () = 
  let module S : PRINTER_OPTIONS = struct
   
   let vfpv3 = Configuration.model >= "armv7"
   
   let float_abi = match Configuration.abi with
   | "eabi"      -> Soft
   | "hardfloat" -> Hard
   | _ -> assert false
   
   let hardware_idiv  =
   match  Configuration.model with
   | "armv7r" | "armv7m" -> !Clflags.option_mthumb
   | _ -> false

   end in
  (module Target(S):TARGET)