aboutsummaryrefslogtreecommitdiffstats
path: root/cfrontend/C2C.ml
blob: a23c3cdc4c1e6e738fcb7f9eece18f51543cafab (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
(* *********************************************************************)
(*                                                                     *)
(*              The Compcert verified compiler                         *)
(*                                                                     *)
(*          Xavier Leroy, INRIA Paris-Rocquencourt                     *)
(*                                                                     *)
(*  Copyright Institut National de Recherche en Informatique et en     *)
(*  Automatique.  All rights reserved.  This file is distributed       *)
(*  under the terms of the GNU Lesser General Public License as        *)
(*  published by the Free Software Foundation, either version 2.1 of   *)
(*  the License, or  (at your option) any later version.               *)
(*  This file is also distributed under the terms of the               *)
(*  INRIA Non-Commercial License Agreement.                            *)
(*                                                                     *)
(* *********************************************************************)

open C

open Camlcoq
open! Floats
open Values
open Ctypes
open Csyntax

(** ** Extracting information about global variables from their atom *)

(** Record useful information about global variables and functions,
  and associate it with the corresponding atoms. *)

type inline_status =
  | No_specifier (* No inline specifier and no noinline attribute *)
  | Noinline     (* The atom is declared with the noinline attribute *)
  | Inline       (* The atom is declared inline *)

type atom_info =
  { a_storage: C.storage;              (* storage class *)
    a_size: int64 option;              (* size in bytes *)
    a_alignment: int option;           (* alignment *)
    a_sections: Sections.section_name list; (* in which section to put it *)
      (* 1 section for data, 3 sections (code/lit/jumptbl) for functions *)
    a_access: Sections.access_mode;    (* access mode, e.g. small data area *)
    a_inline: inline_status;           (* function declared inline? *)
    a_loc: location                    (* source location *)
}

let decl_atom : (AST.ident, atom_info) Hashtbl.t = Hashtbl.create 103

let atom_is_static a =
  try
    (Hashtbl.find decl_atom a).a_storage = C.Storage_static
  with Not_found ->
    false

let atom_is_extern a =
  try
    (Hashtbl.find decl_atom a).a_storage = C.Storage_extern
  with Not_found ->
    false

let atom_alignof a =
  try
    (Hashtbl.find decl_atom a).a_alignment
  with Not_found ->
    None

let atom_is_aligned a sz =
  match atom_alignof a with
  | None -> false
  | Some align -> align mod (Z.to_int sz) = 0

let atom_sections a =
  try
    (Hashtbl.find decl_atom a).a_sections
  with Not_found ->
    []

let atom_is_small_data a ofs  =
  try
    let info = Hashtbl.find decl_atom a in
    info.a_access = Sections.Access_near
    && (match info.a_size with
        | None -> false
        | Some sz ->
            let ofs = camlint64_of_ptrofs ofs in 0L <= ofs && ofs < sz)
  with Not_found ->
    false

let atom_is_rel_data a ofs =
  try
    (Hashtbl.find decl_atom a).a_access = Sections.Access_far
  with Not_found ->
    false

let atom_inline a =
  try
    (Hashtbl.find decl_atom a).a_inline
  with Not_found ->
    No_specifier

(** Iso C99 defines inline definitions of functions as functions
    with inline specifier and without extern. These functions do
    not provide an external definition. In the case of non static
    functions this means that no code should be generated for these
    functions. *)
let atom_is_iso_inline_definition a =
  try
    let i = Hashtbl.find decl_atom a in
    match i.a_storage with
    | C.Storage_default -> i.a_inline = Inline
    | _ -> false
  with Not_found ->
    false

let atom_location a =
  try
    (Hashtbl.find decl_atom a).a_loc
  with Not_found ->
    Cutil.no_loc

(** The current environment of composite definitions *)

let comp_env : composite_env ref = ref Maps.PTree.empty

(** Hooks -- overridden in machine-dependent CPragmas module *)

let process_pragma_hook = ref (fun (_: string) -> false)

(** ** Error handling *)

let currentLocation = ref Cutil.no_loc

let updateLoc l = currentLocation := l

let currentFunction = ref ""

let updateFunction f = currentFunction := f

let error fmt =
  Diagnostics.error !currentLocation fmt

let fatal_error fmt =
  Diagnostics.fatal_error !currentLocation fmt

let unsupported msg =
  Diagnostics.error !currentLocation "unsupported feature: %s"  msg

let warning t msg =
  Diagnostics.warning !currentLocation t msg

let string_of_errmsg msg =
  let string_of_err = function
  | Errors.MSG s -> camlstring_of_coqstring s
  | Errors.CTX i -> extern_atom i
  | Errors.POS i -> Z.to_string (Z.Zpos i)
  in String.concat "" (List.map string_of_err msg)

(** ** The builtin environment *)

let ais_annot_functions =
  if Configuration.elf_target then
    [(* Ais Annotations, only available for ELF targets *)
       "__builtin_ais_annot",
     (TVoid [],
      [TPtr(TInt(IChar, [AConst]), [])],
      true);]
  else
    []

let builtins_generic = {
  builtin_typedefs = [];
  builtin_functions =
    ais_annot_functions
      @
    [
    (* Integer arithmetic *)
    "__builtin_bswap64",
    (TInt(IULongLong, []), [TInt(IULongLong, [])], false);
      "__builtin_bswap",
    (TInt(IUInt, []), [TInt(IUInt, [])], false);
    "__builtin_bswap32",
      (TInt(IUInt, []), [TInt(IUInt, [])], false);
    "__builtin_bswap16",
      (TInt(IUShort, []), [TInt(IUShort, [])], false);
    "__builtin_clz",
      (TInt(IInt, []), [TInt(IUInt, [])], false);
    "__builtin_clzl",
      (TInt(IInt, []), [TInt(IULong, [])], false);
    "__builtin_clzll",
      (TInt(IInt, []), [TInt(IULongLong, [])], false);
    "__builtin_ctz",
      (TInt(IInt, []), [TInt(IUInt, [])], false);
    "__builtin_ctzl",
      (TInt(IInt, []), [TInt(IULong, [])], false);
    "__builtin_ctzll",
      (TInt(IInt, []), [TInt(IULongLong, [])], false);
    (* Floating-point absolute value *)
    "__builtin_fabs",
    (TFloat(FDouble, []), [TFloat(FDouble, [])], false);
    "__builtin_fabsf",
    (TFloat(FFloat, []), [TFloat(FFloat, [])], false);
    (* Float arithmetic *)
    "__builtin_fsqrt",
    (TFloat(FDouble, []), [TFloat(FDouble, [])], false);
    "__builtin_sqrt",
    (TFloat(FDouble, []), [TFloat(FDouble, [])], false);
    (* Block copy *)
    "__builtin_memcpy_aligned",
         (TVoid [],
           [TPtr(TVoid [], []);
            TPtr(TVoid [AConst], []);
            TInt(IULong, []);
            TInt(IULong, [])],
          false);
    (* Selection *)
    "__builtin_sel",
        (TVoid [],
           [TInt(C.IBool, [])],
           true);
    (* Annotations *)
    "__builtin_annot",
        (TVoid [],
          [TPtr(TInt(IChar, [AConst]), [])],
          true);
    "__builtin_annot_intval",
        (TInt(IInt, []),
          [TPtr(TInt(IChar, [AConst]), []); TInt(IInt, [])],
          false);
    (* Software memory barrier *)
    "__builtin_membar",
        (TVoid [],
          [],
          false);
    (* Variable arguments *)
(* va_start(ap,n)
      (preprocessing) --> __builtin_va_start(ap, arg)
      (elaboration)   --> __builtin_va_start(ap) *)
    "__builtin_va_start",
        (TVoid [],
          [TPtr(TVoid [], [])],
          false);
(* va_arg(ap, ty)
      (preprocessing) --> __builtin_va_arg(ap, ty)
      (parsing)       --> __builtin_va_arg(ap, sizeof(ty)) *)
    "__builtin_va_arg",
        (TVoid [],
          [TPtr(TVoid [], []); TInt(IUInt, [])],
          false);
    "__builtin_va_copy",
        (TVoid [],
          [TPtr(TVoid [], []); TPtr(TVoid [], [])],
          false);
    "__builtin_va_end",
        (TVoid [],
          [TPtr(TVoid [], [])],
          false);
  (* Optimization hints *)
    "__builtin_unreachable",
        (TVoid [], [], false);
    "__builtin_expect",
        (TInt(ILong, []), [TInt(ILong, []); TInt(ILong, [])], false)
  ]
}

(* Add processor-dependent builtins *)

let builtins = {
  builtin_typedefs =
    builtins_generic.builtin_typedefs @ CBuiltins.builtins.builtin_typedefs;
  builtin_functions =
    builtins_generic.builtin_functions @ CBuiltins.builtins.builtin_functions
}

(** ** The known attributes *)

let attributes = [
  (* type-related -- currently none *)
  (* struct-related *)
  ("packed", Cutil.Attr_struct);
  (* function-related *)
  ("noreturn", Cutil.Attr_function);
  ("noinline",Cutil.Attr_function);
  (* name-related *)
  ("aligned", Cutil.Attr_name);
  (* object-related *)
  ("section", Cutil.Attr_object);
  ("unused", Cutil.Attr_object)
]


(** ** Handling of inlined memcpy functions *)

let constant_size_t a =
  match Initializers.constval_cast !comp_env a Ctyping.size_t with
  | Errors.OK(Vint n) -> Some(Integers.Int.unsigned n)
  | Errors.OK(Vlong n) -> Some(Integers.Int64.unsigned n)
  | _ -> None

let make_builtin_memcpy args =
  match args with
  | Econs(dst, Econs(src, Econs(sz, Econs(al, Enil)))) ->
      let sz1 =
        match constant_size_t sz with
        | Some n -> n
        | None -> error "size argument of '__builtin_memcpy_aligned' must be a constant"; Z.zero in
      let al1 =
        match constant_size_t al with
        | Some n -> n
        | None -> error "alignment argument of '__builtin_memcpy_aligned' must be a constant"; Z.one in
      if not (Z.is_power2 al1) then
        error "alignment argument of '__builtin_memcpy_aligned' must be a power of 2";
      if not (Z.eq (Z.modulo sz1 al1) Z.zero) then
        error "alignment argument of '__builtin_memcpy_aligned' must be a divisor of the size";
      (* Issue #28: must decay array types to pointer types *)
      Ebuiltin( AST.EF_memcpy(sz1, al1),
               Tcons(typeconv(typeof dst),
                     Tcons(typeconv(typeof src), Tnil)),
               Econs(dst, Econs(src, Enil)), Tvoid)
  | _ ->
    assert false

(** ** Translation of [va_arg] for variadic functions. *)

let va_list_ptr e =
  if not CBuiltins.va_list_scalar then e else
    match e with
    | Evalof(e', _) -> Eaddrof(e', Tpointer(typeof e, noattr))
    | _             -> error "bad use of a va_list object"; e

let make_builtin_va_arg_by_val helper ty ty_ret arg =
  let ty_fun =
    Tfunction(Tcons(Tpointer(Tvoid, noattr), Tnil), ty_ret,  AST.cc_default) in
  Ecast
    (Ecall(Evalof(Evar(intern_string helper, ty_fun), ty_fun),
           Econs(va_list_ptr arg, Enil),
           ty_ret),
     ty)

let make_builtin_va_arg_by_ref helper ty arg =
  let ty_fun =
    Tfunction(Tcons(Tpointer(Tvoid, noattr), Tcons(Ctyping.size_t, Tnil)),
              Tpointer(Tvoid, noattr),  AST.cc_default) in
  let ty_ptr =
    Tpointer(ty, noattr) in
  let call =
    Ecall(Evalof(Evar(intern_string helper, ty_fun), ty_fun),
          Econs(va_list_ptr arg, Econs(Esizeof(ty, Ctyping.size_t), Enil)),
          Tpointer(Tvoid, noattr)) in
  Evalof(Ederef(Ecast(call, ty_ptr), ty), ty)

let make_builtin_va_arg env ty e =
  match ty with
  | Ctypes.Tint _ ->
      make_builtin_va_arg_by_val
        "__compcert_va_int32" ty (Tint(I32, Unsigned, noattr)) e
  | Tpointer _ when Archi.ptr64 = false ->
      make_builtin_va_arg_by_val
        "__compcert_va_int32" ty (Tint(I32, Unsigned, noattr)) e
  | Tpointer _ when Archi.ptr64 = true ->
      make_builtin_va_arg_by_val
        "__compcert_va_int64" ty (Tlong(Unsigned, noattr)) e
  | Tlong _ ->
      make_builtin_va_arg_by_val
        "__compcert_va_int64" ty (Tlong(Unsigned, noattr)) e
  | Tfloat _ ->
      make_builtin_va_arg_by_val
        "__compcert_va_float64" ty (Tfloat(F64, noattr)) e
  | Tstruct _ | Tunion _ ->
      make_builtin_va_arg_by_ref
        "__compcert_va_composite" ty e
  | _ ->
      unsupported "va_arg at this type";
      Eval(Vint(coqint_of_camlint 0l), type_int32s)

(** ** Translation functions *)

(** Constants *)

let convertInt32 (n: int64) = coqint_of_camlint(Int64.to_int32 n)
let convertInt64 (n: int64) = coqint_of_camlint64 n
let convertIntZ  (n: int64) = Z.of_sint64 n

(** Attributes *)

let rec log2 n = if n = 1 then 0 else 1 + log2 (n lsr 1)

let convertAttr a =
  { attr_volatile = List.mem AVolatile a;
    attr_alignas =
      let n = Cutil.alignas_attribute a in
      if n > 0 then Some (N.of_int (log2 n)) else None }

let convertCallconv _tres targs va attr =
  let vararg =
    match targs with
    | None -> None
    | Some tl -> if va then Some (Z.of_uint (List.length tl)) else None in
  let sr =
    Cutil.find_custom_attributes ["structreturn"; "__structreturn"] attr in
  {  AST.cc_vararg = vararg;
     AST.cc_unproto = (targs = None);
     AST.cc_structret = (sr <> []) }

(** Types *)

let convertIkind k a : coq_type =
    match k with
  | C.IBool -> Tint (Ctypes.IBool, Unsigned, a)
  | C.IChar -> Tint (I8, (if Machine.((!config).char_signed)
                          then Signed else Unsigned), a)
  | C.ISChar -> Tint (I8, Signed, a)
  | C.IUChar -> Tint (I8, Unsigned, a)
  | C.IInt -> Tint (I32, Signed, a)
  | C.IUInt -> Tint (I32, Unsigned, a)
  | C.IShort -> Tint (I16, Signed, a)
  | C.IUShort -> Tint (I16, Unsigned, a)
  | C.ILong -> if Machine.((!config).sizeof_long) = 8
               then Tlong (Signed, a) else Tint (I32, Signed, a)
  | C.IULong -> if Machine.((!config).sizeof_long) = 8
                then Tlong (Unsigned, a) else Tint (I32, Unsigned, a)
  | C.ILongLong -> Tlong (Signed, a)
  | C.IULongLong -> Tlong (Unsigned, a)

let convertFkind k a : coq_type =
  match k with
  | C.FFloat -> Tfloat (F32, a)
  | C.FDouble -> Tfloat (F64, a)
  | C.FLongDouble ->
      if not !Clflags.option_flongdouble then unsupported "'long double' type";
      Tfloat (F64, a)

let checkResultType env ty =
  if (not !Clflags.option_fstruct_passing) && Cutil.is_composite_type env ty
  then unsupported "function returning a struct or union \
                    (consider adding option [-fstruct-passing])"

let checkArgumentType env ty =
  if (not !Clflags.option_fstruct_passing) && Cutil.is_composite_type env ty
  then unsupported "function parameter of struct or union type \
                    (consider adding option [-fstruct-passing])"

let checkFunctionType env tres targs =
  checkResultType env tres;
  begin match targs with
  | None -> ()
  | Some l -> List.iter (fun (id, ty) -> checkArgumentType env ty) l
  end

let rec convertTyp env ?bitwidth t =
  match t with
  | C.TVoid a -> Tvoid
  | C.TInt(ik, a) ->
      convertIkind ik (convertAttr a)
  | C.TFloat(fk, a) ->
      convertFkind fk (convertAttr a)
  | C.TPtr(ty, a) ->
      Tpointer(convertTyp env ty, convertAttr a)
  | C.TArray(ty, None, a) ->
      (* Cparser verified that the type ty[] occurs only in
         contexts that are safe for Clight, so just treat as ty[0]. *)
      (* warning "array type of unspecified size"; *)
      Tarray(convertTyp env ty, Z.zero, convertAttr a)
  | C.TArray(ty, Some sz, a) ->
      Tarray(convertTyp env ty, convertIntZ sz, convertAttr a)
  | C.TFun(tres, targs, va, a) ->
      checkFunctionType env tres targs;
      Tfunction(begin match targs with
                | None -> Tnil
                | Some tl -> convertParams env tl
                end,
                convertTyp env tres,
                convertCallconv tres targs va a)
  | C.TNamed _ ->
      convertTyp env ?bitwidth (Cutil.unroll env t)
  | C.TStruct(id, a) ->
      Ctypes.Tstruct(intern_string id.name, convertAttr a)
  | C.TUnion(id, a) ->
      Tunion(intern_string id.name, convertAttr a)
  | C.TEnum(id, a) ->
      let ik =
        match bitwidth with
        | None -> Cutil.enum_ikind
        | Some w ->
            let info = Env.find_enum env id in
            let representable sg =
              List.for_all (fun (_, v, _) -> Cutil.int_representable v w sg)
                           info.Env.ei_members in
            if representable false then
              Cutil.unsigned_ikind_of Cutil.enum_ikind
            else if representable true then
              Cutil.signed_ikind_of Cutil.enum_ikind
            else
              Cutil.enum_ikind in
      convertIkind ik (convertAttr a)

and convertParams env = function
    | [] -> Tnil
    | (id, ty) :: rem -> Tcons(convertTyp env ty, convertParams env rem)

(* Convert types for the arguments to a function call.  The types for
   fixed arguments are taken from the function prototype.  The types
   for other arguments (variable-argument function or unprototyped K&R
   functions) are taken from the types of the function arguments,
   after default argument conversion. *)

let rec convertTypArgs env tl el =
  match tl, el with
  | _, [] -> Tnil
  | [], e1 :: el ->
      Tcons(convertTyp env (Cutil.default_argument_conversion env e1.etyp),
            convertTypArgs env [] el)
  | (id, t1) :: tl, e1 :: el ->
      Tcons(convertTyp env t1, convertTypArgs env tl el)

(* Convert types for the arguments to inline asm statements and to
   the special built-in functions __builtin_annot, __builtin_ais_annot_
   and __builtin_debug.  The types are taken from the types of the
   arguments, after performing the usual unary conversions.
   Hence char becomes int but float remains float and is not promoted
   to double.  The goal is to preserve the representation of the arguments
   and avoid inserting compiled code to convert the arguments. *)

let rec convertTypAnnotArgs env = function
  | [] -> Tnil
  | e1 :: el ->
      Tcons(convertTyp env (Cutil.unary_conversion env e1.etyp),
            convertTypAnnotArgs env el)

let convertField env sid f =
  let id = intern_string f.fld_name
  and ty = convertTyp env ?bitwidth: f.fld_bitfield f.fld_typ in
  Debug.set_member_atom ~str_id:sid f.fld_name ~fld_id:id;
  match f.fld_bitfield with
  | None -> Member_plain(id, ty)
  | Some w ->
      match ty with
      | Tint(sz, sg, attr) ->
          Member_bitfield(id, sz, sg, attr, Z.of_uint w, f.fld_name = "")
      | _ ->
          fatal_error "bitfield must have type int"

let convertCompositedef env su id attr members =
  if Cutil.find_custom_attributes ["packed";"__packed__"] attr <> [] then
    unsupported "packed struct (consider adding option [-fpacked-structs])";
  let intern_name = intern_string id.name in
  let (t, su') = match su with
    | C.Struct -> TStruct (id, attr), Ctypes.Struct
    | C.Union -> TUnion (id, attr), Ctypes.Union in
  Debug.set_composite_size id intern_name su (Cutil.sizeof env t);
  let ms = List.map (convertField env intern_name) members in
  Composite(intern_name, su', ms, convertAttr attr)

let rec projFunType env ty =
  match Cutil.unroll env ty with
  | TFun(res, args, vararg, attr) -> Some(res, args, vararg)
  | TPtr(ty', attr) -> projFunType env ty'
  | _ -> None

let string_of_type ty =
  let b = Buffer.create 20 in
  let fb = Format.formatter_of_buffer b in
  Cprint.typ fb ty;
  Format.pp_print_flush fb ();
  Buffer.contents b

let is_int64 env ty =
  match Cutil.unroll env ty with
  | C.TInt(k, _) -> Cutil.sizeof_ikind k = 8
  | C.TEnum(_, _) -> false
  | _ -> assert false

(** String literals *)

let stringNum = ref 0   (* number of next global for string literals *)
let stringTable : (string, AST.ident) Hashtbl.t = Hashtbl.create 47
let wstringTable : (int64 list * ikind, AST.ident) Hashtbl.t = Hashtbl.create 47

let is_C_string s = not (String.contains s '\000')

let name_for_string_literal s =
  try
    Hashtbl.find stringTable s
  with Not_found ->
    incr stringNum;
    let name = Printf.sprintf "__stringlit_%d" !stringNum in
    let id = intern_string name in
    let mergeable = if is_C_string s then 1 else 0 in
    Hashtbl.add decl_atom id
      { a_storage = C.Storage_static;
        a_alignment = Some 1;
        a_size = Some (Int64.of_int (String.length s + 1));
        a_sections = [Sections.for_stringlit mergeable];
        a_access = Sections.Access_default;
        a_inline = No_specifier;
        a_loc = Cutil.no_loc };
    Hashtbl.add stringTable s id;
    id

let typeStringLiteral s =
  let sg = if Machine.((!config).char_signed) then Signed else Unsigned in
  Tarray(Tint(I8, sg, noattr), Z.of_uint (String.length s + 1), noattr)

let global_for_string s id =
  let init = ref [] in
  let add_char c =
    init := AST.Init_int8(Z.of_uint(Char.code c)) :: !init in
  add_char '\000';
  for i = String.length s - 1 downto 0 do add_char s.[i] done;
  AST.(id, Gvar { gvar_info = typeStringLiteral s;  gvar_init = !init;
                  gvar_readonly = true;  gvar_volatile = false})

let is_C_wide_string s = not (List.mem 0L s)

let name_for_wide_string_literal s ik =
  try
    Hashtbl.find wstringTable (s, ik)
  with Not_found ->
    incr stringNum;
    let name = Printf.sprintf "__stringlit_%d" !stringNum in
    let id = intern_string name in
    let wchar_size = Cutil.sizeof_ikind ik in
    let mergeable = if is_C_wide_string s then wchar_size else 0 in
    Hashtbl.add decl_atom id
      { a_storage = C.Storage_static;
        a_alignment = Some wchar_size;
        a_size = Some (Int64.(mul (of_int (List.length s + 1))
                                  (of_int wchar_size)));
        a_sections = [Sections.for_stringlit mergeable];
        a_access = Sections.Access_default;
        a_inline = No_specifier;
        a_loc = Cutil.no_loc };
    Hashtbl.add wstringTable (s, ik) id;
    id

let typeWideStringLiteral s ik =
  Tarray(convertIkind ik noattr, Z.of_uint (List.length s + 1), noattr)

let global_for_wide_string (s, ik) id =
  let init = ref [] in
  let init_of_char =
    match Cutil.sizeof_ikind ik with
    | 2 -> (fun z -> AST.Init_int16 z)
    | 4 -> (fun z -> AST.Init_int32 z)
    | _ -> assert false in
  let add_char c =
    init := init_of_char(Z.of_uint64 c) :: !init in
  List.iter add_char s;
  add_char 0L;
  AST.(id, Gvar { gvar_info = typeWideStringLiteral s ik;
                  gvar_init = List.rev !init;
                  gvar_readonly = true; gvar_volatile = false})

let globals_for_strings globs =
  let globs1 =
    Hashtbl.fold
      (fun s id l -> global_for_wide_string s id :: l)
      wstringTable globs in
  let globs2 =
    Hashtbl.fold
      (fun s id l -> global_for_string s id :: l)
      stringTable globs1 in
  globs2

(** Floating point constants *)

let z_of_str hex str fst =
  let res = ref Z.Z0 in
  let base = if hex then 16 else 10 in
  for i = fst to String.length str - 1 do
    let d = int_of_char str.[i] in
    let d =
      if hex && d >= int_of_char 'a' && d <= int_of_char 'f' then
	d - int_of_char 'a' + 10
      else if hex && d >= int_of_char 'A' && d <= int_of_char 'F' then
	d - int_of_char 'A' + 10
      else
	d - int_of_char '0'
    in
    assert (d >= 0 && d < base);
    res := Z.add (Z.mul (Z.of_uint base) !res) (Z.of_uint d)
  done;
  !res


let checkFloatOverflow f typ =
  match f with
  | Binary.B754_finite _ -> ()
  | Binary.B754_zero _ ->
      warning Diagnostics.Literal_range "magnitude of floating-point constant too small for type '%s'"  typ
  | Binary.B754_infinity _ ->
      warning Diagnostics.Literal_range "magnitude of floating-point constant too large for type '%s'"  typ
  | Binary.B754_nan _ ->
      warning Diagnostics.Literal_range "floating-point converts converts to 'NaN'"

let convertFloat f kind =
  let mant = z_of_str f.C.hex (f.C.intPart ^ f.C.fracPart) 0 in
  match mant with
    | Z.Z0 ->
      begin match kind with
      | FFloat ->
	  Ctyping.econst_single (Float.to_single Float.zero)
      | FDouble | FLongDouble ->
	  Ctyping.econst_float Float.zero
      end
    | Z.Zpos mant ->

      let sgExp = match f.C.exp.[0] with '+' | '-' -> true | _ -> false in
      let exp = z_of_str false f.C.exp (if sgExp then 1 else 0) in
      let exp = if f.C.exp.[0] = '-' then Z.neg exp else exp in
      let shift_exp =
	(if f.C.hex then 4 else 1) * String.length f.C.fracPart in
      let exp = Z.sub exp (Z.of_uint shift_exp) in

      let base = P.of_int (if f.C.hex then 2 else 10) in

      begin match kind with
      | FFloat ->
	  let f = Float32.from_parsed base mant exp in
          checkFloatOverflow f "float";
          Ctyping.econst_single f
      | FDouble | FLongDouble ->
	  let f = Float.from_parsed base mant exp in
          checkFloatOverflow f "double";
          Ctyping.econst_float f
      end

    | Z.Zneg _ -> assert false

(** Expressions *)

let check_volatile_bitfield env e =
  if Cutil.is_bitfield env e
  && List.mem AVolatile (Cutil.attributes_of_type env e.etyp) then
    warning Diagnostics.Unnamed "access to a volatile bit field, the 'volatile' qualifier is ignored"

let ezero = Eval(Vint(coqint_of_camlint 0l), type_int32s)

let ewrap = function
  | Errors.OK e -> e
  | Errors.Error msg ->
      error "retyping error: %s" (string_of_errmsg msg); ezero

let rec convertExpr env e =
  match e.edesc with
  | C.EConst (C.CStr _ | C.CWStr _)
  | C.EVar _
  | C.EUnop((C.Oderef|C.Odot _|C.Oarrow _), _)
  | C.EBinop(C.Oindex, _, _, _) ->
      let l = convertLvalue env e in
      check_volatile_bitfield env e;
      ewrap (Ctyping.evalof l)

  | C.EConst(C.CInt(i, k, _)) ->
      let sg = if Cutil.is_signed_ikind k then Signed else Unsigned in
      if Cutil.sizeof_ikind k = 8
      then Ctyping.econst_long (convertInt64 i) sg
      else Ctyping.econst_int (convertInt32 i) sg
  | C.EConst(C.CFloat(f, k)) ->
      if k = C.FLongDouble && not !Clflags.option_flongdouble then
        unsupported "'long double' floating-point constant";
      convertFloat f k
  | C.EConst(C.CEnum(id, i)) ->
      Ctyping.econst_int (convertInt32 i) Signed
  | C.ESizeof ty1 ->
      Ctyping.esizeof (convertTyp env ty1)
  | C.EAlignof ty1 ->
      Ctyping.ealignof (convertTyp env ty1)

  | C.EUnop(C.Ominus, e1) ->
      ewrap (Ctyping.eunop Cop.Oneg (convertExpr env e1))
  | C.EUnop(C.Oplus, e1) ->
      convertExpr env e1
  | C.EUnop(C.Olognot, e1) ->
      ewrap (Ctyping.eunop Cop.Onotbool (convertExpr env e1))
  | C.EUnop(C.Onot, e1) ->
      ewrap (Ctyping.eunop Cop.Onotint (convertExpr env e1))
  | C.EUnop(C.Oaddrof, e1) ->
      ewrap (Ctyping.eaddrof (convertLvalue env e1))
  | C.EUnop(C.Opreincr, e1) ->
      ewrap (Ctyping.epreincr (convertLvalue env e1))
  | C.EUnop(C.Opredecr, e1) ->
      ewrap (Ctyping.epredecr (convertLvalue env e1))
  | C.EUnop(C.Opostincr, e1) ->
      ewrap (Ctyping.epostincr (convertLvalue env e1))
  | C.EUnop(C.Opostdecr, e1) ->
      ewrap (Ctyping.epostdecr (convertLvalue env e1))

  | C.EBinop((C.Oadd|C.Osub|C.Omul|C.Odiv|C.Omod|C.Oand|C.Oor|C.Oxor|
              C.Oshl|C.Oshr|C.Oeq|C.One|C.Olt|C.Ogt|C.Ole|C.Oge) as op,
             e1, e2, tyres) ->
      let op' =
        match op with
        | C.Oadd -> Cop.Oadd
        | C.Osub -> Cop.Osub
        | C.Omul -> Cop.Omul
        | C.Odiv -> Cop.Odiv
        | C.Omod -> Cop.Omod
        | C.Oand -> Cop.Oand
        | C.Oor  -> Cop.Oor
        | C.Oxor -> Cop.Oxor
        | C.Oshl -> Cop.Oshl
        | C.Oshr -> Cop.Oshr
        | C.Oeq  -> Cop.Oeq
        | C.One  -> Cop.One
        | C.Olt  -> Cop.Olt
        | C.Ogt  -> Cop.Ogt
        | C.Ole  -> Cop.Ole
        | C.Oge  -> Cop.Oge
        | _ -> assert false in
      ewrap (Ctyping.ebinop op' (convertExpr env e1) (convertExpr env e2))
  | C.EBinop(C.Oassign, e1, e2, _) ->
      let e1' = convertLvalue env e1 in
      let e2' = convertExpr env e2 in
      if Cutil.is_composite_type env e1.etyp
      && List.mem AVolatile (Cutil.attributes_of_type env e1.etyp) then
        warning Diagnostics.Unnamed "assignment to an lvalue of volatile composite type, the 'volatile' qualifier is ignored";
      if Cutil.is_composite_type env e2.etyp
      && List.mem AVolatile (Cutil.attributes_of_type env e2.etyp) then
        warning Diagnostics.Unnamed "assignment of a value of volatile composite type, the 'volatile' qualifier is ignored";
      check_volatile_bitfield env e1;
      ewrap (Ctyping.eassign e1' e2')
  | C.EBinop((C.Oadd_assign|C.Osub_assign|C.Omul_assign|C.Odiv_assign|
              C.Omod_assign|C.Oand_assign|C.Oor_assign|C.Oxor_assign|
              C.Oshl_assign|C.Oshr_assign) as op,
             e1, e2, tyres) ->
      let op' =
        match op with
        | C.Oadd_assign -> Cop.Oadd
        | C.Osub_assign -> Cop.Osub
        | C.Omul_assign -> Cop.Omul
        | C.Odiv_assign -> Cop.Odiv
        | C.Omod_assign -> Cop.Omod
        | C.Oand_assign -> Cop.Oand
        | C.Oor_assign  -> Cop.Oor
        | C.Oxor_assign -> Cop.Oxor
        | C.Oshl_assign -> Cop.Oshl
        | C.Oshr_assign -> Cop.Oshr
        | _ -> assert false in
      let e1' = convertLvalue env e1 in
      let e2' = convertExpr env e2 in
      check_volatile_bitfield env e1;
      ewrap (Ctyping.eassignop op' e1' e2')
  | C.EBinop(C.Ocomma, e1, e2, _) ->
      ewrap (Ctyping.ecomma (convertExpr env e1) (convertExpr env e2))
  | C.EBinop(C.Ologand, e1, e2, _) ->
      ewrap (Ctyping.eseqand (convertExpr env e1) (convertExpr env e2))
  | C.EBinop(C.Ologor, e1, e2, _) ->
      ewrap (Ctyping.eseqor (convertExpr env e1) (convertExpr env e2))

  | C.EConditional(e1, e2, e3) ->
      ewrap (Ctyping.econdition (convertExpr env e1)
                                (convertExpr env e2) (convertExpr env e3))
  | C.ECast(ty1, e1) ->
      ewrap (Ctyping.ecast (convertTyp env ty1) (convertExpr env e1))
  | C.ECompound(ty1, ie) ->
      unsupported "compound literals"; ezero

  | C.ECall({edesc = C.EVar {name = "__builtin_debug"}}, args) when List.length args < 2 ->
      error "too few arguments to function call, expected at least 2, have 0";
      ezero
  | C.ECall({edesc = C.EVar {name = "__builtin_debug"}}, args) ->
      let (kind, args1) =
        match args with
        | {edesc = C.EConst(CInt(n,_,_))} :: args1 when n <> 0L-> (n, args1)
        | _::args -> error "argument 1 of '__builtin_debug' must be a non-zero constant"; (1L, args)
        | [] -> assert false (* catched earlier *) in
      let (text, args2) =
        match args1 with
        | {edesc = C.EConst(CStr(txt))} :: args2 -> (txt, args2)
        | {edesc = C.EVar id} :: args2 -> (id.name, args2)
        | _::args2 -> error "argument 2 of '__builtin_debug' must be either a string literal or a variable"; ("", args2)
        | [] -> assert false (* catched earlier *) in
      let targs2 = convertTypAnnotArgs env args2 in
      Ebuiltin(
         AST.EF_debug(P.of_int64 kind, intern_string text,
                 typlist_of_typelist targs2),
        targs2, convertExprList env args2, convertTyp env e.etyp)

  | C.ECall({edesc = C.EVar {name = "__builtin_annot"}}, args) ->
      begin match args with
      | {edesc = C.EConst(CStr txt)} :: args1 ->
          let targs1 = convertTypAnnotArgs env args1 in
          Ebuiltin(
             AST.EF_annot(P.of_int 1,coqstring_of_camlstring txt, typlist_of_typelist targs1),
            targs1, convertExprList env args1, convertTyp env e.etyp)
      | _ ->
          error "argument 1 of '__builtin_annot' must be a string literal";
          ezero
      end

  | C.ECall({edesc = C.EVar {name = "__builtin_annot_intval"}}, args) ->
      begin match args with
      | [ {edesc = C.EConst(CStr txt)}; arg ] ->
          let targ = convertTyp env
                         (Cutil.default_argument_conversion env arg.etyp) in
          Ebuiltin(AST.EF_annot_val(P.of_int 1,coqstring_of_camlstring txt, typ_of_type targ),
                   Tcons(targ, Tnil), convertExprList env [arg],
                   convertTyp env e.etyp)
      | _ ->
          error "argument 1 of '__builtin_annot_intval' must be a string literal";
          ezero
      end

  | C.ECall({edesc = C.EVar {name = "__builtin_ais_annot"}}, args) when Configuration.elf_target ->
      begin match args with
      | {edesc = C.EConst(CStr txt)} :: args1 ->
        let file,line = !currentLocation in
        let fun_name = !currentFunction in
        let loc_string = Printf.sprintf "# file:%s line:%d function:%s\n" file line fun_name in
        let targs1 = convertTypAnnotArgs env args1 in
        AisAnnot.validate_ais_annot env !currentLocation txt args1;
          Ebuiltin(
             AST.EF_annot(P.of_int 2,coqstring_of_camlstring (loc_string ^ txt), typlist_of_typelist targs1),
            targs1, convertExprList env args1, convertTyp env e.etyp)
      | _ ->
          error "argument 1 of '__builtin_ais_annot' must be a string literal";
          ezero
      end

 | C.ECall({edesc = C.EVar {name = "__builtin_memcpy_aligned"}}, args) ->
      make_builtin_memcpy (convertExprList env args)

  | C.ECall({edesc = C.EVar {name = "__builtin_fabs"}}, [arg]) ->
      ewrap (Ctyping.eunop Cop.Oabsfloat (convertExpr env arg))

  | C.ECall({edesc = C.EVar {name = "__builtin_va_start"}} as fn, [arg]) ->
      Ecall(convertExpr env fn,
            Econs(va_list_ptr(convertExpr env arg), Enil),
            convertTyp env e.etyp)

  | C.ECall({edesc = C.EVar {name = "__builtin_va_arg"}}, [arg1; arg2]) ->
      make_builtin_va_arg env (convertTyp env e.etyp) (convertExpr env arg1)

  | C.ECall({edesc = C.EVar {name = "__builtin_va_end"}}, _) ->
      Ecast (ezero, Tvoid)

  | C.ECall({edesc = C.EVar {name = "__builtin_va_copy"}}, [arg1; arg2]) ->
      let dst = convertExpr env arg1 in
      let src = convertExpr env arg2 in
      Ebuiltin( AST.EF_memcpy(Z.of_uint CBuiltins.size_va_list, Z.of_uint 4),
               Tcons(Tpointer(Tvoid, noattr),
                 Tcons(Tpointer(Tvoid, noattr), Tnil)),
               Econs(va_list_ptr dst, Econs(va_list_ptr src, Enil)),
               Tvoid)

  | C.ECall({edesc = C.EVar {name = "__builtin_sel"}}, [arg1; arg2; arg3]) ->
      ewrap (Ctyping.eselection (convertExpr env arg1)
                                (convertExpr env arg2) (convertExpr env arg3))

  | C.ECall({edesc = C.EVar {name = "__builtin_expect"}}, [arg1; arg2]) ->
      convertExpr env arg1

  | C.ECall({edesc = C.EVar {name = "printf"}}, args)
    when !Clflags.option_interp ->
      let targs = convertTypArgs env [] args
      and tres = convertTyp env e.etyp in
      let sg =
        signature_of_type targs tres
           { AST.cc_vararg = Some (coqint_of_camlint 1l); cc_unproto = false; cc_structret = false} in
      Ebuiltin( AST.EF_external(coqstring_of_camlstring "printf", sg),
               targs, convertExprList env args, tres)

  | C.ECall(fn, args) ->
      begin match projFunType env fn.etyp with
      | None ->
          error "wrong type for function part of a call"
      | Some(tres, targs, va) ->
          if targs = None && not !Clflags.option_funprototyped then
            unsupported "call to unprototyped function (consider adding option [-funprototyped])";
          if va && not !Clflags.option_fvararg_calls then
            unsupported "call to variable-argument function (consider adding option [-fvararg-calls])"
      end;
      checkResultType env e.etyp;
      List.iter (fun arg -> checkArgumentType env arg.etyp) args;
      ewrap (Ctyping.ecall (convertExpr env fn) (convertExprList env args))

and convertLvalue env e =
  match e.edesc with
  | C.EVar id ->
      Evar(intern_string id.name, convertTyp env e.etyp)
  | C.EUnop(C.Oderef, e1) ->
      ewrap (Ctyping.ederef (convertExpr env e1))
  | C.EUnop(C.Odot id, e1) ->
      ewrap (Ctyping.efield !comp_env (convertExpr env e1) (intern_string id))
  | C.EUnop(C.Oarrow id, e1) ->
      let e1' = convertExpr env e1 in
      let e2' = ewrap (Ctyping.ederef e1') in
      let e3' = ewrap (Ctyping.evalof e2') in
      ewrap (Ctyping.efield !comp_env e3' (intern_string id))
  | C.EBinop(C.Oindex, e1, e2, _) ->
      let e1' = convertExpr env e1 and e2' = convertExpr env e2 in
      let e3' = ewrap (Ctyping.ebinop Cop.Oadd e1' e2') in
      ewrap (Ctyping.ederef e3')
  | C.EConst(C.CStr s) ->
      let ty = typeStringLiteral s in
      Evar(name_for_string_literal s, ty)
  | C.EConst(C.CWStr(s, ik)) ->
      let ty = typeWideStringLiteral s ik in
      Evar(name_for_wide_string_literal s ik, ty)
  | _ ->
      error "illegal lvalue"; ezero

and convertExprList env el =
  match el with
  | [] -> Enil
  | e1 :: el' -> Econs(convertExpr env e1, convertExprList env el')

(* Extended assembly *)

let convertAsm loc env txt outputs inputs clobber =
  let (txt', output', inputs') =
    ExtendedAsm.transf_asm loc env txt outputs inputs clobber in
  let clobber' =
    List.map (fun s -> coqstring_uppercase_ascii_of_camlstring s) clobber in
  let ty_res =
    match output' with None -> TVoid [] | Some e -> e.etyp in
  (* Build the Ebuiltin expression *)
  let e =
    let tinputs = convertTypAnnotArgs env inputs' in
    let toutput = convertTyp env ty_res in
    Ebuiltin( AST.EF_inline_asm(coqstring_of_camlstring txt',
                           signature_of_type tinputs toutput  AST.cc_default,
                           clobber'),
             tinputs,
             convertExprList env inputs',
             toutput) in
  (* Add an assignment to the output, if any *)
  match output' with
  | None -> e
  | Some lhs -> Eassign (convertLvalue env lhs, e, typeof e)

(** Annotations for line numbers *)

(** Statements *)

let swrap = function
  | Errors.OK s -> s
  | Errors.Error msg ->
      error "retyping error: %s" (string_of_errmsg msg); Csyntax.Sskip

let rec convertStmt env s =
  updateLoc s.sloc;
  match s.sdesc with
  | C.Sskip ->
      Csyntax.Sskip
  | C.Sdo e ->
      swrap (Ctyping.sdo (convertExpr env e))
  | C.Sseq(s1, s2) ->
      let s1' = convertStmt env s1 in
      let s2' = convertStmt env s2 in
      Ssequence(s1', s2')
  | C.Sif(e, s1, s2) ->
      let te = convertExpr env e in
      swrap (Ctyping.sifthenelse te (convertStmt env s1) (convertStmt env s2))
  | C.Swhile(e, s1) ->
      let te = convertExpr env e in
      swrap (Ctyping.swhile te (convertStmt env s1))
  | C.Sdowhile(s1, e) ->
      let te = convertExpr env e in
      swrap (Ctyping.sdowhile te (convertStmt env s1))
  | C.Sfor(s1, e, s2, s3) ->
      let te = convertExpr env e in
      swrap (Ctyping.sfor
                  (convertStmt env s1) te
                  (convertStmt env s2) (convertStmt env s3))
  | C.Sbreak ->
      Csyntax.Sbreak
  | C.Scontinue ->
      Csyntax.Scontinue
  | C.Sswitch(e, s1) ->
      let te = convertExpr env e in
      swrap (Ctyping.sswitch te (convertSwitch env (is_int64 env e.etyp) s1))
  | C.Slabeled(C.Slabel lbl, s1) ->
      Csyntax.Slabel(intern_string lbl, convertStmt env s1)
  | C.Slabeled(C.Scase _, _) ->
      unsupported "'case' statement not in 'switch' statement"; Csyntax.Sskip
  | C.Slabeled(C.Sdefault, _) ->
      unsupported "'default' statement not in 'switch' statement"; Csyntax.Sskip
  | C.Sgoto lbl ->
      Csyntax.Sgoto(intern_string lbl)
  | C.Sreturn None ->
      Csyntax.Sreturn None
  | C.Sreturn(Some e) ->
      Csyntax.Sreturn(Some(convertExpr env e))
  | C.Sblock _ ->
      unsupported "nested blocks"; Csyntax.Sskip
  | C.Sdecl _ ->
      unsupported "inner declarations"; Csyntax.Sskip
  | C.Sasm(attrs, txt, outputs, inputs, clobber) ->
      if not !Clflags.option_finline_asm then
        unsupported "inline 'asm' statement (consider adding option [-finline-asm])";
      Csyntax.Sdo (convertAsm s.sloc env txt outputs inputs clobber)

and convertSwitch env is_64 = function
  | {sdesc = C.Sskip} ->
      LSnil
  | {sdesc = C.Slabeled(lbl, s)} ->
      convertSwitchCase env is_64 lbl s LSnil
  | {sdesc = C.Sseq ({sdesc = C.Slabeled(lbl, s)}, rem)} ->
      convertSwitchCase env is_64 lbl s (convertSwitch env is_64 rem)
  | _ ->
      assert false

and convertSwitchCase env is_64 lbl s k =
  let lbl' =
    match lbl with
    | C.Sdefault ->
        None
    | C.Scase(e, v) ->
        Some (if is_64 then Z.of_uint64 v else Z.of_uint32 (Int64.to_int32 v))
    | _ -> assert false in
  LScons(lbl', convertStmt env s, k)

(** Function definitions *)

let convertFundef loc env fd =
  checkFunctionType env fd.fd_ret (Some fd.fd_params);
  updateFunction fd.fd_name.name;
  if fd.fd_vararg && not !Clflags.option_fvararg_calls then
    unsupported "variable-argument function (consider adding option [-fvararg-calls])";
  let ret =
    convertTyp env fd.fd_ret in
  let params =
    List.map
      (fun (id, ty) ->
        let id' = intern_string id.name in
        Debug.atom_parameter fd.fd_name id id';
        (id', convertTyp env ty))
      fd.fd_params in
  let vars =
    List.map
      (fun (sto, id, ty, init) ->
        if sto = Storage_extern || sto = Storage_static then
          unsupported "'static' or 'extern' local variable";
        if init <> None then
          unsupported "initialized local variable";
        let id' = intern_string id.name in
        Debug.atom_local_variable id id';
        (id', convertTyp env ty))
      fd.fd_locals in
  let body' = convertStmt env fd.fd_body in
  let id' = intern_string fd.fd_name.name in
  let noinline =  Cutil.find_custom_attributes ["noinline";"__noinline__"] fd.fd_attrib <> [] in
  let inline = if noinline || fd.fd_vararg then (* PR#15 *)
      Noinline
    else if fd.fd_inline then
      Inline
    else
      No_specifier in
  Debug.atom_global fd.fd_name id';
  Hashtbl.add decl_atom id'
    { a_storage = fd.fd_storage;
      a_alignment = None;
      a_size = None;
      a_sections = Sections.for_function env loc id' fd.fd_attrib;
      a_access = Sections.Access_default;
      a_inline = inline;
      a_loc = loc };
  (id',  AST.Gfun(Ctypes.Internal
          {fn_return = ret;
           fn_callconv = convertCallconv fd.fd_ret (Some fd.fd_params)
                                         fd.fd_vararg fd.fd_attrib;
           fn_params = params;
           fn_vars = vars;
           fn_body = body'}))

(** External function declaration *)

let re_builtin = Str.regexp "__builtin_"

let convertFundecl env (sto, id, ty, optinit) =
  let (args, res, cconv) =
    match convertTyp env ty with
    | Tfunction(args, res, cconv) -> (args, res, cconv)
    | _ -> assert false in
  let id' = intern_string id.name in
  let id'' = coqstring_of_camlstring id.name in
  let sg = signature_of_type args res cconv in
  let ef =
    if id.name = "malloc" then AST.EF_malloc else
    if id.name = "free" then AST.EF_free else
    if Str.string_match re_builtin id.name 0
    && List.mem_assoc id.name builtins.builtin_functions
    then AST.EF_builtin(id'', sg)
    else AST.EF_external(id'', sg) in
  (id',  AST.Gfun(Ctypes.External(ef, args, res, cconv)))

(** Initializers *)

let rec convertInit env init =
  match init with
  | C.Init_single e ->
      Initializers.Init_single (convertExpr env e)
  | C.Init_array il ->
      Initializers.Init_array (convertInitList env (List.rev il) Initializers.Init_nil)
  | C.Init_struct(_, flds) ->
      Initializers.Init_struct (convertInitList env (List.rev_map snd flds) Initializers.Init_nil)
  | C.Init_union(_, fld, i) ->
      Initializers.Init_union (intern_string fld.fld_name, convertInit env i)

and convertInitList env il accu =
  match il with
  | [] -> accu
  | i :: il' -> convertInitList env il' (Initializers.Init_cons(convertInit env i, accu))

let convertInitializer env ty i =
  match Initializers.transl_init
               !comp_env (convertTyp env ty) (convertInit env i)
  with
  | Errors.OK init -> init
  | Errors.Error msg ->
      error "initializer element is not a compile-time constant (%s)"
                     (string_of_errmsg msg); []

(** Global variable *)

let convertGlobvar loc env (sto, id, ty, optinit) =
  let id' = intern_string id.name in
  Debug.atom_global id id';
  let ty' = convertTyp env ty in
  let sz = Ctypes.sizeof !comp_env ty' in
  let al = Ctypes.alignof !comp_env ty' in
  let attr = Cutil.attributes_of_type env ty in
  let init' =
    match optinit with
    | None ->
        if sto = C.Storage_extern then [] else [AST.Init_space sz]
    | Some i ->
        convertInitializer env ty i in
  let initialized =
    if optinit = None then Sections.Uninit else
    if List.exists (function AST.Init_addrof _ -> true | _ -> false) init'
    then Sections.Init_reloc
    else Sections.Init in
  let (section, access) =
    Sections.for_variable env loc id' ty initialized in
  if Z.gt sz (Z.of_uint64 0xFFFF_FFFFL) then
    error "'%s' is too big (%s bytes)"
                   id.name (Z.to_string sz);
  if sto <> C.Storage_extern && Cutil.incomplete_type env ty then
    error "'%s' has incomplete type" id.name;
  Hashtbl.add decl_atom id'
    { a_storage = sto;
      a_alignment = Some (Z.to_int al);
      a_size = Some (Z.to_int64 sz);
      a_sections = [section];
      a_access = access;
      a_inline = No_specifier;
      a_loc = loc };
  let volatile = List.mem C.AVolatile attr in
  let readonly = List.mem C.AConst attr && not volatile in
  (id',  AST.Gvar { AST.gvar_info = ty'; gvar_init = init';
              gvar_readonly = readonly; gvar_volatile = volatile})

(** Convert a list of global declarations.
  Result is a list of CompCert C global declarations (functions +
  variables). *)

let rec convertGlobdecls env res gl =
  match gl with
  | [] -> List.rev res
  | g :: gl' ->
      updateLoc g.gloc;
      match g.gdesc with
      | C.Gdecl((sto, id, ty, optinit) as d) ->
          (* Functions become external declarations.
             Other types become variable declarations. *)
          begin match Cutil.unroll env ty with
          | TFun(tres, targs, va, a) ->
              if targs = None then
                warning Diagnostics.Unnamed "'%s' is declared without a function prototype" id.name;
              convertGlobdecls env (convertFundecl env d :: res) gl'
          | _ ->
              convertGlobdecls env (convertGlobvar g.gloc env d :: res) gl'
          end
      | C.Gfundef fd ->
          convertGlobdecls env (convertFundef g.gloc env fd :: res) gl'
      | C.Gcompositedecl _ | C.Gcompositedef _ | C.Gtypedef _ | C.Genumdef _ ->
          (* Composites are treated in a separate pass,
             typedefs are unrolled, and enum tags are folded.
             So we just skip their declarations. *)
          convertGlobdecls env res gl'
      | C.Gpragma s ->
          if not (!process_pragma_hook s) then
            warning Diagnostics.Unknown_pragmas "unknown pragma ignored";
          convertGlobdecls env res gl'

(** Convert struct and union declarations.
    Result is a list of CompCert C composite declarations. *)

let rec convertCompositedefs env res gl =
  match gl with
  | [] -> List.rev res
  | g :: gl' ->
      updateLoc g.gloc;
      match g.gdesc with
      | C.Gcompositedef(su, id, a, m) ->
          convertCompositedefs env
             (convertCompositedef env su id a m :: res) gl'
      | _ ->
          convertCompositedefs env res gl'

(** Add declarations for the helper functions
    (for varargs and for int64 arithmetic) *)

let helper_functions () = [
    "__compcert_va_int32",
        Tint(I32, Unsigned, noattr),
        [Tpointer(Tvoid, noattr)];
    "__compcert_va_int64",
        Tlong(Unsigned, noattr),
        [Tpointer(Tvoid, noattr)];
    "__compcert_va_float64",
        Tfloat(F64, noattr),
        [Tpointer(Tvoid, noattr)];
    "__compcert_va_composite",
        Tpointer(Tvoid, noattr),
        [Tpointer(Tvoid, noattr); convertIkind (Cutil.size_t_ikind()) noattr];
    "__compcert_i64_dtos",
        Tlong(Signed, noattr),
        [Tfloat(F64, noattr)];
    "__compcert_i64_dtou",
        Tlong(Unsigned, noattr),
        [Tfloat(F64, noattr)];
    "__compcert_i64_stod",
        Tfloat(F64, noattr),
        [Tlong(Signed, noattr)];
    "__compcert_i64_utod",
        Tfloat(F64, noattr),
        [Tlong(Unsigned, noattr)];
    "__compcert_i64_stof",
        Tfloat(F32, noattr),
        [Tlong(Signed, noattr)];
    "__compcert_i64_utof",
        Tfloat(F32, noattr),
        [Tlong(Unsigned, noattr)];
    "__compcert_i64_sdiv",
        Tlong(Signed, noattr),
        [Tlong(Signed, noattr); Tlong(Signed, noattr)];
    "__compcert_i64_udiv",
        Tlong(Unsigned, noattr),
        [Tlong(Unsigned, noattr); Tlong(Unsigned, noattr)];
    "__compcert_i64_smod",
        Tlong(Signed, noattr),
        [Tlong(Signed, noattr); Tlong(Signed, noattr)];
    "__compcert_i64_umod",
        Tlong(Unsigned, noattr),
        [Tlong(Unsigned, noattr); Tlong(Unsigned, noattr)];
    "__compcert_i64_shl",
        Tlong(Signed, noattr),
        [Tlong(Signed, noattr); Tint(I32, Signed, noattr)];
    "__compcert_i64_shr",
        Tlong(Unsigned, noattr),
        [Tlong(Unsigned, noattr); Tint(I32, Signed, noattr)];
    "__compcert_i64_sar",
        Tlong(Signed, noattr),
        [Tlong(Signed, noattr); Tint(I32, Signed, noattr)];
    "__compcert_i64_smulh",
        Tlong(Signed, noattr),
        [Tlong(Signed, noattr); Tlong(Signed, noattr)];
    "__compcert_i64_umulh",
        Tlong(Unsigned, noattr),
        [Tlong(Unsigned, noattr); Tlong(Unsigned, noattr)]
]

let helper_function_declaration (name, tyres, tyargs) =
  let tyargs =
    List.fold_right (fun t tl -> Tcons(t, tl)) tyargs Tnil in
  let ef =
    AST.EF_runtime(coqstring_of_camlstring name,
                   signature_of_type tyargs tyres AST.cc_default) in
  (intern_string name,
   AST.Gfun (Ctypes.External(ef, tyargs, tyres, AST.cc_default)))

let add_helper_functions globs =
  List.map helper_function_declaration (helper_functions()) @ globs

(** Build environment of typedefs, structs, unions and enums *)

let rec translEnv env = function
  | [] -> env
  | g :: gl ->
      let env' =
        match g.gdesc with
        | C.Gcompositedecl(su, id, attr) ->
            Env.add_composite env id (Cutil.composite_info_decl su attr)
        | C.Gcompositedef(su, id, attr, fld) ->
            Env.add_composite env id (Cutil.composite_info_def env su attr fld)
        | C.Gtypedef(id, ty) ->
            Env.add_typedef env id ty
        | C.Genumdef(id, attr, members) ->
            Env.add_enum env id {Env.ei_members = members; ei_attr = attr}
        | _ ->
            env in
      translEnv env' gl

(** Eliminate multiple declarations of globals. *)

module IdentSet = Set.Make(struct type t = C.ident let compare = compare end)

let cleanupGlobals p =

  (* First pass: determine what is defined *)
  let strong = ref IdentSet.empty (* def functions or variables with inits *)
  and weak = ref IdentSet.empty (* variables without inits *)
  and extern = ref IdentSet.empty in (* extern decls *)
  let classify_def g =
        updateLoc g.gloc;
    match g.gdesc with
    | C.Gfundef fd ->
        if IdentSet.mem fd.fd_name !strong then
          error "multiple definitions of %s" fd.fd_name.name;
        strong := IdentSet.add fd.fd_name !strong
    | C.Gdecl(Storage_extern, id, ty, init) ->
        extern := IdentSet.add id !extern
    | C.Gdecl(sto, id, ty, Some i) ->
        if IdentSet.mem id !strong then
          error "multiple definitions of %s" id.name;
        strong := IdentSet.add id !strong
    | C.Gdecl(sto, id, ty, None) ->
        weak := IdentSet.add id !weak
    | _ -> () in
  List.iter classify_def p;

  (* Second pass: keep "best" definition for each identifier *)
  let rec clean defs accu = function
    | [] -> accu
    | g :: gl ->
        updateLoc g.gloc;
        match g.gdesc with
        | C.Gdecl(sto, id, ty, init) ->
            let better_def_exists =
              if sto = Storage_extern then
                IdentSet.mem id !strong || IdentSet.mem id !weak
              else if init = None then
                IdentSet.mem id !strong
              else
                false in
            if IdentSet.mem id defs || better_def_exists
            then clean defs accu gl
            else clean (IdentSet.add id defs) (g :: accu) gl
        | C.Gfundef fd ->
            clean (IdentSet.add fd.fd_name defs) (g :: accu) gl
        | _ ->
            clean defs (g :: accu) gl
  in clean IdentSet.empty [] (List.rev p)

(** Extract the list of public (non-static) names *)

let public_globals gl =
  List.fold_left
    (fun accu (id, g) -> if atom_is_static id then accu else id :: accu)
    [] gl

(** Complete the debug information of struct/unions *)

(* [debug_set_struct_mem_ofs sid ((id,byte_ofs), bits)] sets the
   byte and bit offset information of the member [id] of the struct
   [sid] *)
let debug_set_struct_mem_ofs sid ((id, byte_ofs), bits) =
  let byte_ofs = Z.to_int byte_ofs in
  match bits with
  | Full ->
    Debug.set_member_offset ~str_id:sid ~fld_id:id byte_ofs
  | Bits (sz, sg, bit_pos, width) ->
    let bit_pos = Z.to_int bit_pos in
    let sz = Z.to_int (bitalignof_intsize sz) in
    let bit_pos = if not !Machine.config.Machine.bitfields_msb_first then
        sz - bit_pos - (Z.to_int width)
      else
        bit_pos in
    let size = sz / 8 in
    Debug.set_bitfield_offset ~str_id:sid ~fld_id:id ~bit_ofs:bit_pos ~byte_ofs:byte_ofs ~size:size

(* [debug_set_struct_ofs env types] sets the missing offset information
   of all structs in the list of composites in [types] if we compile
   with debug information. *)
let debug_set_struct_ofs env typs =
  if !Clflags.option_g then
    List.iter (function
        | Composite (sid, Ctypes.Struct, ms, a) ->
          let layout = Ctypes.layout_struct env ms in
          begin match layout with
            | Errors.OK layout ->
              List.iter (debug_set_struct_mem_ofs sid) layout
            | Errors.Error _ -> ()
          end
        | _ -> ()) typs

(** Convert a [C.program] into a [Csyntax.program] *)

let convertProgram p =
  Diagnostics.reset();
  stringNum := 0;
  Hashtbl.clear decl_atom;
  Hashtbl.clear stringTable;
  Hashtbl.clear wstringTable;
  let p = cleanupGlobals (Env.initial_declarations() @ p) in
  try
    let env = translEnv Env.empty p in
    let typs = convertCompositedefs env [] p in
    match build_composite_env typs with
    | Errors.Error msg ->
      fatal_error "incorrect struct or union definition: %s"
                       (string_of_errmsg msg)
    | Errors.OK ce ->
        comp_env := ce;
        let gl1 = convertGlobdecls env [] p in
        let gl2 = globals_for_strings gl1 in
        let gl3 = add_helper_functions gl2 in
        comp_env := Maps.PTree.empty;
        let p' =
          { prog_defs = gl3;
            prog_public = public_globals gl3;
            prog_main = intern_string !Clflags.main_function_name;
            prog_types = typs;
            prog_comp_env = ce } in
        debug_set_struct_ofs ce typs;
        Diagnostics.check_errors ();
        p'
  with Env.Error msg ->
    fatal_error "%s" (Env.error_message msg)