aboutsummaryrefslogtreecommitdiffstats
path: root/backend/Csharpminor.v
blob: 858d9454640dae0dfdcf8dd536d1de67cdafe7d7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
(** Abstract syntax and semantics for the Csharpminor language. *)

Require Import Coqlib.
Require Import Maps.
Require Import AST.
Require Import Integers.
Require Import Floats.
Require Import Values.
Require Import Mem.
Require Import Globalenvs.

(** Abstract syntax *)

(** Cminor is a low-level imperative language structured in expressions,
  statements, functions and programs.  Expressions include
  reading and writing local variables, reading and writing store locations,
  arithmetic operations, function calls, and conditional expressions
  (similar to [e1 ? e2 : e3] in C).  The [Elet] and [Eletvar] constructs
  enable sharing the computations of subexpressions.  De Bruijn notation
  is used: [Eletvar n] refers to the value bound by then [n+1]-th enclosing
  [Elet] construct.

  Unlike in Cminor (the next intermediate language of the back-end),
  Csharpminor local variables reside in memory, and their address can
  be taken using [Eaddrof] expressions.

  Another difference with Cminor is that Csharpminor is entirely 
  processor-neutral. In particular, Csharpminor uses a standard set of
  operations: it does not reflect processor-specific operations nor
  addressing modes. *)

Inductive operation : Set :=
  | Ointconst: int -> operation         (**r integer constant *)
  | Ofloatconst: float -> operation     (**r floating-point constant *)
  | Ocast8unsigned: operation           (**r 8-bit zero extension  *)
  | Ocast8signed: operation             (**r 8-bit sign extension  *)
  | Ocast16unsigned: operation          (**r 16-bit zero extension  *)
  | Ocast16signed: operation            (**r 16-bit sign extension *)
  | Onotint: operation                  (**r bitwise complement  *)
  | Oadd: operation                     (**r integer addition *)
  | Osub: operation                     (**r integer subtraction *)
  | Omul: operation                     (**r integer multiplication *)
  | Odiv: operation                     (**r integer signed division *)
  | Odivu: operation                    (**r integer unsigned division *)
  | Omod: operation                     (**r integer signed modulus *)
  | Omodu: operation                    (**r integer unsigned modulus *)
  | Oand: operation                     (**r bitwise ``and'' *)
  | Oor: operation                      (**r bitwise ``or'' *)
  | Oxor: operation                     (**r bitwise ``xor'' *)
  | Oshl: operation                     (**r left shift *)
  | Oshr: operation                     (**r right signed shift *)
  | Oshru: operation                    (**r right unsigned shift *)
  | Onegf: operation                    (**r float opposite *)
  | Oabsf: operation                    (**r float absolute value *)
  | Oaddf: operation                    (**r float addition *)
  | Osubf: operation                    (**r float subtraction *)
  | Omulf: operation                    (**r float multiplication *)
  | Odivf: operation                    (**r float division *)
  | Osingleoffloat: operation           (**r float truncation *)
  | Ointoffloat: operation              (**r integer to float *)
  | Ofloatofint: operation              (**r float to signed integer *)
  | Ofloatofintu: operation             (**r float to unsigned integer *)
  | Ocmp: comparison -> operation       (**r integer signed comparison *)
  | Ocmpu: comparison -> operation      (**r integer unsigned comparison *)
  | Ocmpf: comparison -> operation.     (**r float comparison *)

Inductive expr : Set :=
  | Evar : ident -> expr                (**r reading a scalar variable  *)
  | Eaddrof : ident -> expr             (**r taking the address of a variable *)
  | Eassign : ident -> expr -> expr     (**r assignment to a scalar variable  *)
  | Eop : operation -> exprlist -> expr (**r arithmetic operation *)
  | Eload : memory_chunk -> expr -> expr (**r memory read *)
  | Estore : memory_chunk -> expr -> expr -> expr (**r memory write *)
  | Ecall : signature -> expr -> exprlist -> expr (**r function call *)
  | Econdition : expr -> expr -> expr -> expr (**r conditional expression *)
  | Elet : expr -> expr -> expr         (**r let binding  *)
  | Eletvar : nat -> expr               (**r reference to a let-bound variable *)

with exprlist : Set :=
  | Enil: exprlist
  | Econs: expr -> exprlist -> exprlist.

(** Statements include expression evaluation, an if/then/else conditional,
  infinite loops, blocks and early block exits, and early function returns.
  [Sexit n] terminates prematurely the execution of the [n+1] enclosing
  [Sblock] statements. *)

Inductive stmt : Set :=
  | Sexpr: expr -> stmt
  | Sifthenelse: expr -> stmtlist -> stmtlist -> stmt
  | Sloop: stmtlist -> stmt
  | Sblock: stmtlist -> stmt
  | Sexit: nat -> stmt
  | Sreturn: option expr -> stmt

with stmtlist : Set :=
  | Snil: stmtlist
  | Scons: stmt -> stmtlist -> stmtlist.

(** The local variables of a function can be either scalar variables
  (whose type, size and signedness are given by a [memory_chunk]
  or array variables (of the indicated sizes).  The only operation
  permitted on an array variable is taking its address. *)

Inductive local_variable : Set :=
  | LVscalar: memory_chunk -> local_variable
  | LVarray: Z -> local_variable.

(** Functions are composed of a signature, a list of parameter names
  with associated memory chunks (parameters must be scalar), a list of
  local variables with associated [local_variable] description, and a
  list of statements representing the function body.  *)

Record function : Set := mkfunction {
  fn_sig: signature;
  fn_params: list (ident * memory_chunk);
  fn_vars: list (ident * local_variable);
  fn_body: stmtlist
}.

Definition program := AST.program function.

(** * Operational semantics *)

(** The operational semantics for Csharpminor is given in big-step operational
  style.  Expressions evaluate to values, and statements evaluate to
  ``outcomes'' indicating how execution should proceed afterwards. *)

Inductive outcome: Set :=
  | Out_normal: outcome                (**r continue in sequence *)
  | Out_exit: nat -> outcome           (**r terminate [n+1] enclosing blocks *)
  | Out_return: option val -> outcome. (**r return immediately to caller *)

Definition outcome_result_value
                 (out: outcome) (ot: option typ) (v: val) : Prop :=
  match out, ot with
  | Out_normal, None => v = Vundef
  | Out_return None, None => v = Vundef
  | Out_return (Some v'), Some ty => v = v'
  | _, _ => False
  end.

Definition outcome_block (out: outcome) : outcome :=
  match out with
  | Out_normal => Out_normal
  | Out_exit O => Out_normal
  | Out_exit (S n) => Out_exit n
  | Out_return optv => Out_return optv
  end.

(** Three kinds of evaluation environments are involved:
- [genv]: global environments, define symbols and functions;
- [env]: local environments, map local variables to memory blocks;
- [lenv]: let environments, map de Bruijn indices to values.
*)
Definition genv := Genv.t function.
Definition env := PTree.t (block * local_variable).
Definition empty_env : env := PTree.empty (block * local_variable).
Definition letenv := list val.

Definition sizeof (lv: local_variable) : Z :=
  match lv with
  | LVscalar chunk => size_chunk chunk
  | LVarray sz => Zmax 0 sz
  end.

Definition fn_variables (f: function) :=
  List.map
    (fun id_chunk => (fst id_chunk, LVscalar (snd id_chunk))) f.(fn_params)
  ++ f.(fn_vars).

Definition fn_params_names (f: function) :=
  List.map (@fst ident memory_chunk) f.(fn_params).

Definition fn_vars_names (f: function) :=
  List.map (@fst ident local_variable) f.(fn_vars).


(** Evaluation of operator applications. *)

Definition eval_compare_null (c: comparison) (n: int) : option val :=
  if Int.eq n Int.zero 
  then match c with Ceq => Some Vfalse | Cne => Some Vtrue | _ => None end
  else None.

Definition eval_operation (op: operation) (vl: list val) (m: mem): option val :=
  match op, vl with
  | Ointconst n, nil => Some (Vint n)
  | Ofloatconst n, nil => Some (Vfloat n)
  | Ocast8unsigned, Vint n1 :: nil => Some (Vint (Int.cast8unsigned n1))
  | Ocast8signed, Vint n1 :: nil => Some (Vint (Int.cast8signed n1))
  | Ocast16unsigned, Vint n1 :: nil => Some (Vint (Int.cast16unsigned n1))
  | Ocast16signed, Vint n1 :: nil => Some (Vint (Int.cast16signed n1))
  | Onotint, Vint n1 :: nil => Some (Vint (Int.not n1))
  | Oadd, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.add n1 n2))
  | Oadd, Vint n1 :: Vptr b2 n2 :: nil => Some (Vptr b2 (Int.add n2 n1))
  | Oadd, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.add n1 n2))
  | Osub, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.sub n1 n2))
  | Osub, Vptr b1 n1 :: Vint n2 :: nil => Some (Vptr b1 (Int.sub n1 n2))
  | Osub, Vptr b1 n1 :: Vptr b2 n2 :: nil =>
      if eq_block b1 b2 then Some (Vint (Int.sub n1 n2)) else None
  | Omul, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.mul n1 n2))
  | Odiv, Vint n1 :: Vint n2 :: nil =>
      if Int.eq n2 Int.zero then None else Some (Vint (Int.divs n1 n2))
  | Odivu, Vint n1 :: Vint n2 :: nil =>
      if Int.eq n2 Int.zero then None else Some (Vint (Int.divu n1 n2))
  | Omod, Vint n1 :: Vint n2 :: nil =>
      if Int.eq n2 Int.zero then None else Some (Vint (Int.mods n1 n2))
  | Omodu, Vint n1 :: Vint n2 :: nil =>
      if Int.eq n2 Int.zero then None else Some (Vint (Int.modu n1 n2))
  | Oand, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.and n1 n2))
  | Oor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.or n1 n2))
  | Oxor, Vint n1 :: Vint n2 :: nil => Some (Vint (Int.xor n1 n2))
  | Oshl, Vint n1 :: Vint n2 :: nil =>
      if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shl n1 n2)) else None
  | Oshr, Vint n1 :: Vint n2 :: nil =>
      if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shr n1 n2)) else None
  | Oshru, Vint n1 :: Vint n2 :: nil =>
      if Int.ltu n2 (Int.repr 32) then Some (Vint (Int.shru n1 n2)) else None
  | Onegf, Vfloat f1 :: nil => Some (Vfloat (Float.neg f1))
  | Oabsf, Vfloat f1 :: nil => Some (Vfloat (Float.abs f1))
  | Oaddf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.add f1 f2))
  | Osubf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.sub f1 f2))
  | Omulf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.mul f1 f2))
  | Odivf, Vfloat f1 :: Vfloat f2 :: nil => Some (Vfloat (Float.div f1 f2))
  | Osingleoffloat, Vfloat f1 :: nil =>
      Some (Vfloat (Float.singleoffloat f1))
  | Ointoffloat, Vfloat f1 :: nil => 
      Some (Vint (Float.intoffloat f1))
  | Ofloatofint, Vint n1 :: nil => 
      Some (Vfloat (Float.floatofint n1))
  | Ofloatofintu, Vint n1 :: nil => 
      Some (Vfloat (Float.floatofintu n1))
  | Ocmp c, Vint n1 :: Vint n2 :: nil =>
      Some (Val.of_bool(Int.cmp c n1 n2))
  | Ocmp c, Vptr b1 n1 :: Vptr b2 n2 :: nil =>
      if valid_pointer m b1 (Int.signed n1)
      && valid_pointer m b2 (Int.signed n2) then
        if eq_block b1 b2 then Some(Val.of_bool(Int.cmp c n1 n2)) else None
      else
        None
  | Ocmp c, Vptr b1 n1 :: Vint n2 :: nil => eval_compare_null c n2
  | Ocmp c, Vint n1 :: Vptr b2 n2 :: nil => eval_compare_null c n1
  | Ocmpu c, Vint n1 :: Vint n2 :: nil =>
      Some (Val.of_bool(Int.cmpu c n1 n2))
  | Ocmpf c, Vfloat f1 :: Vfloat f2 :: nil =>
      Some (Val.of_bool (Float.cmp c f1 f2))
  | _, _ => None
  end.

(** ``Casting'' a value to a memory chunk.  The value is truncated and
  zero- or sign-extended as dictated by the memory chunk. *)

Definition cast (chunk: memory_chunk) (v: val) : option val :=
  match chunk, v with
  | Mint8signed, Vint n => Some (Vint (Int.cast8signed n))
  | Mint8unsigned, Vint n => Some (Vint (Int.cast8unsigned n))
  | Mint16signed, Vint n => Some (Vint (Int.cast16signed n))
  | Mint16unsigned, Vint n => Some (Vint (Int.cast16unsigned n))
  | Mint32, Vint n => Some(Vint n)
  | Mint32, Vptr b ofs => Some(Vptr b ofs)
  | Mfloat32, Vfloat f => Some(Vfloat(Float.singleoffloat f))
  | Mfloat64, Vfloat f => Some(Vfloat f)
  | _, _ => None
  end.

(** Allocation of local variables at function entry.  Each variable is
  bound to the reference to a fresh block of the appropriate size. *)

Inductive alloc_variables: env -> mem ->
                           list (ident * local_variable) ->
                           env -> mem -> list block -> Prop :=
  | alloc_variables_nil:
      forall e m,
      alloc_variables e m nil e m nil
  | alloc_variables_cons:
      forall e m id lv vars m1 b1 m2 e2 lb,
      Mem.alloc m 0 (sizeof lv) = (m1, b1) ->
      alloc_variables (PTree.set id (b1, lv) e) m1 vars e2 m2 lb ->
      alloc_variables e m ((id, lv) :: vars) e2 m2 (b1 :: lb).

(** Initialization of local variables that are parameters.  The value
  of the corresponding argument is stored into the memory block
  bound to the parameter. *)

Inductive bind_parameters: env ->
                           mem -> list (ident * memory_chunk) -> list val ->
                           mem -> Prop :=
  | bind_parameters_nil:
      forall e m,
      bind_parameters e m nil nil m
  | bind_parameters_cons:
      forall e m id chunk params v1 v2 vl b m1 m2,
      PTree.get id e = Some(b, LVscalar chunk) ->
      cast chunk v1 = Some v2 ->
      Mem.store chunk m b 0 v2 = Some m1 ->
      bind_parameters e m1 params vl m2 ->
      bind_parameters e m ((id, chunk) :: params) (v1 :: vl) m2.

Section RELSEM.

Variable ge: genv.

(** Evaluation of an expression: [eval_expr ge le e m a m' v] states
  that expression [a], in initial memory state [m], evaluates to value
  [v].  [m'] is the final memory state, respectively, reflecting
  memory stores possibly performed by [a].  [ge], [e] and [le] are the
  global environment, local environment and let environment
  respectively.  They do not change during evaluation.  *)

Inductive eval_expr:
         letenv -> env ->
         mem -> expr -> mem -> val -> Prop :=
  | eval_Evar:
      forall le e m id b chunk v,
      PTree.get id e = Some (b, LVscalar chunk) ->
      Mem.load chunk m b 0 = Some v ->
      eval_expr le e m (Evar id) m v
  | eval_Eassign:
      forall le e m id a m1 b chunk v1 v2 m2,
      eval_expr le e m a m1 v1 ->
      PTree.get id e = Some (b, LVscalar chunk) ->
      cast chunk v1 = Some v2 ->
      Mem.store chunk m1 b 0 v2 = Some m2 ->
      eval_expr le e m (Eassign id a) m2 v2
  | eval_Eaddrof_local:
      forall le e m id b lv,
      PTree.get id e = Some (b, lv) ->
      eval_expr le e m (Eaddrof id) m (Vptr b Int.zero)
  | eval_Eaddrof_global:
      forall le e m id b,
      PTree.get id e = None ->
      Genv.find_symbol ge id = Some b ->
      eval_expr le e m (Eaddrof id) m (Vptr b Int.zero)
  | eval_Eop:
      forall le e m op al m1 vl v,
      eval_exprlist le e m al m1 vl ->
      eval_operation op vl m1 = Some v ->
      eval_expr le e m (Eop op al) m1 v
  | eval_Eload:
      forall le e m chunk a m1 v1 v,
      eval_expr le e m a m1 v1 ->
      Mem.loadv chunk m1 v1 = Some v ->
      eval_expr le e m (Eload chunk a) m1 v
  | eval_Estore:
      forall le e m chunk a b m1 v1 m2 v2 m3 v3,
      eval_expr le e m a m1 v1 ->
      eval_expr le e m1 b m2 v2 ->
      cast chunk v2 = Some v3 ->
      Mem.storev chunk m2 v1 v3 = Some m3 ->
      eval_expr le e m (Estore chunk a b) m3 v3
  | eval_Ecall:
      forall le e m sig a bl m1 m2 m3 vf vargs vres f,
      eval_expr le e m a m1 vf ->
      eval_exprlist le e m1 bl m2 vargs ->
      Genv.find_funct ge vf = Some f ->
      f.(fn_sig) = sig ->
      eval_funcall m2 f vargs m3 vres ->
      eval_expr le e m (Ecall sig a bl) m3 vres
  | eval_Econdition_true:
      forall le e m a b c m1 v1 m2 v2,
      eval_expr le e m a m1 v1 ->
      Val.is_true v1 ->
      eval_expr le e m1 b m2 v2 ->
      eval_expr le e m (Econdition a b c) m2 v2
  | eval_Econdition_false:
      forall le e m a b c m1 v1 m2 v2,
      eval_expr le e m a m1 v1 ->
      Val.is_false v1 ->
      eval_expr le e m1 c m2 v2 ->
      eval_expr le e m (Econdition a b c) m2 v2
  | eval_Elet:
      forall le e m a b m1 v1 m2 v2,
      eval_expr le e m a m1 v1 ->
      eval_expr (v1::le) e m1 b m2 v2 ->
      eval_expr le e m (Elet a b) m2 v2
  | eval_Eletvar:
      forall le e m n v,
      nth_error le n = Some v ->
      eval_expr le e m (Eletvar n) m v

(** Evaluation of a list of expressions:
  [eval_exprlist ge le al m a m' vl]
  states that the list [al] of expressions evaluate 
  to the list [vl] of values.
  The other parameters are as in [eval_expr].
*)

with eval_exprlist:
         letenv -> env ->
         mem -> exprlist ->
         mem -> list val -> Prop :=
  | eval_Enil:
      forall le e m,
      eval_exprlist le e m Enil m nil
  | eval_Econs:
      forall le e m a bl m1 v m2 vl,
      eval_expr le e m a m1 v ->
      eval_exprlist le e m1 bl m2 vl ->
      eval_exprlist le e m (Econs a bl) m2 (v :: vl)

(** Evaluation of a function invocation: [eval_funcall ge m f args m' res]
  means that the function [f], applied to the arguments [args] in
  memory state [m], returns the value [res] in modified memory state [m'].
*)
with eval_funcall:
        mem -> function -> list val ->
        mem -> val -> Prop :=
  | eval_funcall_intro:
      forall m f vargs e m1 lb m2 m3 out vres,
      list_norepet (fn_params_names f ++ fn_vars_names f) ->
      alloc_variables empty_env m (fn_variables f) e m1 lb ->
      bind_parameters e m1 f.(fn_params) vargs m2 ->
      exec_stmtlist e m2 f.(fn_body) m3 out ->
      outcome_result_value out f.(fn_sig).(sig_res) vres ->
      eval_funcall m f vargs (Mem.free_list m3 lb) vres

(** Execution of a statement: [exec_stmt ge e m s m' out]
  means that statement [s] executes with outcome [out].
  The other parameters are as in [eval_expr]. *)

with exec_stmt:
         env ->
         mem -> stmt ->
         mem -> outcome -> Prop :=
  | exec_Sexpr:
      forall e m a m1 v,
      eval_expr nil e m a m1 v ->
      exec_stmt e m (Sexpr a) m1 Out_normal
  | exec_Sifthenelse_true:
      forall e m a sl1 sl2 m1 v1 m2 out,
      eval_expr nil e m a m1 v1 ->
      Val.is_true v1 ->
      exec_stmtlist e m1 sl1 m2 out ->
      exec_stmt e m (Sifthenelse a sl1 sl2) m2 out
  | exec_Sifthenelse_false:
      forall e m a sl1 sl2 m1 v1 m2 out,
      eval_expr nil e m a m1 v1 ->
      Val.is_false v1 ->
      exec_stmtlist e m1 sl2 m2 out ->
      exec_stmt e m (Sifthenelse a sl1 sl2) m2 out
  | exec_Sloop_loop:
      forall e m sl m1 m2 out,
      exec_stmtlist e m sl m1 Out_normal ->
      exec_stmt e m1 (Sloop sl) m2 out ->
      exec_stmt e m (Sloop sl) m2 out
  | exec_Sloop_stop:
      forall e m sl m1 out,
      exec_stmtlist e m sl m1 out ->
      out <> Out_normal ->
      exec_stmt e m (Sloop sl) m1 out
  | exec_Sblock:
      forall e m sl m1 out,
      exec_stmtlist e m sl m1 out ->
      exec_stmt e m (Sblock sl) m1 (outcome_block out)
  | exec_Sexit:
      forall e m n,
      exec_stmt e m (Sexit n) m (Out_exit n)
  | exec_Sreturn_none:
      forall e m,
      exec_stmt e m (Sreturn None) m (Out_return None)
  | exec_Sreturn_some:
      forall e m a m1 v,
      eval_expr nil e m a m1 v ->
      exec_stmt e m (Sreturn (Some a)) m1 (Out_return (Some v))

(** Execution of a list of statements: [exec_stmtlist ge e m sl m' out]
  means that the list [sl] of statements executes sequentially
  with outcome [out].  Execution stops at the first statement that
  leads an outcome different from [Out_normal].
  The other parameters are as in [eval_expr]. *)

with exec_stmtlist:
         env ->
         mem -> stmtlist ->
         mem -> outcome -> Prop :=
  | exec_Snil:
      forall e m,
      exec_stmtlist e m Snil m Out_normal
  | exec_Scons_continue:
      forall e m s sl m1 m2 out,
      exec_stmt e m s m1 Out_normal ->
      exec_stmtlist e m1 sl m2 out ->
      exec_stmtlist e m (Scons s sl) m2 out
  | exec_Scons_stop:
      forall e m s sl m1 out,
      exec_stmt e m s m1 out ->
      out <> Out_normal ->
      exec_stmtlist e m (Scons s sl) m1 out.

Scheme eval_expr_ind5 := Minimality for eval_expr Sort Prop
  with eval_exprlist_ind5 := Minimality for eval_exprlist Sort Prop
  with eval_funcall_ind5 := Minimality for eval_funcall Sort Prop
  with exec_stmt_ind5 := Minimality for exec_stmt Sort Prop
  with exec_stmtlist_ind5 := Minimality for exec_stmtlist Sort Prop.

End RELSEM.

(** Execution of a whole program: [exec_program p r]
  holds if the application of [p]'s main function to no arguments
  in the initial memory state for [p] eventually returns value [r]. *)

Definition exec_program (p: program) (r: val) : Prop :=
  let ge := Genv.globalenv p in
  let m0 := Genv.init_mem p in
  exists b, exists f, exists m,
  Genv.find_symbol ge p.(prog_main) = Some b /\
  Genv.find_funct_ptr ge b = Some f /\
  f.(fn_sig) = mksignature nil (Some Tint) /\
  eval_funcall ge m0 f nil m r.