aboutsummaryrefslogtreecommitdiffstats
path: root/flocq/IEEE754/BinarySingleNaN.v
blob: f0259966fe5dff29de474782eae7d0c67e4ecc35 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
(**
This file is part of the Flocq formalization of floating-point
arithmetic in Coq: http://flocq.gforge.inria.fr/

Copyright (C) 2010-2018 Sylvie Boldo
#<br />#
Copyright (C) 2010-2018 Guillaume Melquiond

This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 3 of the License, or (at your option) any later version.

This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
COPYING file for more details.
*)

(** * IEEE-754 arithmetic *)

From Coq Require Import ZArith Reals Psatz SpecFloat.

Require Import Core Round Bracket Operations Div Sqrt Relative.

Definition SF2R beta x :=
  match x with
  | S754_finite s m e => F2R (Float beta (cond_Zopp s (Zpos m)) e)
  | _ => 0%R
  end.

Class Prec_lt_emax prec emax := prec_lt_emax : (prec < emax)%Z.
Arguments prec_lt_emax prec emax {Prec_lt_emax}.

Section Binary.

(** [prec] is the number of bits of the mantissa including the implicit one;
    [emax] is the exponent of the infinities.
    For instance, binary32 is defined by [prec = 24] and [emax = 128]. *)
Variable prec emax : Z.
Context (prec_gt_0_ : Prec_gt_0 prec).
Context (prec_lt_emax_ : Prec_lt_emax prec emax).

Notation emin := (emin prec emax).
Notation fexp := (fexp prec emax).
Instance fexp_correct : Valid_exp fexp := FLT_exp_valid emin prec.
Instance fexp_monotone : Monotone_exp fexp := FLT_exp_monotone emin prec.

Notation canonical_mantissa := (canonical_mantissa prec emax).

Notation bounded := (SpecFloat.bounded prec emax).

Notation valid_binary := (valid_binary prec emax).

(** Basic type used for representing binary FP numbers.
    Note that there is exactly one such object per FP datum. *)

Inductive binary_float :=
  | B754_zero (s : bool)
  | B754_infinity (s : bool)
  | B754_nan : binary_float
  | B754_finite (s : bool) (m : positive) (e : Z) :
    bounded m e = true -> binary_float.

Definition SF2B x :=
  match x as x return valid_binary x = true -> binary_float with
  | S754_finite s m e => B754_finite s m e
  | S754_infinity s => fun _ => B754_infinity s
  | S754_zero s => fun _ => B754_zero s
  | S754_nan => fun _ => B754_nan
  end.

Definition B2SF x :=
  match x with
  | B754_finite s m e _ => S754_finite s m e
  | B754_infinity s => S754_infinity s
  | B754_zero s => S754_zero s
  | B754_nan => S754_nan
  end.

Definition B2R f :=
  match f with
  | B754_finite s m e _ => F2R (Float radix2 (cond_Zopp s (Zpos m)) e)
  | _ => 0%R
  end.

Theorem SF2R_B2SF :
  forall x,
  SF2R radix2 (B2SF x) = B2R x.
Proof.
now intros [sx|sx| |sx mx ex Hx].
Qed.

Theorem B2SF_SF2B :
  forall x Hx,
  B2SF (SF2B x Hx) = x.
Proof.
now intros [sx|sx| |sx mx ex] Hx.
Qed.

Theorem valid_binary_B2SF :
  forall x,
  valid_binary (B2SF x) = true.
Proof.
now intros [sx|sx| |sx mx ex Hx].
Qed.

Theorem SF2B_B2SF :
  forall x H,
  SF2B (B2SF x) H = x.
Proof.
intros [sx|sx| |sx mx ex Hx] H ; try easy.
apply f_equal, eqbool_irrelevance.
Qed.

Theorem SF2B_B2SF_valid :
  forall x,
  SF2B (B2SF x) (valid_binary_B2SF x) = x.
Proof.
intros x.
apply SF2B_B2SF.
Qed.

Theorem B2R_SF2B :
  forall x Hx,
  B2R (SF2B x Hx) = SF2R radix2 x.
Proof.
now intros [sx|sx| |sx mx ex] Hx.
Qed.

Theorem match_SF2B :
  forall {T} fz fi fn ff x Hx,
  match SF2B x Hx return T with
  | B754_zero sx => fz sx
  | B754_infinity sx => fi sx
  | B754_nan => fn
  | B754_finite sx mx ex _ => ff sx mx ex
  end =
  match x with
  | S754_zero sx => fz sx
  | S754_infinity sx => fi sx
  | S754_nan => fn
  | S754_finite sx mx ex => ff sx mx ex
  end.
Proof.
now intros T fz fi fn ff [sx|sx| |sx mx ex] Hx.
Qed.

Theorem canonical_canonical_mantissa :
  forall (sx : bool) mx ex,
  canonical_mantissa mx ex = true ->
  canonical radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex).
Proof.
intros sx mx ex H.
assert (Hx := Zeq_bool_eq _ _ H). clear H.
apply sym_eq.
simpl.
pattern ex at 2 ; rewrite <- Hx.
apply (f_equal fexp).
rewrite mag_F2R_Zdigits.
rewrite <- Zdigits_abs.
rewrite Zpos_digits2_pos.
now case sx.
now case sx.
Qed.

Theorem canonical_bounded :
  forall sx mx ex,
  bounded mx ex = true ->
  canonical radix2 fexp (Float radix2 (cond_Zopp sx (Zpos mx)) ex).
Proof.
intros sx mx ex H.
apply canonical_canonical_mantissa.
now apply andb_prop in H.
Qed.

Lemma emin_lt_emax :
  (emin < emax)%Z.
Proof.
unfold emin.
unfold Prec_gt_0 in prec_gt_0_.
unfold Prec_lt_emax in prec_lt_emax_.
lia.
Qed.

Lemma fexp_emax :
  fexp emax = (emax - prec)%Z.
Proof.
apply Z.max_l.
unfold emin.
unfold Prec_gt_0 in prec_gt_0_.
unfold Prec_lt_emax in prec_lt_emax_.
lia.
Qed.

Theorem generic_format_B2R :
  forall x,
  generic_format radix2 fexp (B2R x).
Proof.
intros [sx|sx| |sx mx ex Hx] ; try apply generic_format_0.
simpl.
apply generic_format_canonical.
now apply canonical_bounded.
Qed.

Theorem FLT_format_B2R :
  forall x,
  FLT_format radix2 emin prec (B2R x).
Proof with auto with typeclass_instances.
intros x.
apply FLT_format_generic...
apply generic_format_B2R.
Qed.

Theorem B2SF_inj :
  forall x y : binary_float,
  B2SF x = B2SF y ->
  x = y.
Proof.
intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
(* *)
intros H.
now inversion H.
(* *)
intros H.
now inversion H.
(* *)
intros H.
inversion H.
clear H.
revert Hx.
rewrite H2, H3.
intros Hx.
apply f_equal, eqbool_irrelevance.
Qed.

Definition is_finite_strict f :=
  match f with
  | B754_finite _ _ _ _ => true
  | _ => false
  end.

Definition is_finite_strict_SF f :=
  match f with
  | S754_finite _ _ _ => true
  | _ => false
  end.

Theorem is_finite_strict_B2R :
  forall x,
  B2R x <> 0%R ->
  is_finite_strict x = true.
Proof.
now intros [sx|sx| |sx mx ex Bx] Hx.
Qed.

Theorem is_finite_strict_SF2B :
  forall x Hx,
  is_finite_strict (SF2B x Hx) = is_finite_strict_SF x.
Proof.
now intros [sx|sx| |sx mx ex] Hx.
Qed.

Theorem B2R_inj:
  forall x y : binary_float,
  is_finite_strict x = true ->
  is_finite_strict y = true ->
  B2R x = B2R y ->
  x = y.
Proof.
intros [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ; try easy.
simpl.
intros _ _ Heq.
assert (Hs: sx = sy).
(* *)
revert Heq. clear.
case sx ; case sy ; try easy ;
  intros Heq ; apply False_ind ; revert Heq.
apply Rlt_not_eq.
apply Rlt_trans with R0.
now apply F2R_lt_0.
now apply F2R_gt_0.
apply Rgt_not_eq.
apply Rgt_trans with R0.
now apply F2R_gt_0.
now apply F2R_lt_0.
assert (mx = my /\ ex = ey).
(* *)
refine (_ (canonical_unique _ fexp _ _ _ _ Heq)).
rewrite Hs.
now case sy ; intro H ; injection H ; split.
now apply canonical_bounded.
now apply canonical_bounded.
(* *)
revert Hx.
rewrite Hs, (proj1 H), (proj2 H).
intros Hx.
apply f_equal.
apply eqbool_irrelevance.
Qed.

Definition Bsign x :=
  match x with
  | B754_nan => false
  | B754_zero s => s
  | B754_infinity s => s
  | B754_finite s _ _ _ => s
  end.

Definition sign_SF x :=
  match x with
  | S754_nan => false
  | S754_zero s => s
  | S754_infinity s => s
  | S754_finite s _ _ => s
  end.

Theorem Bsign_SF2B :
  forall x H,
  Bsign (SF2B x H) = sign_SF x.
Proof.
now intros [sx|sx| |sx mx ex] H.
Qed.

Definition is_finite f :=
  match f with
  | B754_finite _ _ _ _ => true
  | B754_zero _ => true
  | _ => false
  end.

Definition is_finite_SF f :=
  match f with
  | S754_finite _ _ _ => true
  | S754_zero _ => true
  | _ => false
  end.

Theorem is_finite_SF2B :
  forall x Hx,
  is_finite (SF2B x Hx) = is_finite_SF x.
Proof.
now intros [| | |].
Qed.

Theorem is_finite_SF_B2SF :
  forall x,
  is_finite_SF (B2SF x) = is_finite x.
Proof.
now intros [| | |].
Qed.

Theorem B2R_Bsign_inj:
  forall x y : binary_float,
    is_finite x = true ->
    is_finite y = true ->
    B2R x = B2R y ->
    Bsign x = Bsign y ->
    x = y.
Proof.
intros. destruct x, y; try (apply B2R_inj; now eauto).
- simpl in H2. congruence.
- symmetry in H1. apply Rmult_integral in H1.
  destruct H1. apply (eq_IZR _ 0) in H1. destruct s0; discriminate H1.
  simpl in H1. pose proof (bpow_gt_0 radix2 e).
  rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3.
- apply Rmult_integral in H1.
  destruct H1. apply (eq_IZR _ 0) in H1. destruct s; discriminate H1.
  simpl in H1. pose proof (bpow_gt_0 radix2 e).
  rewrite H1 in H3. apply Rlt_irrefl in H3. destruct H3.
Qed.

Definition is_nan f :=
  match f with
  | B754_nan => true
  | _ => false
  end.

Definition is_nan_SF f :=
  match f with
  | S754_nan => true
  | _ => false
  end.

Theorem is_nan_SF2B :
  forall x Hx,
  is_nan (SF2B x Hx) = is_nan_SF x.
Proof.
now intros [| | |].
Qed.

Theorem is_nan_SF_B2SF :
  forall x,
  is_nan_SF (B2SF x) = is_nan x.
Proof.
now intros [| | |].
Qed.

Definition erase (x : binary_float) : binary_float.
Proof.
destruct x as [s|s| |s m e H].
- exact (B754_zero s).
- exact (B754_infinity s).
- exact B754_nan.
- apply (B754_finite s m e).
  destruct bounded.
  apply eq_refl.
  exact H.
Defined.

Theorem erase_correct :
  forall x, erase x = x.
Proof.
destruct x as [s|s| |s m e H] ; try easy ; simpl.
- apply f_equal, eqbool_irrelevance.
Qed.

(** Opposite *)

Definition Bopp x :=
  match x with
  | B754_nan => x
  | B754_infinity sx => B754_infinity (negb sx)
  | B754_finite sx mx ex Hx => B754_finite (negb sx) mx ex Hx
  | B754_zero sx => B754_zero (negb sx)
  end.

Theorem Bopp_involutive :
  forall x,
  Bopp (Bopp x) = x.
Proof.
now intros [sx|sx| |sx mx ex Hx] ; simpl ; try rewrite Bool.negb_involutive.
Qed.

Theorem B2R_Bopp :
  forall x,
  B2R (Bopp x) = (- B2R x)%R.
Proof.
intros [sx|sx| |sx mx ex Hx]; apply sym_eq ; try apply Ropp_0.
simpl.
rewrite <- F2R_opp.
now case sx.
Qed.

Theorem is_nan_Bopp :
  forall x,
  is_nan (Bopp x) = is_nan x.
Proof.
now intros [| | |].
Qed.

Theorem is_finite_Bopp :
  forall x,
  is_finite (Bopp x) = is_finite x.
Proof.
now intros [| | |].
Qed.

Theorem is_finite_strict_Bopp :
  forall x,
  is_finite_strict (Bopp x) = is_finite_strict x.
Proof.
now intros [| | |].
Qed.

Lemma Bsign_Bopp :
  forall x, is_nan x = false -> Bsign (Bopp x) = negb (Bsign x).
Proof. now intros [s|s| |s m e H]. Qed.

(** Absolute value *)

Definition Babs (x : binary_float) : binary_float :=
  match x with
  | B754_nan => x
  | B754_infinity sx => B754_infinity false
  | B754_finite sx mx ex Hx => B754_finite false mx ex Hx
  | B754_zero sx => B754_zero false
  end.

Theorem B2R_Babs :
  forall x,
  B2R (Babs x) = Rabs (B2R x).
Proof.
intros [sx|sx| |sx mx ex Hx]; apply sym_eq ; try apply Rabs_R0.
simpl. rewrite <- F2R_abs. now destruct sx.
Qed.

Theorem is_nan_Babs :
  forall x,
  is_nan (Babs x) = is_nan x.
Proof.
now intros [| | |].
Qed.

Theorem is_finite_Babs :
  forall x,
  is_finite (Babs x) = is_finite x.
Proof.
now intros [| | |].
Qed.

Theorem is_finite_strict_Babs :
  forall x,
  is_finite_strict (Babs x) = is_finite_strict x.
Proof.
now intros [| | |].
Qed.

Theorem Bsign_Babs :
  forall x,
  Bsign (Babs x) = false.
Proof.
now intros [| | |].
Qed.

Theorem Babs_idempotent :
  forall (x: binary_float),
  Babs (Babs x) = Babs x.
Proof.
now intros [sx|sx| |sx mx ex Hx].
Qed.

Theorem Babs_Bopp :
  forall x,
  Babs (Bopp x) = Babs x.
Proof.
now intros [| | |].
Qed.

(** Comparison

[Some c] means ordered as per [c]; [None] means unordered. *)

Definition Bcompare (f1 f2 : binary_float) : option comparison :=
  SFcompare (B2SF f1) (B2SF f2).

Theorem Bcompare_correct :
  forall f1 f2,
  is_finite f1 = true -> is_finite f2 = true ->
  Bcompare f1 f2 = Some (Rcompare (B2R f1) (B2R f2)).
Proof.
assert (Hb: forall m1 e1 m2 e2, bounded m1 e1 = true -> bounded m2 e2 = true -> (e1 < e2)%Z ->
  (F2R (Float radix2 (Zpos m1) e1) < F2R (Float radix2 (Zpos m2) e2))%R).
{ intros m1 e1 m2 e2 B1 B2 He.
  apply (lt_cexp_pos radix2 fexp).
  now apply F2R_gt_0.
  rewrite <- (canonical_bounded false _ _ B1).
  rewrite <- (canonical_bounded false _ _ B2).
  easy. }
assert (Hc: forall m1 e1 m2 e2, bounded m1 e1 = true -> bounded m2 e2 = true ->
  Rcompare (F2R (Float radix2 (Zpos m1) e1)) (F2R (Float radix2 (Zpos m2) e2)) =
  match Z.compare e1 e2 with Eq => Z.compare (Zpos m1) (Zpos m2) | Lt => Lt | Gt => Gt end).
{ intros m1 e1 m2 e2 B1 B2.
  case Zcompare_spec ; intros He.
  + apply Rcompare_Lt.
    now apply Hb.
  + now rewrite He, Rcompare_F2R.
  + apply Rcompare_Gt.
    now apply Hb. }
intros [s1|[|]| |[|] m1 e1 B1] ; try easy ;
  intros [s2|[|]| |[|] m2 e2 B2] ; try easy ;
  intros _ _ ; apply (f_equal Some), eq_sym.
- now apply Rcompare_Eq.
- apply Rcompare_Gt.
  now apply F2R_lt_0.
- apply Rcompare_Lt.
  now apply F2R_gt_0.
- apply Rcompare_Lt.
  now apply F2R_lt_0.
- unfold B2R.
  rewrite 2!F2R_cond_Zopp.
  rewrite Rcompare_opp.
  rewrite Hc by easy.
  rewrite (Z.compare_antisym e1), (Z.compare_antisym (Zpos m1)).
  now case Z.compare.
- apply Rcompare_Lt.
  apply Rlt_trans with 0%R.
  now apply F2R_lt_0.
  now apply F2R_gt_0.
- apply Rcompare_Gt.
  now apply F2R_gt_0.
- apply Rcompare_Gt.
  apply Rlt_trans with 0%R.
  now apply F2R_lt_0.
  now apply F2R_gt_0.
- now apply Hc.
Qed.

Theorem Bcompare_swap :
  forall x y,
  Bcompare y x = match Bcompare x y with Some c => Some (CompOpp c) | None => None end.
Proof.
  intros.
  unfold Bcompare.
  destruct x as [ ? | [] | | [] mx ex Bx ];
  destruct y as [ ? | [] | | [] my ey By ]; simpl; try easy.
- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
  now rewrite (Pcompare_antisym mx my).
- rewrite <- (Zcompare_antisym ex ey). destruct (ex ?= ey)%Z; try easy.
  now rewrite Pcompare_antisym.
Qed.

Definition Beqb (f1 f2 : binary_float) : bool := SFeqb (B2SF f1) (B2SF f2).

Theorem Beqb_correct :
  forall f1 f2,
  is_finite f1 = true -> is_finite f2 = true ->
  Beqb f1 f2 = Req_bool (B2R f1) (B2R f2).
Proof.
intros f1 f2 F1 F2.
generalize (Bcompare_correct _ _ F1 F2).
unfold Beqb, SFeqb, Bcompare.
intros ->.
case Rcompare_spec; intro H; case Req_bool_spec; intro H'; try reflexivity; lra.
Qed.

Theorem Beqb_refl :
  forall f, Beqb f f = negb (is_nan f).
Proof.
intros f.
generalize (fun H => Beqb_correct f f H H).
destruct f as [s|[|]| |s m e H] ; try easy.
intros ->. 2: easy.
now apply Req_bool_true.
Qed.

Definition Bltb (f1 f2 : binary_float) : bool := SFltb (B2SF f1) (B2SF f2).

Theorem Bltb_correct :
  forall f1 f2,
  is_finite f1 = true -> is_finite f2 = true ->
  Bltb f1 f2 = Rlt_bool (B2R f1) (B2R f2).
Proof.
intros f1 f2 F1 F2.
generalize (Bcompare_correct _ _ F1 F2).
unfold Bltb, SFltb, Bcompare.
intros ->.
case Rcompare_spec; intro H; case Rlt_bool_spec; intro H'; try reflexivity; lra.
Qed.

Definition Bleb (f1 f2 : binary_float) : bool := SFleb (B2SF f1) (B2SF f2).

Theorem Bleb_correct :
  forall f1 f2,
  is_finite f1 = true -> is_finite f2 = true ->
  Bleb f1 f2 = Rle_bool (B2R f1) (B2R f2).
Proof.
intros f1 f2 F1 F2.
generalize (Bcompare_correct _ _ F1 F2).
unfold Bleb, SFleb, Bcompare.
intros ->.
case Rcompare_spec; intro H; case Rle_bool_spec; intro H'; try reflexivity; lra.
Qed.

Theorem bounded_le_emax_minus_prec :
  forall mx ex,
  bounded mx ex = true ->
  (F2R (Float radix2 (Zpos mx) ex)
   <= bpow radix2 emax - bpow radix2 (emax - prec))%R.
Proof.
clear prec_lt_emax_.
intros mx ex Hx.
apply Rle_trans with ((bpow radix2 (Zdigits radix2 (Z.pos mx)) - 1) * bpow radix2 ex)%R.
- apply Rmult_le_compat_r.
  apply bpow_ge_0.
  rewrite <- IZR_Zpower by apply Zdigits_ge_0.
  rewrite <- minus_IZR.
  apply IZR_le.
  apply Z.lt_le_pred.
  rewrite <- (Z.abs_eq (Z.pos mx)) by easy.
  apply Zdigits_correct.
- destruct (andb_prop _ _ Hx) as [H1 H2].
  apply Rle_trans with (bpow radix2 (ex + prec) - bpow radix2 ex)%R.
  { rewrite Rmult_minus_distr_r, Rmult_1_l, <- bpow_plus.
    apply Rplus_le_compat_r.
    apply bpow_le.
    apply Zeq_bool_eq in H1.
    rewrite Zpos_digits2_pos in H1.
    unfold fexp, FLT_exp in H1.
    clear -H1 ; lia. }
  replace emax with (emax - prec - ex + (ex + prec))%Z at 1 by ring.
  replace (emax - prec)%Z with (emax - prec - ex + ex)%Z at 2 by ring.
  do 2 rewrite (bpow_plus _ (emax - prec - ex)).
  rewrite <- Rmult_minus_distr_l.
  rewrite <- (Rmult_1_l (_ - _)) at 1.
  apply Rmult_le_compat_r.
  + apply Rle_0_minus, bpow_le.
    unfold Prec_gt_0 in prec_gt_0_.
    clear -prec_gt_0_ ; lia.
  + apply (bpow_le radix2 0).
    apply Zle_minus_le_0.
    now apply Zle_bool_imp_le.
Qed.

Theorem bounded_lt_emax :
  forall mx ex,
  bounded mx ex = true ->
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R.
Proof.
intros mx ex Hx.
destruct (andb_prop _ _ Hx) as (H1,H2).
generalize (Zeq_bool_eq _ _ H1). clear H1. intro H1.
generalize (Zle_bool_imp_le _ _ H2). clear H2. intro H2.
generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex).
destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex).
unfold mag_val.
intros H.
apply Rlt_le_trans with (bpow radix2 e').
change (Zpos mx) with (Z.abs (Zpos mx)).
rewrite F2R_Zabs.
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0.
apply bpow_le.
rewrite H. 2: discriminate.
revert H1. clear -H2.
rewrite Zpos_digits2_pos.
unfold fexp, FLT_exp.
intros ; lia.
Qed.

(* needs prec_lt_emax_, so backward-incompatible
Theorem bounded_le_emax_minus_prec :
  forall mx ex,
  bounded mx ex = true ->
  (F2R (Float radix2 (Zpos mx) ex)
   <= bpow radix2 emax - bpow radix2 (emax - prec))%R.
Proof.
intros mx ex Bx.
rewrite <- fexp_emax.
rewrite <- pred_bpow.
apply pred_ge_gt.
- exact fexp_correct.
- apply generic_format_canonical.
  now apply (canonical_bounded false).
- apply generic_format_FLT_bpow.
  exact prec_gt_0_.
  apply Zlt_le_weak, emin_lt_emax.
- now apply bounded_lt_emax.
Qed.
*)

Theorem bounded_ge_emin :
  forall mx ex,
  bounded mx ex = true ->
  (bpow radix2 emin <= F2R (Float radix2 (Zpos mx) ex))%R.
Proof.
intros mx ex Hx.
destruct (andb_prop _ _ Hx) as [H1 _].
apply Zeq_bool_eq in H1.
generalize (mag_F2R_Zdigits radix2 (Zpos mx) ex).
destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as [e' Ex].
unfold mag_val.
intros H.
assert (H0 : Zpos mx <> 0%Z) by easy.
rewrite Rabs_pos_eq in Ex by now apply F2R_ge_0.
refine (Rle_trans _ _ _ _ (proj1 (Ex _))).
2: now apply F2R_neq_0.
apply bpow_le.
rewrite H by easy.
revert H1.
rewrite Zpos_digits2_pos.
generalize (Zdigits radix2 (Zpos mx)) (Zdigits_gt_0 radix2 (Zpos mx) H0).
unfold fexp, FLT_exp.
clear -prec_gt_0_.
unfold Prec_gt_0 in prec_gt_0_.
intros ; lia.
Qed.

Theorem abs_B2R_le_emax_minus_prec :
  forall x,
  (Rabs (B2R x) <= bpow radix2 emax - bpow radix2 (emax - prec))%R.
Proof.
intros [sx|sx| |sx mx ex Hx] ; simpl ;
  [rewrite Rabs_R0 ; apply Rle_0_minus, bpow_le ;
   revert prec_gt_0_; unfold Prec_gt_0; lia..|].
rewrite <- F2R_Zabs, abs_cond_Zopp.
now apply bounded_le_emax_minus_prec.
Qed.

Theorem abs_B2R_lt_emax :
  forall x,
  (Rabs (B2R x) < bpow radix2 emax)%R.
Proof.
intros [sx|sx| |sx mx ex Hx] ; simpl ; try ( rewrite Rabs_R0 ; apply bpow_gt_0 ).
rewrite <- F2R_Zabs, abs_cond_Zopp.
now apply bounded_lt_emax.
Qed.

Theorem abs_B2R_ge_emin :
  forall x,
  is_finite_strict x = true ->
  (bpow radix2 emin <= Rabs (B2R x))%R.
Proof.
intros [sx|sx| |sx mx ex Hx] ; simpl ; try discriminate.
intros; case sx; simpl.
- unfold F2R; simpl; rewrite Rabs_mult, <-abs_IZR; simpl.
  rewrite Rabs_pos_eq; [|apply bpow_ge_0].
  now apply bounded_ge_emin.
- unfold F2R; simpl; rewrite Rabs_mult, <-abs_IZR; simpl.
  rewrite Rabs_pos_eq; [|apply bpow_ge_0].
  now apply bounded_ge_emin.
Qed.

Theorem bounded_canonical_lt_emax :
  forall mx ex,
  canonical radix2 fexp (Float radix2 (Zpos mx) ex) ->
  (F2R (Float radix2 (Zpos mx) ex) < bpow radix2 emax)%R ->
  bounded mx ex = true.
Proof.
intros mx ex Cx Bx.
apply andb_true_intro.
split.
unfold canonical_mantissa.
unfold canonical, Fexp in Cx.
rewrite Cx at 2.
rewrite Zpos_digits2_pos.
unfold cexp.
rewrite mag_F2R_Zdigits. 2: discriminate.
now apply -> Zeq_is_eq_bool.
apply Zle_bool_true.
unfold canonical, Fexp in Cx.
rewrite Cx.
unfold cexp, fexp, FLT_exp.
destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as (e',Ex). simpl.
apply Z.max_lub.
cut (e' - 1 < emax)%Z. clear ; lia.
apply lt_bpow with radix2.
apply Rle_lt_trans with (2 := Bx).
change (Zpos mx) with (Z.abs (Zpos mx)).
rewrite F2R_Zabs.
apply Ex.
apply Rgt_not_eq.
now apply F2R_gt_0.
apply Z.max_l_iff, fexp_emax.
Qed.

(** Truncation *)

Theorem shr_m_shr_record_of_loc :
  forall m l,
  shr_m (shr_record_of_loc m l) = m.
Proof.
now intros m [|[| |]].
Qed.

Theorem loc_of_shr_record_of_loc :
  forall m l,
  loc_of_shr_record (shr_record_of_loc m l) = l.
Proof.
now intros m [|[| |]].
Qed.

Lemma inbetween_shr_1 :
  forall x mrs e,
  (0 <= shr_m mrs)%Z ->
  inbetween_float radix2 (shr_m mrs) e x (loc_of_shr_record mrs) ->
  inbetween_float radix2 (shr_m (shr_1 mrs)) (e + 1) x (loc_of_shr_record (shr_1 mrs)).
Proof.
intros x mrs e Hm Hl.
refine (_ (new_location_even_correct (F2R (Float radix2 (shr_m (shr_1 mrs)) (e + 1))) (bpow radix2 e) 2 _ _ _ x (if shr_r (shr_1 mrs) then 1 else 0) (loc_of_shr_record mrs) _ _)) ; try easy.
2: apply bpow_gt_0.
2: now case (shr_r (shr_1 mrs)) ; split.
change 2%R with (bpow radix2 1).
rewrite <- bpow_plus.
rewrite (Zplus_comm 1), <- (F2R_bpow radix2 (e + 1)).
unfold inbetween_float, F2R. simpl.
rewrite plus_IZR, Rmult_plus_distr_r.
replace (Bracket.new_location_even 2 (if shr_r (shr_1 mrs) then 1%Z else 0%Z) (loc_of_shr_record mrs)) with (loc_of_shr_record (shr_1 mrs)).
easy.
clear -Hm.
destruct mrs as (m, r, s).
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
rewrite (F2R_change_exp radix2 e).
2: apply Zle_succ.
unfold F2R. simpl.
rewrite <- 2!Rmult_plus_distr_r, <- 2!plus_IZR.
rewrite Zplus_assoc.
replace (shr_m (shr_1 mrs) * 2 ^ (e + 1 - e) + (if shr_r (shr_1 mrs) then 1%Z else 0%Z))%Z with (shr_m mrs).
exact Hl.
ring_simplify (e + 1 - e)%Z.
change (2^1)%Z with 2%Z.
rewrite Zmult_comm.
clear -Hm.
destruct mrs as (m, r, s).
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
Qed.

Theorem inbetween_shr :
  forall x m e l n,
  (0 <= m)%Z ->
  inbetween_float radix2 m e x l ->
  let '(mrs, e') := shr (shr_record_of_loc m l) e n in
  inbetween_float radix2 (shr_m mrs) e' x (loc_of_shr_record mrs).
Proof.
intros x m e l n Hm Hl.
destruct n as [|n|n].
now destruct l as [|[| |]].
2: now destruct l as [|[| |]].
unfold shr.
rewrite iter_pos_nat.
rewrite Zpos_eq_Z_of_nat_o_nat_of_P.
induction (nat_of_P n).
simpl.
rewrite Zplus_0_r.
now destruct l as [|[| |]].
rewrite iter_nat_S.
rewrite inj_S.
unfold Z.succ.
rewrite Zplus_assoc.
revert IHn0.
apply inbetween_shr_1.
clear -Hm.
induction n0.
now destruct l as [|[| |]].
rewrite iter_nat_S.
revert IHn0.
generalize (iter_nat shr_1 n0 (shr_record_of_loc m l)).
clear.
intros (m, r, s) Hm.
now destruct m as [|[m|m|]|m] ; try (now elim Hm) ; destruct r as [|] ; destruct s as [|].
Qed.

Lemma le_shr1_le :
  forall mrs, (0 <= shr_m mrs)%Z ->
  (0 <= 2 * shr_m (shr_1 mrs) <= shr_m mrs)%Z /\
  (shr_m mrs < 2 * (shr_m (shr_1 mrs) + 1))%Z.
Proof.
  destruct mrs as [m r s]. simpl.
  destruct m as [| p | p]; [simpl; lia | intros _ | intros; easy].
  destruct p; simpl; [| | lia].
  - rewrite Pos2Z.inj_xO, Pos2Z.inj_xI. lia.
  - rewrite Pos2Z.inj_xO. lia.
Qed.

Lemma le_shr_le :
  forall mrs e n,
  (0 <= shr_m mrs)%Z -> (0 <= n)%Z ->
  (0 <= 2 ^ n * shr_m (fst (shr mrs e n)) <= shr_m mrs)%Z /\
  (shr_m mrs < 2 ^ n * (shr_m (fst (shr mrs e n)) + 1))%Z.
Proof.
  intros mrs e n Hmrs.
  destruct n as [| n | n ];
    [intros _; simpl; now destruct (shr_m mrs); simpl; lia | intro Hn | lia].
  unfold shr.
  rewrite iter_pos_nat. rewrite <-!(positive_nat_Z n). simpl fst.
  induction (nat_of_P n) as [| n' IHn']; [simpl; destruct (shr_m mrs); simpl; lia |].
  rewrite !Nat2Z.inj_succ. rewrite Z.pow_succ_r; [| apply Zle_0_nat].

  rewrite iter_nat_S. rewrite (Z.mul_comm 2%Z _), <-Z.mul_assoc.
  destruct IHn' as [[IHn'1 IHn'2] IHn'3]. apply Z.mul_nonneg_cancel_l in IHn'1; [| lia].
  repeat split;
    [| transitivity (2 ^ Z.of_nat n' * shr_m (iter_nat shr_1 n' mrs))%Z; [| auto] |].
  - apply Z.mul_nonneg_nonneg; [lia |]. now apply le_shr1_le.
  - apply Z.mul_le_mono_nonneg_l; [lia |]. now apply le_shr1_le.
  - apply Z.lt_le_trans with
      (2 ^ Z.of_nat n' * (shr_m (iter_nat shr_1 n' mrs) + 1))%Z; [assumption |].
    rewrite <-Z.mul_assoc. apply Z.mul_le_mono_nonneg_l; [lia |].
    apply Ztac.Zlt_le_add_1. now apply le_shr1_le.
Qed.

Lemma shr_limit :
  forall mrs e n,
  ((0 < shr_m mrs)%Z \/ shr_m mrs = 0%Z /\ (shr_r mrs || shr_s mrs = true)%bool) ->
  (shr_m mrs < radix2 ^ (n - 1))%Z ->
  fst (shr mrs e n) = {| shr_m := 0%Z; shr_r := false; shr_s := true |}.
Proof.
  intros mrs e n Hmrs0. set (n' := (n - 1)%Z). replace n with (n' + 1)%Z; [| lia].
  destruct n' as [| p | p ].
  - simpl. destruct Hmrs0 as [Hmrs0 | Hmrs0]; [lia | intros _].
    destruct mrs as [m r s]. simpl in Hmrs0. destruct Hmrs0 as [Hmrs00 Hmrs01].
    rewrite Hmrs00. simpl. now rewrite Hmrs01.
  - intros Hmrs1. rewrite !Z.add_1_r. rewrite <-Pos2Z.inj_succ. simpl shr.
    rewrite iter_pos_nat. rewrite Pos2Nat.inj_succ. simpl iter_nat.
    rewrite <-(positive_nat_Z p) in Hmrs1. rewrite <-(Pos2Nat.id p) at 2.
    revert Hmrs1. revert Hmrs0. revert mrs.
    induction (nat_of_P p) as [| n'' IHn''].
    + simpl in *. intros mrs [Hmrs0 | [Hmrs00 Hmrs01]] Hmrs1; [lia |].
      destruct mrs as [m r s]. simpl in Hmrs00, Hmrs01, Hmrs1. rewrite Hmrs00.
      simpl. now rewrite Hmrs01.
    + intros mrs Hmrs0 Hmrs1. simpl iter_nat.
      destruct (le_shr1_le mrs) as [[Hmrs'0 Hmrs'1] Hmrs'2]; [destruct Hmrs0; lia |].
      set (mrs' := shr_1 mrs). apply IHn''.
      * case (0 <? shr_m (shr_1 mrs))%Z eqn:Hmrs'3;
         [apply Zlt_is_lt_bool in Hmrs'3; now left |].
        fold mrs' in Hmrs'0, Hmrs'1, Hmrs'2, Hmrs'3.
        apply Z.ltb_ge in Hmrs'3. apply Z.mul_nonneg_cancel_l in Hmrs'0; [| easy].
        apply (Z.le_antisymm _ _ Hmrs'3) in Hmrs'0. right. split; [assumption |].
        destruct Hmrs0 as [Hmrs0 | [Hmrs00 Hmrs01]].
        -- rewrite Hmrs'0 in Hmrs'2. simpl in Hmrs'2.
           assert (Hmrs2 : shr_m mrs = 1%Z) by lia. destruct mrs as [m r s].
           simpl in Hmrs2. unfold mrs'. now rewrite Hmrs2.
        -- destruct mrs as [m r s]. simpl in Hmrs00, Hmrs01. unfold mrs'.
           now rewrite Hmrs00.
      * simpl Z.of_nat in Hmrs1. unfold mrs'. rewrite Zpos_P_of_succ_nat in Hmrs1.
        rewrite Z.pow_succ_r in Hmrs1; [| lia]. apply (Z.le_lt_trans _ _ _ Hmrs'1) in Hmrs1.
        apply Z.mul_lt_mono_pos_l in Hmrs1; [assumption | easy].
  - simpl. destruct Hmrs0 as [Hmrs0 | Hmrs0]; lia.
Qed.

Theorem shr_truncate :
  forall f m e l,
  Valid_exp f ->
  (0 <= m)%Z ->
  shr (shr_record_of_loc m l) e (f (Zdigits2 m + e) - e)%Z =
  let '(m', e', l') := truncate radix2 f (m, e, l) in (shr_record_of_loc m' l', e').
Proof.
  intros f m e l Hf Hm. case_eq (truncate radix2 f (m, e, l)). intros (m', e') l'.
  unfold shr_fexp. rewrite Zdigits2_Zdigits. case_eq (f (Zdigits radix2 m + e) - e)%Z.
  - intros He. unfold truncate. rewrite He. simpl. intros H. now inversion H.
  - intros p Hp. assert (He: (e <= f (Zdigits radix2 m + e))%Z); [ clear -Hp; lia |].
    destruct (inbetween_float_ex radix2 m e l) as (x, Hx).
    generalize (inbetween_shr x m e l (f (Zdigits radix2 m + e) - e) Hm Hx)%Z.
    assert (Hx0 : (0 <= x)%R);
     [apply Rle_trans with (F2R (Float radix2 m e));
       [now apply F2R_ge_0
       |exact (proj1 (inbetween_float_bounds _ _ _ _ _ Hx))]
     |].
    case_eq (shr (shr_record_of_loc m l) e (f (Zdigits radix2 m + e) - e))%Z.
    intros mrs e'' H3 H4 H1.
    generalize (truncate_correct radix2 _ x m e l Hx0 Hx (or_introl _ He)).
    rewrite H1. intros (H2,_). rewrite <- Hp, H3.
    assert (e'' = e').
    { change (snd (mrs, e'') = snd (fst (m',e',l'))).  rewrite <- H1, <- H3.
      unfold truncate. now rewrite Hp. }
    rewrite H in H4 |- *. apply (f_equal (fun v => (v, _))).
    destruct (inbetween_float_unique _ _ _ _ _ _ _ H2 H4) as (H5, H6).
    rewrite H5, H6. case mrs. now intros m0 [|] [|].
  - intros p Hp. unfold truncate. rewrite Hp. simpl. intros H. now inversion H.
Qed.

Notation shr_fexp := (shr_fexp prec emax).

Theorem shr_fexp_truncate :
  forall m e l,
  (0 <= m)%Z ->
  shr_fexp m e l =
  let '(m', e', l') := truncate radix2 fexp (m, e, l) in (shr_record_of_loc m' l', e').
Proof.
intros m e l Hm.
case_eq (truncate radix2 fexp (m, e, l)).
intros (m', e') l'.
unfold shr_fexp.
rewrite Zdigits2_Zdigits.
case_eq (fexp (Zdigits radix2 m + e) - e)%Z.
(* *)
intros He.
unfold truncate.
rewrite He.
simpl.
intros H.
now inversion H.
(* *)
intros p Hp.
assert (He: (e <= fexp (Zdigits radix2 m + e))%Z).
clear -Hp ; lia.
destruct (inbetween_float_ex radix2 m e l) as (x, Hx).
generalize (inbetween_shr x m e l (fexp (Zdigits radix2 m + e) - e) Hm Hx).
assert (Hx0 : (0 <= x)%R).
apply Rle_trans with (F2R (Float radix2 m e)).
now apply F2R_ge_0.
exact (proj1 (inbetween_float_bounds _ _ _ _ _ Hx)).
case_eq (shr (shr_record_of_loc m l) e (fexp (Zdigits radix2 m + e) - e)).
intros mrs e'' H3 H4 H1.
generalize (truncate_correct radix2 _ x m e l Hx0 Hx (or_introl _ He)).
rewrite H1.
intros (H2,_).
rewrite <- Hp, H3.
assert (e'' = e').
change (snd (mrs, e'') = snd (fst (m',e',l'))).
rewrite <- H1, <- H3.
unfold truncate.
now rewrite Hp.
rewrite H in H4 |- *.
apply (f_equal (fun v => (v, _))).
destruct (inbetween_float_unique _ _ _ _ _ _ _ H2 H4) as (H5, H6).
rewrite H5, H6.
case mrs.
now intros m0 [|] [|].
(* *)
intros p Hp.
unfold truncate.
rewrite Hp.
simpl.
intros H.
now inversion H.
Qed.

(** Rounding modes *)

Inductive mode := mode_NE | mode_ZR | mode_DN | mode_UP | mode_NA.

Definition round_mode m :=
  match m with
  | mode_NE => ZnearestE
  | mode_ZR => Ztrunc
  | mode_DN => Zfloor
  | mode_UP => Zceil
  | mode_NA => ZnearestA
  end.

Definition choice_mode m sx mx lx :=
  match m with
  | mode_NE => cond_incr (round_N (negb (Z.even mx)) lx) mx
  | mode_ZR => mx
  | mode_DN => cond_incr (round_sign_DN sx lx) mx
  | mode_UP => cond_incr (round_sign_UP sx lx) mx
  | mode_NA => cond_incr (round_N true lx) mx
  end.

Lemma le_choice_mode_le :
  forall m sx mx lx, (mx <= choice_mode m sx mx lx <= mx + 1)%Z.
Proof.
  unfold choice_mode; intros m sx mx lx; case m; simpl; try lia; apply le_cond_incr_le.
Qed.

Lemma round_mode_choice_mode :
  forall md x m l,
  inbetween_int m (Rabs x) l ->
  round_mode md x = cond_Zopp (Rlt_bool x 0) (choice_mode md (Rlt_bool x 0) m l).
Proof.
  destruct md.
  - exact inbetween_int_NE_sign.
  - exact inbetween_int_ZR_sign.
  - exact inbetween_int_DN_sign.
  - exact inbetween_int_UP_sign.
  - exact inbetween_int_NA_sign.
Qed.

Global Instance valid_rnd_round_mode : forall m, Valid_rnd (round_mode m).
Proof.
destruct m ; unfold round_mode ; auto with typeclass_instances.
Qed.

Definition overflow_to_inf m s :=
  match m with
  | mode_NE => true
  | mode_NA => true
  | mode_ZR => false
  | mode_UP => negb s
  | mode_DN => s
  end.

Definition binary_overflow m s :=
  if overflow_to_inf m s then S754_infinity s
  else S754_finite s (Z.to_pos (Zpower 2 prec - 1)%Z) (emax - prec).

Theorem is_nan_binary_overflow :
  forall mode s,
  is_nan_SF (binary_overflow mode s) = false.
Proof.
intros mode s.
unfold binary_overflow.
now destruct overflow_to_inf.
Qed.

Theorem binary_overflow_correct :
  forall m s,
  valid_binary (binary_overflow m s) = true.
Proof.
intros m s.
unfold binary_overflow.
case overflow_to_inf.
easy.
unfold valid_binary, bounded.
rewrite Zle_bool_refl.
rewrite Bool.andb_true_r.
apply Zeq_bool_true.
rewrite Zpos_digits2_pos.
replace (Zdigits radix2 _) with prec.
ring_simplify (prec + (emax - prec))%Z.
apply fexp_emax.
change 2%Z with (radix_val radix2).
assert (H: (0 < radix2 ^ prec - 1)%Z).
  apply Zlt_succ_pred.
  now apply Zpower_gt_1.
rewrite Z2Pos.id by exact H.
apply Zle_antisym.
- apply Z.lt_pred_le.
  apply Zdigits_gt_Zpower.
  rewrite Z.abs_eq by now apply Zlt_le_weak.
  apply Z.lt_le_pred.
  apply Zpower_lt.
  now apply Zlt_le_weak.
  apply Z.lt_pred_l.
- apply Zdigits_le_Zpower.
  rewrite Z.abs_eq by now apply Zlt_le_weak.
  apply Z.lt_pred_l.
Qed.

Definition binary_fit_aux mode sx mx ex :=
  if Zle_bool ex (emax - prec) then S754_finite sx mx ex
  else binary_overflow mode sx.

Theorem binary_fit_aux_correct :
  forall mode sx mx ex,
  canonical_mantissa mx ex = true ->
  let x := SF2R radix2 (S754_finite sx mx ex) in
  let z := binary_fit_aux mode sx mx ex in
  valid_binary z = true /\
  if Rlt_bool (Rabs x) (bpow radix2 emax) then
    SF2R radix2 z = x /\ is_finite_SF z = true /\ sign_SF z = sx
  else
    z = binary_overflow mode sx.
Proof.
intros m sx mx ex Cx.
unfold binary_fit_aux.
simpl.
rewrite F2R_cond_Zopp.
rewrite abs_cond_Ropp.
rewrite Rabs_pos_eq by now apply F2R_ge_0.
destruct Zle_bool eqn:He.
- assert (Hb: bounded mx ex = true).
  { unfold bounded. now rewrite Cx. }
  apply (conj Hb).
  rewrite Rlt_bool_true.
  repeat split.
  apply F2R_cond_Zopp.
  now apply bounded_lt_emax.
- rewrite Rlt_bool_false.
  { repeat split.
    apply binary_overflow_correct. }
  apply Rnot_lt_le.
  intros Hx.
  apply bounded_canonical_lt_emax in Hx.
  revert Hx.
  unfold bounded.
  now rewrite Cx, He.
  now apply (canonical_canonical_mantissa false).
Qed.

Definition binary_round_aux mode sx mx ex lx :=
  let '(mrs', e') := shr_fexp mx ex lx in
  let '(mrs'', e'') := shr_fexp (choice_mode mode sx (shr_m mrs') (loc_of_shr_record mrs')) e' loc_Exact in
  match shr_m mrs'' with
  | Z0 => S754_zero sx
  | Zpos m => binary_fit_aux mode sx m e''
  | _ => S754_nan
  end.

Theorem binary_round_aux_correct' :
  forall mode x mx ex lx,
  (x <> 0)%R ->
  inbetween_float radix2 mx ex (Rabs x) lx ->
  (ex <= cexp radix2 fexp x)%Z ->
  let z := binary_round_aux mode (Rlt_bool x 0) mx ex lx in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
    SF2R radix2 z = round radix2 fexp (round_mode mode) x /\
    is_finite_SF z = true /\ sign_SF z = Rlt_bool x 0
  else
    z = binary_overflow mode (Rlt_bool x 0).
Proof with auto with typeclass_instances.
intros m x mx ex lx Px Bx Ex z.
unfold binary_round_aux in z.
revert z.
rewrite shr_fexp_truncate.
refine (_ (round_trunc_sign_any_correct' _ _ (round_mode m) (choice_mode m) _ x mx ex lx Bx (or_introl _ Ex))).
rewrite <- cexp_abs in Ex.
refine (_ (truncate_correct_partial' _ fexp _ _ _ _ _ Bx Ex)).
destruct (truncate radix2 fexp (mx, ex, lx)) as ((m1, e1), l1).
rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
intros (H1a,H1b) H1c.
rewrite H1c.
assert (Hm: (m1 <= m1')%Z).
(* . *)
unfold m1', choice_mode, cond_incr.
case m ;
  try apply Z.le_refl ;
  match goal with |- (m1 <= if ?b then _ else _)%Z =>
    case b ; [ apply Zle_succ | apply Z.le_refl ] end.
assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
(* . *)
rewrite <- (Z.abs_eq m1').
rewrite <- (abs_cond_Zopp (Rlt_bool x 0) m1').
rewrite F2R_Zabs.
now apply f_equal.
apply Z.le_trans with (2 := Hm).
apply Zlt_succ_le.
apply gt_0_F2R with radix2 e1.
apply Rle_lt_trans with (1 := Rabs_pos x).
exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
(* . *)
assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
now apply inbetween_Exact.
destruct m1' as [|m1'|m1'].
(* . m1' = 0 *)
rewrite shr_fexp_truncate. 2: apply Z.le_refl.
generalize (truncate_0 radix2 fexp e1 loc_Exact).
destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
rewrite shr_m_shr_record_of_loc.
intros Hm2.
rewrite Hm2.
repeat split.
rewrite Rlt_bool_true.
repeat split.
apply sym_eq.
case Rlt_bool ; apply F2R_0.
rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
apply bpow_gt_0.
(* . 0 < m1' *)
assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
rewrite <- mag_F2R_Zdigits, <- Hr, mag_abs.
2: discriminate.
rewrite H1b.
rewrite cexp_abs.
fold (cexp radix2 fexp (round radix2 fexp (round_mode m) x)).
apply cexp_round_ge...
rewrite H1c.
case (Rlt_bool x 0).
apply Rlt_not_eq.
now apply F2R_lt_0.
apply Rgt_not_eq.
now apply F2R_gt_0.
refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
2: now rewrite Hr ; apply F2R_gt_0.
refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
2: discriminate.
rewrite shr_fexp_truncate. 2: easy.
destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
rewrite shr_m_shr_record_of_loc.
intros (H3,H4) (H2,_).
destruct m2 as [|m2|m2].
elim Rgt_not_eq with (2 := H3).
rewrite F2R_0.
now apply F2R_gt_0.
destruct (binary_fit_aux_correct m (Rlt_bool x 0) m2 e2) as [H5 H6].
  apply Zeq_bool_true.
  rewrite Zpos_digits2_pos.
  rewrite <- mag_F2R_Zdigits by easy.
  now rewrite <- H3.
apply (conj H5).
revert H6.
simpl.
rewrite 2!F2R_cond_Zopp.
now rewrite <- H3.
elim Rgt_not_eq with (2 := H3).
apply Rlt_trans with R0.
now apply F2R_lt_0.
now apply F2R_gt_0.
rewrite <- Hr.
apply generic_format_abs...
apply generic_format_round...
(* . not m1' < 0 *)
elim Rgt_not_eq with (2 := Hr).
apply Rlt_le_trans with R0.
now apply F2R_lt_0.
apply Rabs_pos.
(* *)
now apply Rabs_pos_lt.
(* all the modes are valid *)
clear. case m.
exact inbetween_int_NE_sign.
exact inbetween_int_ZR_sign.
exact inbetween_int_DN_sign.
exact inbetween_int_UP_sign.
exact inbetween_int_NA_sign.
(* *)
apply inbetween_float_bounds in Bx.
apply Zlt_succ_le.
eapply gt_0_F2R.
apply Rle_lt_trans with (2 := proj2 Bx).
apply Rabs_pos.
Qed.

Theorem binary_round_aux_correct :
  forall mode x mx ex lx,
  inbetween_float radix2 (Zpos mx) ex (Rabs x) lx ->
  (ex <= fexp (Zdigits radix2 (Zpos mx) + ex))%Z ->
  let z := binary_round_aux mode (Rlt_bool x 0) (Zpos mx) ex lx in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode mode) x)) (bpow radix2 emax) then
    SF2R radix2 z = round radix2 fexp (round_mode mode) x /\
    is_finite_SF z = true /\ sign_SF z = Rlt_bool x 0
  else
    z = binary_overflow mode (Rlt_bool x 0).
Proof with auto with typeclass_instances.
intros m x mx ex lx Bx Ex z.
unfold binary_round_aux in z.
revert z.
rewrite shr_fexp_truncate. 2: easy.
refine (_ (round_trunc_sign_any_correct _ _ (round_mode m) (choice_mode m) _ x (Zpos mx) ex lx Bx (or_introl _ Ex))).
refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Bx Ex)).
destruct (truncate radix2 fexp (Zpos mx, ex, lx)) as ((m1, e1), l1).
rewrite loc_of_shr_record_of_loc, shr_m_shr_record_of_loc.
set (m1' := choice_mode m (Rlt_bool x 0) m1 l1).
intros (H1a,H1b) H1c.
rewrite H1c.
assert (Hm: (m1 <= m1')%Z).
(* . *)
unfold m1', choice_mode, cond_incr.
case m ;
  try apply Z.le_refl ;
  match goal with |- (m1 <= if ?b then _ else _)%Z =>
    case b ; [ apply Zle_succ | apply Z.le_refl ] end.
assert (Hr: Rabs (round radix2 fexp (round_mode m) x) = F2R (Float radix2 m1' e1)).
(* . *)
rewrite <- (Z.abs_eq m1').
rewrite <- (abs_cond_Zopp (Rlt_bool x 0) m1').
rewrite F2R_Zabs.
now apply f_equal.
apply Z.le_trans with (2 := Hm).
apply Zlt_succ_le.
apply gt_0_F2R with radix2 e1.
apply Rle_lt_trans with (1 := Rabs_pos x).
exact (proj2 (inbetween_float_bounds _ _ _ _ _ H1a)).
(* . *)
assert (Br: inbetween_float radix2 m1' e1 (Rabs (round radix2 fexp (round_mode m) x)) loc_Exact).
now apply inbetween_Exact.
destruct m1' as [|m1'|m1'].
(* . m1' = 0 *)
rewrite shr_fexp_truncate. 2: apply Z.le_refl.
generalize (truncate_0 radix2 fexp e1 loc_Exact).
destruct (truncate radix2 fexp (Z0, e1, loc_Exact)) as ((m2, e2), l2).
rewrite shr_m_shr_record_of_loc.
intros Hm2.
rewrite Hm2.
repeat split.
rewrite Rlt_bool_true.
repeat split.
apply sym_eq.
case Rlt_bool ; apply F2R_0.
rewrite <- F2R_Zabs, abs_cond_Zopp, F2R_0.
apply bpow_gt_0.
(* . 0 < m1' *)
assert (He: (e1 <= fexp (Zdigits radix2 (Zpos m1') + e1))%Z).
rewrite <- mag_F2R_Zdigits, <- Hr, mag_abs.
2: discriminate.
rewrite H1b.
rewrite cexp_abs.
fold (cexp radix2 fexp (round radix2 fexp (round_mode m) x)).
apply cexp_round_ge...
rewrite H1c.
case (Rlt_bool x 0).
apply Rlt_not_eq.
now apply F2R_lt_0.
apply Rgt_not_eq.
now apply F2R_gt_0.
refine (_ (truncate_correct_partial _ _ _ _ _ _ _ Br He)).
2: now rewrite Hr ; apply F2R_gt_0.
refine (_ (truncate_correct_format radix2 fexp (Zpos m1') e1 _ _ He)).
2: discriminate.
rewrite shr_fexp_truncate. 2: easy.
destruct (truncate radix2 fexp (Zpos m1', e1, loc_Exact)) as ((m2, e2), l2).
rewrite shr_m_shr_record_of_loc.
intros (H3,H4) (H2,_).
destruct m2 as [|m2|m2].
elim Rgt_not_eq with (2 := H3).
rewrite F2R_0.
now apply F2R_gt_0.
destruct (binary_fit_aux_correct m (Rlt_bool x 0) m2 e2) as [H5 H6].
  apply Zeq_bool_true.
  rewrite Zpos_digits2_pos.
  rewrite <- mag_F2R_Zdigits by easy.
  now rewrite <- H3.
apply (conj H5).
revert H6.
simpl.
rewrite 2!F2R_cond_Zopp.
now rewrite <- H3.
elim Rgt_not_eq with (2 := H3).
apply Rlt_trans with R0.
now apply F2R_lt_0.
now apply F2R_gt_0.
rewrite <- Hr.
apply generic_format_abs...
apply generic_format_round...
(* . not m1' < 0 *)
elim Rgt_not_eq with (2 := Hr).
apply Rlt_le_trans with R0.
now apply F2R_lt_0.
apply Rabs_pos.
(* *)
apply Rlt_le_trans with (2 := proj1 (inbetween_float_bounds _ _ _ _ _ Bx)).
now apply F2R_gt_0.
(* all the modes are valid *)
clear. case m.
exact inbetween_int_NE_sign.
exact inbetween_int_ZR_sign.
exact inbetween_int_DN_sign.
exact inbetween_int_UP_sign.
exact inbetween_int_NA_sign.
Qed.

(** Multiplication *)

Lemma Bmult_correct_aux :
  forall m sx mx ex (Hx : bounded mx ex = true) sy my ey (Hy : bounded my ey = true),
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
  let z := binary_round_aux m (xorb sx sy) (Zpos (mx * my)) (ex + ey) loc_Exact in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x * y))) (bpow radix2 emax) then
    SF2R radix2 z = round radix2 fexp (round_mode m) (x * y) /\
    is_finite_SF z = true /\ sign_SF z = xorb sx sy
  else
    z = binary_overflow m (xorb sx sy).
Proof.
intros m sx mx ex Hx sy my ey Hy x y.
unfold x, y.
rewrite <- F2R_mult.
simpl.
replace (xorb sx sy) with (Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx) * cond_Zopp sy (Zpos my)) (ex + ey))) 0).
apply binary_round_aux_correct.
constructor.
rewrite <- F2R_abs.
apply F2R_eq.
rewrite Zabs_Zmult.
now rewrite 2!abs_cond_Zopp.
(* *)
change (Zpos (mx * my)) with (Zpos mx * Zpos my)%Z.
assert (forall m e, bounded m e = true -> fexp (Zdigits radix2 (Zpos m) + e) = e)%Z.
clear. intros m e Hb.
destruct (andb_prop _ _ Hb) as (H,_).
apply Zeq_bool_eq.
now rewrite <- Zpos_digits2_pos.
generalize (H _ _ Hx) (H _ _ Hy).
clear x y sx sy Hx Hy H.
unfold fexp, FLT_exp.
refine (_ (Zdigits_mult_ge radix2 (Zpos mx) (Zpos my) _ _)) ; try discriminate.
refine (_ (Zdigits_gt_0 radix2 (Zpos mx) _) (Zdigits_gt_0 radix2 (Zpos my) _)) ; try discriminate.
generalize (Zdigits radix2 (Zpos mx)) (Zdigits radix2 (Zpos my)) (Zdigits radix2 (Zpos mx * Zpos my)).
intros dx dy dxy Hx Hy Hxy.
unfold emin.
generalize (prec_lt_emax prec emax).
lia.
(* *)
case sx ; case sy.
apply Rlt_bool_false.
now apply F2R_ge_0.
apply Rlt_bool_true.
now apply F2R_lt_0.
apply Rlt_bool_true.
now apply F2R_lt_0.
apply Rlt_bool_false.
now apply F2R_ge_0.
Qed.

Definition Bmult m x y :=
  match x, y with
  | B754_nan, _ | _, B754_nan => B754_nan
  | B754_infinity sx, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_infinity (xorb sx sy)
  | B754_infinity _, B754_zero _ => B754_nan
  | B754_zero _, B754_infinity _ => B754_nan
  | B754_finite sx _ _ _, B754_zero sy => B754_zero (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => B754_zero (xorb sx sy)
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    SF2B _ (proj1 (Bmult_correct_aux m sx mx ex Hx sy my ey Hy))
  end.

(* TODO: lemme d'equivalence *)

Theorem Bmult_correct :
  forall m x y,
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x * B2R y))) (bpow radix2 emax) then
    B2R (Bmult m x y) = round radix2 fexp (round_mode m) (B2R x * B2R y) /\
    is_finite (Bmult m x y) = andb (is_finite x) (is_finite y) /\
    (is_nan (Bmult m x y) = false ->
      Bsign (Bmult m x y) = xorb (Bsign x) (Bsign y))
  else
    B2SF (Bmult m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
Proof.
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] ;
  try ( rewrite ?Rmult_0_r, ?Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | now auto with typeclass_instances ] ).
simpl.
case Bmult_correct_aux.
intros H1.
case Rlt_bool.
intros (H2, (H3, H4)).
split.
now rewrite B2R_SF2B.
split.
now rewrite is_finite_SF2B.
rewrite Bsign_SF2B. auto.
intros H2.
now rewrite B2SF_SF2B.
Qed.

(** Normalization and rounding *)

Theorem shl_align_correct':
  forall mx ex e,
  (e <= ex)%Z ->
  let (mx', ex') := shl_align mx ex e in
  F2R (Float radix2 (Zpos mx') e) = F2R (Float radix2 (Zpos mx) ex) /\
  ex' = e.
Proof.
intros mx ex ex' He.
unfold shl_align.
destruct (ex' - ex)%Z as [|d|d] eqn:Hd ; simpl.
- now replace ex with ex' by lia.
- exfalso ; lia.
- refine (conj _ eq_refl).
  rewrite shift_pos_correct, Zmult_comm.
  change (Zpower_pos 2 d) with (Zpower radix2 (Z.opp (Z.neg d))).
  rewrite <- Hd.
  replace (- (ex' - ex))%Z with (ex - ex')%Z by ring.
  now apply eq_sym, F2R_change_exp.
Qed.

Theorem shl_align_correct :
  forall mx ex ex',
  let (mx', ex'') := shl_align mx ex ex' in
  F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex'') /\
  (ex'' <= ex')%Z.
Proof.
intros mx ex ex'.
generalize (shl_align_correct' mx ex ex').
unfold shl_align.
destruct (ex' - ex)%Z as [|d|d] eqn:Hd ; simpl.
- refine (fun H => _ (H _)).
  2: clear -Hd; lia.
  clear.
  intros [H1 ->].
  now split.
- intros _.
  refine (conj eq_refl _).
  lia.
- refine (fun H => _ (H _)).
  2: clear -Hd; lia.
  clear.
  now split.
Qed.

Theorem snd_shl_align :
  forall mx ex ex',
  (ex' <= ex)%Z ->
  snd (shl_align mx ex ex') = ex'.
Proof.
intros mx ex ex' He.
generalize (shl_align_correct' mx ex ex' He).
now destruct shl_align as [m e].
Qed.

Definition shl_align_fexp mx ex :=
  shl_align mx ex (fexp (Zpos (digits2_pos mx) + ex)).

Theorem shl_align_fexp_correct :
  forall mx ex,
  let (mx', ex') := shl_align_fexp mx ex in
  F2R (Float radix2 (Zpos mx) ex) = F2R (Float radix2 (Zpos mx') ex') /\
  (ex' <= fexp (Zdigits radix2 (Zpos mx') + ex'))%Z.
Proof.
intros mx ex.
unfold shl_align_fexp.
generalize (shl_align_correct mx ex (fexp (Zpos (digits2_pos mx) + ex))).
rewrite Zpos_digits2_pos.
case shl_align.
intros mx' ex' (H1, H2).
split.
exact H1.
rewrite <- mag_F2R_Zdigits. 2: easy.
rewrite <- H1.
now rewrite mag_F2R_Zdigits.
Qed.

(* TODO: lemme equivalence pour le cas mode_NE *)
Definition binary_round m sx mx ex :=
  let '(mz, ez) := shl_align_fexp mx ex in binary_round_aux m sx (Zpos mz) ez loc_Exact.

Theorem binary_round_correct :
  forall m sx mx ex,
  let z := binary_round m sx mx ex in
  valid_binary z = true /\
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then
    SF2R radix2 z = round radix2 fexp (round_mode m) x /\
    is_finite_SF z = true /\
    sign_SF z = sx
  else
    z = binary_overflow m sx.
Proof.
intros m sx mx ex.
unfold binary_round.
generalize (shl_align_fexp_correct mx ex).
destruct (shl_align_fexp mx ex) as (mz, ez).
intros (H1, H2).
set (x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex)).
replace sx with (Rlt_bool x 0).
apply binary_round_aux_correct.
constructor.
unfold x.
now rewrite <- F2R_Zabs, abs_cond_Zopp.
exact H2.
unfold x.
case sx.
apply Rlt_bool_true.
now apply F2R_lt_0.
apply Rlt_bool_false.
now apply F2R_ge_0.
Qed.

Theorem is_nan_binary_round :
  forall mode sx mx ex,
  is_nan_SF (binary_round mode sx mx ex) = false.
Proof.
intros mode sx mx ex.
generalize (binary_round_correct mode sx mx ex).
simpl.
destruct binary_round ; try easy.
intros [_ H].
destruct Rlt_bool ; try easy.
unfold binary_overflow in H.
now destruct overflow_to_inf.
Qed.

(* TODO: lemme equivalence pour le cas mode_NE *)
Definition binary_normalize mode m e szero :=
  match m with
  | Z0 => B754_zero szero
  | Zpos m => SF2B _ (proj1 (binary_round_correct mode false m e))
  | Zneg m => SF2B _ (proj1 (binary_round_correct mode true m e))
  end.

Theorem binary_normalize_correct :
  forall m mx ex szero,
  let x := F2R (Float radix2 mx ex) in
  let z := binary_normalize m mx ex szero in
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) x)) (bpow radix2 emax) then
    B2R z = round radix2 fexp (round_mode m) x /\
    is_finite z = true /\
    Bsign z =
      match Rcompare x 0 with
        | Eq => szero
        | Lt => true
        | Gt => false
      end
  else
    B2SF z = binary_overflow m (Rlt_bool x 0).
Proof with auto with typeclass_instances.
intros m mx ez szero.
destruct mx as [|mz|mz] ; simpl.
rewrite F2R_0, round_0, Rabs_R0, Rlt_bool_true...
split... split...
rewrite Rcompare_Eq...
apply bpow_gt_0.
(* . mz > 0 *)
generalize (binary_round_correct m false mz ez).
simpl.
case Rlt_bool_spec.
intros _ (Vz, (Rz, (Rz', Rz''))).
split.
now rewrite B2R_SF2B.
split.
now rewrite is_finite_SF2B.
rewrite Bsign_SF2B, Rz''.
rewrite Rcompare_Gt...
now apply F2R_gt_0.
intros Hz' (Vz, Rz).
rewrite B2SF_SF2B, Rz.
apply f_equal.
apply sym_eq.
apply Rlt_bool_false.
now apply F2R_ge_0.
(* . mz < 0 *)
generalize (binary_round_correct m true mz ez).
simpl.
case Rlt_bool_spec.
intros _ (Vz, (Rz, (Rz', Rz''))).
split.
now rewrite B2R_SF2B.
split.
now rewrite is_finite_SF2B.
rewrite Bsign_SF2B, Rz''.
rewrite Rcompare_Lt...
now apply F2R_lt_0.
intros Hz' (Vz, Rz).
rewrite B2SF_SF2B, Rz.
apply f_equal.
apply sym_eq.
apply Rlt_bool_true.
now apply F2R_lt_0.
Qed.

Theorem is_nan_binary_normalize :
  forall mode m e szero,
  is_nan (binary_normalize mode m e szero) = false.
Proof.
intros mode m e szero.
generalize (binary_normalize_correct mode m e szero).
simpl.
destruct Rlt_bool.
- intros [_ [H _]].
  now destruct binary_normalize.
- intros H.
  rewrite <- is_nan_SF_B2SF.
  rewrite H.
  unfold binary_overflow.
  now destruct overflow_to_inf.
Qed.

(** Addition *)

Definition Fplus_naive sx mx ex sy my ey ez :=
  (Zplus (cond_Zopp sx (Zpos (fst (shl_align mx ex ez)))) (cond_Zopp sy (Zpos (fst (shl_align my ey ez))))).

Lemma Fplus_naive_correct :
  forall sx mx ex sy my ey ez,
  (ez <= ex)%Z -> (ez <= ey)%Z ->
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
  F2R (Float radix2 (Fplus_naive sx mx ex sy my ey ez) ez) = (x + y)%R.
Proof.
intros sx mx ex sy my ey ez Ex Ey.
unfold Fplus_naive, F2R. simpl.
generalize (shl_align_correct' mx ex ez Ex).
generalize (shl_align_correct' my ey ez Ey).
destruct shl_align as [my' ey'].
destruct shl_align as [mx' ex'].
intros [Hy _].
intros [Hx _].
simpl.
rewrite plus_IZR, Rmult_plus_distr_r.
generalize (f_equal (cond_Ropp sx) Hx).
generalize (f_equal (cond_Ropp sy) Hy).
rewrite <- 4!F2R_cond_Zopp.
unfold F2R. simpl.
now intros -> ->.
Qed.

Lemma sign_plus_overflow :
  forall m sx mx ex sy my ey,
  bounded mx ex = true ->
  bounded my ey = true ->
  let z := (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) + F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey))%R in
  (bpow radix2 emax <= Rabs (round radix2 fexp (round_mode m) z))%R ->
  sx = Rlt_bool z 0 /\ sx = sy.
Proof with auto with typeclass_instances.
intros m sx mx ex sy my ey Hx Hy z Bz.
destruct (Bool.bool_dec sx sy) as [Hs|Hs].
(* .. *)
refine (conj _ Hs).
unfold z.
rewrite Hs.
apply sym_eq.
case sy.
apply Rlt_bool_true.
rewrite <- (Rplus_0_r 0).
apply Rplus_lt_compat.
now apply F2R_lt_0.
now apply F2R_lt_0.
apply Rlt_bool_false.
rewrite <- (Rplus_0_r 0).
apply Rplus_le_compat.
now apply F2R_ge_0.
now apply F2R_ge_0.
(* .. *)
elim Rle_not_lt with (1 := Bz).
generalize (bounded_lt_emax _ _ Hx) (bounded_lt_emax _ _ Hy).
intros Bx By.
generalize (canonical_bounded sx _ _ Hx) (canonical_bounded sy _ _ Hy).
clear -Bx By Hs prec_gt_0_.
intros Cx Cy.
destruct sx.
(* ... *)
destruct sy.
now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)).
rewrite F2R_Zopp.
now apply Ropp_lt_contravar.
apply round_ge_generic...
now apply generic_format_canonical.
pattern (F2R (Float radix2 (cond_Zopp true (Zpos mx)) ex)) at 1 ; rewrite <- Rplus_0_r.
apply Rplus_le_compat_l.
now apply F2R_ge_0.
apply Rle_lt_trans with (2 := By).
apply round_le_generic...
now apply generic_format_canonical.
rewrite <- (Rplus_0_l (F2R (Float radix2 (Zpos my) ey))).
apply Rplus_le_compat_r.
now apply F2R_le_0.
(* ... *)
destruct sy.
2: now elim Hs.
clear Hs.
apply Rabs_lt.
split.
apply Rlt_le_trans with (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)).
rewrite F2R_Zopp.
now apply Ropp_lt_contravar.
apply round_ge_generic...
now apply generic_format_canonical.
pattern (F2R (Float radix2 (cond_Zopp true (Zpos my)) ey)) at 1 ; rewrite <- Rplus_0_l.
apply Rplus_le_compat_r.
now apply F2R_ge_0.
apply Rle_lt_trans with (2 := Bx).
apply round_le_generic...
now apply generic_format_canonical.
rewrite <- (Rplus_0_r (F2R (Float radix2 (Zpos mx) ex))).
apply Rplus_le_compat_l.
now apply F2R_le_0.
Qed.

Definition Bplus m x y :=
  match x, y with
  | B754_nan, _ | _, B754_nan => B754_nan
  | B754_infinity sx, B754_infinity sy => if Bool.eqb sx sy then x else B754_nan
  | B754_infinity _, _ => x
  | _, B754_infinity _ => y
  | B754_zero sx, B754_zero sy =>
    if Bool.eqb sx sy then x else
    match m with mode_DN => B754_zero true | _ => B754_zero false end
  | B754_zero _, _ => y
  | _, B754_zero _ => x
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    let ez := Z.min ex ey in
    binary_normalize m (Fplus_naive sx mx ex sy my ey ez)
      ez (match m with mode_DN => true | _ => false end)
  end.

Theorem Bplus_correct :
  forall m x y,
  is_finite x = true ->
  is_finite y = true ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x + B2R y))) (bpow radix2 emax) then
    B2R (Bplus m x y) = round radix2 fexp (round_mode m) (B2R x + B2R y) /\
    is_finite (Bplus m x y) = true /\
    Bsign (Bplus m x y) =
      match Rcompare (B2R x + B2R y) 0 with
        | Eq => match m with mode_DN => orb (Bsign x) (Bsign y)
                                 | _ => andb (Bsign x) (Bsign y) end
        | Lt => true
        | Gt => false
      end
  else
    (B2SF (Bplus m x y) = binary_overflow m (Bsign x) /\ Bsign x = Bsign y).
Proof with auto with typeclass_instances.
intros m [sx|sx| |sx mx ex Hx] [sy|sy| |sy my ey Hy] Fx Fy ; try easy.
(* *)
rewrite Rplus_0_r, round_0, Rabs_R0, Rlt_bool_true...
simpl.
rewrite Rcompare_Eq by auto.
destruct sx, sy; try easy; now case m.
apply bpow_gt_0.
(* *)
rewrite Rplus_0_l, round_generic, Rlt_bool_true...
split... split...
simpl. unfold F2R.
erewrite <- Rmult_0_l, Rcompare_mult_r.
rewrite Rcompare_IZR with (y:=0%Z).
destruct sy...
apply bpow_gt_0.
apply abs_B2R_lt_emax.
apply generic_format_B2R.
(* *)
rewrite Rplus_0_r, round_generic, Rlt_bool_true...
split... split...
simpl. unfold F2R.
erewrite <- Rmult_0_l, Rcompare_mult_r.
rewrite Rcompare_IZR with (y:=0%Z).
destruct sx...
apply bpow_gt_0.
apply abs_B2R_lt_emax.
apply generic_format_B2R.
(* *)
clear Fx Fy.
simpl.
set (szero := match m with mode_DN => true | _ => false end).
set (ez := Z.min ex ey).
assert (Hp := Fplus_naive_correct sx mx ex sy my ey ez (Z.le_min_l _ _) (Z.le_min_r _ _)).
set (mz := Fplus_naive sx mx ex sy my ey ez).
simpl in Hp.
fold mz in Hp.
rewrite <- Hp.
generalize (binary_normalize_correct m mz ez szero).
simpl.
case Rlt_bool_spec ; intros Hz.
intros [H1 [H2 H3]].
apply (conj H1).
apply (conj H2).
rewrite H3.
case Rcompare_spec ; try easy.
intros Hz'.
rewrite Hz' in Hp.
apply eq_sym, Rplus_opp_r_uniq in Hp.
rewrite <- F2R_Zopp in Hp.
eapply canonical_unique in Hp.
inversion Hp.
clear -H0.
destruct sy, sx, m ; easy.
now apply canonical_bounded.
rewrite <- cond_Zopp_negb.
now apply canonical_bounded.
intros Vz.
rewrite Hp in Hz.
assert (Sz := sign_plus_overflow m sx mx ex sy my ey Hx Hy Hz).
split.
rewrite Vz.
apply f_equal.
now rewrite Hp.
apply Sz.
Qed.

(** Subtraction *)

Definition Bminus m x y :=
  match x, y with
  | B754_nan, _ | _, B754_nan => B754_nan
  | B754_infinity sx, B754_infinity sy =>
    if Bool.eqb sx (negb sy) then x else B754_nan
  | B754_infinity _, _ => x
  | _, B754_infinity sy => B754_infinity (negb sy)
  | B754_zero sx, B754_zero sy =>
    if Bool.eqb sx (negb sy) then x else
    match m with mode_DN => B754_zero true | _ => B754_zero false end
  | B754_zero _, B754_finite sy my ey Hy => B754_finite (negb sy) my ey Hy
  | _, B754_zero _ => x
  | B754_finite sx mx ex Hx, B754_finite sy my ey Hy =>
    let ez := Z.min ex ey in
    binary_normalize m (Fplus_naive sx mx ex (negb sy) my ey ez)
      ez (match m with mode_DN => true | _ => false end)
  end.

Theorem Bminus_correct :
  forall m x y,
  is_finite x = true ->
  is_finite y = true ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x - B2R y))) (bpow radix2 emax) then
    B2R (Bminus m x y) = round radix2 fexp (round_mode m) (B2R x - B2R y) /\
    is_finite (Bminus m x y) = true /\
    Bsign (Bminus m x y) =
      match Rcompare (B2R x - B2R y) 0 with
        | Eq => match m with mode_DN => orb (Bsign x) (negb (Bsign y))
                                 | _ => andb (Bsign x) (negb (Bsign y)) end
        | Lt => true
        | Gt => false
      end
  else
    (B2SF (Bminus m x y) = binary_overflow m (Bsign x) /\ Bsign x = negb (Bsign y)).
Proof with auto with typeclass_instances.
intros m x y Fx Fy.
generalize (Bplus_correct m x (Bopp y) Fx).
rewrite is_finite_Bopp, B2R_Bopp.
intros H.
specialize (H Fy).
rewrite <- Bsign_Bopp.
destruct x as [| | |sx mx ex Hx], y as [| | |sy my ey Hy] ; try easy.
now clear -Fy; destruct y as [ | | | ].
Qed.

(** Fused Multiply-Add *)

Definition Bfma_szero m (x y z: binary_float) : bool :=
  let s_xy := xorb (Bsign x) (Bsign y) in  (* sign of product x*y *)
  if Bool.eqb s_xy (Bsign z) then s_xy
  else match m with mode_DN => true | _ => false end.

Definition Bfma m (x y z: binary_float) :=
  match x, y with
  | B754_nan, _ | _, B754_nan
  | B754_infinity _, B754_zero _
  | B754_zero _, B754_infinity _ =>
      (* Multiplication produces NaN *)
      B754_nan
  | B754_infinity sx, B754_infinity sy
  | B754_infinity sx, B754_finite sy _ _ _
  | B754_finite sx _ _ _, B754_infinity sy =>
      let s := xorb sx sy in
      (* Multiplication produces infinity with sign [s] *)
      match z with
      | B754_nan => B754_nan
      | B754_infinity sz => if Bool.eqb s sz then z else B754_nan
      | _ => B754_infinity s
      end
  | B754_finite sx _ _ _, B754_zero sy
  | B754_zero sx, B754_finite sy _ _ _
  | B754_zero sx, B754_zero sy =>
      (* Multiplication produces zero *)
      match z with
      | B754_nan => B754_nan
      | B754_zero _ => B754_zero (Bfma_szero m x y z)
      | _ => z
      end
  | B754_finite sx mx ex _, B754_finite sy my ey _ =>
      (* Multiplication produces a finite, non-zero result *)
      match z with
      | B754_nan => B754_nan
      | B754_infinity sz => z
      | B754_zero _ =>
         let X := Float radix2 (cond_Zopp sx (Zpos mx)) ex in
         let Y := Float radix2 (cond_Zopp sy (Zpos my)) ey in
         let '(Float _ mr er) := Fmult X Y in
         binary_normalize m mr er (Bfma_szero m x y z)
      | B754_finite sz mz ez _ =>
         let X := Float radix2 (cond_Zopp sx (Zpos mx)) ex in
         let Y := Float radix2 (cond_Zopp sy (Zpos my)) ey in
         let Z := Float radix2 (cond_Zopp sz (Zpos mz)) ez in
         let '(Float _ mr er) := Fplus (Fmult X Y) Z in
         binary_normalize m mr er (Bfma_szero m x y z)
      end
  end.

Theorem Bfma_correct:
  forall m x y z,
  is_finite x = true ->
  is_finite y = true ->
  is_finite z = true ->
  let res := (B2R x * B2R y + B2R z)%R in
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) res)) (bpow radix2 emax) then
    B2R (Bfma m x y z) = round radix2 fexp (round_mode m) res /\
    is_finite (Bfma m x y z) = true /\
    Bsign (Bfma m x y z) =
      match Rcompare res 0 with
        | Eq => Bfma_szero m x y z
        | Lt => true
        | Gt => false
      end
  else
    B2SF (Bfma m x y z) = binary_overflow m (Rlt_bool res 0).
Proof.
  intros. pattern (Bfma m x y z).
  match goal with |- ?p ?x => set (PROP := p) end.
  set (szero := Bfma_szero m x y z).
  assert (BINORM: forall mr er, F2R (Float radix2 mr er) = res ->
       PROP (binary_normalize m mr er szero)).
  { intros mr er E.
    specialize (binary_normalize_correct m mr er szero).
    change (FLT_exp (3 - emax - prec) prec) with fexp. rewrite E. tauto.
  }
  set (add_zero :=
    match z with
    | B754_nan => B754_nan
    | B754_zero sz => B754_zero szero
    | _ => z
    end).
  assert (ADDZERO: B2R x = 0%R \/ B2R y = 0%R -> PROP add_zero).
  {
    intros Z.
    assert (RES: res = B2R z).
    { unfold res. destruct Z as [E|E]; rewrite E, ?Rmult_0_l, ?Rmult_0_r, Rplus_0_l; auto. }
    unfold PROP, add_zero; destruct z as [ sz | sz | | sz mz ez Bz]; try discriminate.
  - simpl in RES; rewrite RES; rewrite round_0 by apply valid_rnd_round_mode.
    rewrite Rlt_bool_true. split. reflexivity. split. reflexivity.
    rewrite Rcompare_Eq by auto. reflexivity.
    rewrite Rabs_R0; apply bpow_gt_0.
  - rewrite RES, round_generic, Rlt_bool_true.
    split. reflexivity. split. reflexivity.
    unfold B2R. destruct sz.
    rewrite Rcompare_Lt. auto. apply F2R_lt_0. reflexivity.
    rewrite Rcompare_Gt. auto. apply F2R_gt_0. reflexivity.
    apply abs_B2R_lt_emax. apply valid_rnd_round_mode. apply generic_format_B2R.
  }
  destruct x as [ sx | sx | | sx mx ex Bx];
  destruct y as [ sy | sy | | sy my ey By];
  try discriminate.
- apply ADDZERO; auto.
- apply ADDZERO; auto.
- apply ADDZERO; auto.
- destruct z as [ sz | sz | | sz mz ez Bz]; try discriminate; unfold Bfma.
+ set (X := Float radix2 (cond_Zopp sx (Zpos mx)) ex).
  set (Y := Float radix2 (cond_Zopp sy (Zpos my)) ey).
  destruct (Fmult X Y) as [mr er] eqn:FRES.
  apply BINORM. unfold res. rewrite <- FRES, F2R_mult, Rplus_0_r. auto.
+ set (X := Float radix2 (cond_Zopp sx (Zpos mx)) ex).
  set (Y := Float radix2 (cond_Zopp sy (Zpos my)) ey).
  set (Z := Float radix2 (cond_Zopp sz (Zpos mz)) ez).
  destruct (Fplus (Fmult X Y) Z) as [mr er] eqn:FRES.
  apply BINORM. unfold res. rewrite <- FRES, F2R_plus, F2R_mult. auto.
Qed.

(** Division *)

Lemma Bdiv_correct_aux :
  forall m sx mx ex sy my ey,
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let y := F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey) in
  let z :=
    let '(mz, ez, lz) := SFdiv_core_binary prec emax (Zpos mx) ex (Zpos my) ey in
    binary_round_aux m (xorb sx sy) mz ez lz in
  valid_binary z = true /\
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (x / y))) (bpow radix2 emax) then
    SF2R radix2 z = round radix2 fexp (round_mode m) (x / y) /\
    is_finite_SF z = true /\ sign_SF z = xorb sx sy
  else
    z = binary_overflow m (xorb sx sy).
Proof.
intros m sx mx ex sy my ey.
unfold SFdiv_core_binary.
rewrite 2!Zdigits2_Zdigits.
set (e' := Z.min _ _).
match goal with |- context [Z.div_eucl ?m _] => set (mx' := m) end.
generalize (Fdiv_core_correct radix2 (Zpos mx) ex (Zpos my) ey e' eq_refl eq_refl).
unfold Fdiv_core.
rewrite Zle_bool_true by apply Z.le_min_r.
assert (mx' = Zpos mx * Zpower radix2 (ex - ey - e'))%Z as <-.
{ unfold mx'.
  destruct (ex - ey - e')%Z as [|p|p].
  now rewrite Zmult_1_r.
  now rewrite Z.shiftl_mul_pow2.
  easy. }
clearbody mx'.
destruct Z.div_eucl as [q r].
intros Bz.
assert (xorb sx sy = Rlt_bool (F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) *
  / F2R (Float radix2 (cond_Zopp sy (Zpos my)) ey)) 0) as ->.
{ apply eq_sym.
case sy ; simpl.
change (Zneg my) with (Z.opp (Zpos my)).
rewrite F2R_Zopp.
rewrite <- Ropp_inv_permute.
rewrite Ropp_mult_distr_r_reverse.
case sx ; simpl.
apply Rlt_bool_false.
rewrite <- Ropp_mult_distr_l_reverse.
apply Rmult_le_pos.
rewrite <- F2R_opp.
now apply F2R_ge_0.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0.
apply Rlt_bool_true.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply Rmult_lt_0_compat.
now apply F2R_gt_0.
apply Rinv_0_lt_compat.
now apply F2R_gt_0.
apply Rgt_not_eq.
now apply F2R_gt_0.
case sx.
apply Rlt_bool_true.
rewrite F2R_Zopp.
rewrite Ropp_mult_distr_l_reverse.
rewrite <- Ropp_0.
apply Ropp_lt_contravar.
apply Rmult_lt_0_compat.
now apply F2R_gt_0.
apply Rinv_0_lt_compat.
now apply F2R_gt_0.
apply Rlt_bool_false.
apply Rmult_le_pos.
now apply F2R_ge_0.
apply Rlt_le.
apply Rinv_0_lt_compat.
now apply F2R_gt_0. }
unfold Rdiv.
apply binary_round_aux_correct'.
- apply Rmult_integral_contrapositive_currified.
  now apply F2R_neq_0 ; case sx.
  apply Rinv_neq_0_compat.
  now apply F2R_neq_0 ; case sy.
- rewrite Rabs_mult, Rabs_Rinv.
  + rewrite <- 2!F2R_Zabs, 2!abs_cond_Zopp; simpl.
    replace (SpecFloat.new_location _ _) with (Bracket.new_location (Z.pos my) r loc_Exact);
      [exact Bz|].
    case my as [p|p|]; [reflexivity| |reflexivity].
    unfold Bracket.new_location, SpecFloat.new_location; simpl.
    unfold Bracket.new_location_even, SpecFloat.new_location_even; simpl.
    now case Zeq_bool; [|case r as [|rp|rp]; case Z.compare].
  + now apply F2R_neq_0 ; case sy.
- rewrite <- cexp_abs, Rabs_mult, Rabs_Rinv.
  rewrite 2!F2R_cond_Zopp, 2!abs_cond_Ropp, <- Rabs_Rinv.
  rewrite <- Rabs_mult, cexp_abs.
  apply Z.le_trans with (1 := Z.le_min_l _ _).
  apply FLT_exp_monotone.
  now apply mag_div_F2R.
  now apply F2R_neq_0.
  now apply F2R_neq_0 ; case sy.
Qed.

Definition Bdiv m x y :=
  match x, y with
  | B754_nan, _ | _, B754_nan => B754_nan
  | B754_infinity sx, B754_infinity sy => B754_nan
  | B754_infinity sx, B754_finite sy _ _ _ => B754_infinity (xorb sx sy)
  | B754_finite sx _ _ _, B754_infinity sy => B754_zero (xorb sx sy)
  | B754_infinity sx, B754_zero sy => B754_infinity (xorb sx sy)
  | B754_zero sx, B754_infinity sy => B754_zero (xorb sx sy)
  | B754_finite sx _ _ _, B754_zero sy => B754_infinity (xorb sx sy)
  | B754_zero sx, B754_finite sy _ _ _ => B754_zero (xorb sx sy)
  | B754_zero sx, B754_zero sy => B754_nan
  | B754_finite sx mx ex _, B754_finite sy my ey _ =>
    SF2B _ (proj1 (Bdiv_correct_aux m sx mx ex sy my ey))
  end.

Theorem Bdiv_correct :
  forall m x y,
  B2R y <> 0%R ->
  if Rlt_bool (Rabs (round radix2 fexp (round_mode m) (B2R x / B2R y))) (bpow radix2 emax) then
    B2R (Bdiv m x y) = round radix2 fexp (round_mode m) (B2R x / B2R y) /\
    is_finite (Bdiv m x y) = is_finite x /\
    (is_nan (Bdiv m x y) = false ->
      Bsign (Bdiv m x y) = xorb (Bsign x) (Bsign y))
  else
    B2SF (Bdiv m x y) = binary_overflow m (xorb (Bsign x) (Bsign y)).
Proof.
intros m x [sy|sy| |sy my ey Hy] Zy ; try now elim Zy.
revert x.
unfold Rdiv.
intros [sx|sx| |sx mx ex Hx] ;
  try ( rewrite Rmult_0_l, round_0, Rabs_R0, Rlt_bool_true ; [ simpl ; try easy ; now rewrite B2R_build_nan, is_finite_build_nan, is_nan_build_nan | apply bpow_gt_0 | auto with typeclass_instances ] ).
simpl.
case Bdiv_correct_aux.
intros H1.
unfold Rdiv.
case Rlt_bool.
intros (H2, (H3, H4)).
split.
now rewrite B2R_SF2B.
split.
now rewrite is_finite_SF2B.
rewrite Bsign_SF2B. congruence.
intros H2.
now rewrite B2SF_SF2B.
Qed.

(** Square root *)

Lemma Bsqrt_correct_aux :
  forall m mx ex (Hx : bounded mx ex = true),
  let x := F2R (Float radix2 (Zpos mx) ex) in
  let z :=
    let '(mz, ez, lz) := SFsqrt_core_binary prec emax (Zpos mx) ex in
    binary_round_aux m false mz ez lz in
  valid_binary z = true /\
  SF2R radix2 z = round radix2 fexp (round_mode m) (sqrt x) /\
  is_finite_SF z = true /\ sign_SF z = false.
Proof with auto with typeclass_instances.
intros m mx ex Hx.
unfold SFsqrt_core_binary.
rewrite Zdigits2_Zdigits.
set (e' := Z.min _ _).
assert (2 * e' <= ex)%Z as He.
{ assert (e' <= Z.div2 ex)%Z by apply Z.le_min_r.
  rewrite (Zdiv2_odd_eqn ex).
  destruct Z.odd ; lia. }
generalize (Fsqrt_core_correct radix2 (Zpos mx) ex e' eq_refl He).
unfold Fsqrt_core.
set (mx' := match (ex - 2 * e')%Z with Z0 => _ | _ => _ end).
assert (mx' = Zpos mx * Zpower radix2 (ex - 2 * e'))%Z as <-.
{ unfold mx'.
  destruct (ex - 2 * e')%Z as [|p|p].
  now rewrite Zmult_1_r.
  now rewrite Z.shiftl_mul_pow2.
  easy. }
clearbody mx'.
destruct Z.sqrtrem as [mz r].
set (lz := if Zeq_bool r 0 then _ else _).
clearbody lz.
intros Bz.
refine (_ (binary_round_aux_correct' m (sqrt (F2R (Float radix2 (Zpos mx) ex))) mz e' lz _ _ _)) ; cycle 1.
  now apply Rgt_not_eq, sqrt_lt_R0, F2R_gt_0.
  rewrite Rabs_pos_eq.
  exact Bz.
  apply sqrt_ge_0.
  apply Z.le_trans with (1 := Z.le_min_l _ _).
  apply FLT_exp_monotone.
  rewrite mag_sqrt_F2R by easy.
  apply Z.le_refl.
rewrite Rlt_bool_false by apply sqrt_ge_0.
rewrite Rlt_bool_true.
easy.
rewrite Rabs_pos_eq.
refine (_ (relative_error_FLT_ex radix2 emin prec (prec_gt_0 prec) (round_mode m) (sqrt (F2R (Float radix2 (Zpos mx) ex))) _)).
fold fexp.
intros (eps, (Heps, Hr)).
change fexp with (FLT_exp emin prec).
rewrite Hr.
assert (Heps': (Rabs eps < 1)%R).
apply Rlt_le_trans with (1 := Heps).
fold (bpow radix2 0).
apply bpow_le.
generalize (prec_gt_0 prec).
clear ; lia.
apply Rsqr_incrst_0.
3: apply bpow_ge_0.
rewrite Rsqr_mult.
rewrite Rsqr_sqrt.
2: now apply F2R_ge_0.
unfold Rsqr.
apply Rmult_ge_0_gt_0_lt_compat.
apply Rle_ge.
apply Rle_0_sqr.
apply bpow_gt_0.
now apply bounded_lt_emax.
apply Rlt_le_trans with 4%R.
apply (Rsqr_incrst_1 _ 2).
apply Rplus_lt_compat_l.
apply (Rabs_lt_inv _ _ Heps').
rewrite <- (Rplus_opp_r 1).
apply Rplus_le_compat_l.
apply Rlt_le.
apply (Rabs_lt_inv _ _ Heps').
now apply IZR_le.
change 4%R with (bpow radix2 2).
apply bpow_le.
generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
clear ; lia.
apply Rmult_le_pos.
apply sqrt_ge_0.
rewrite <- (Rplus_opp_r 1).
apply Rplus_le_compat_l.
apply Rlt_le.
apply (Rabs_lt_inv _ _ Heps').
rewrite Rabs_pos_eq.
2: apply sqrt_ge_0.
apply Rsqr_incr_0.
2: apply bpow_ge_0.
2: apply sqrt_ge_0.
rewrite Rsqr_sqrt.
2: now apply F2R_ge_0.
apply Rle_trans with (bpow radix2 emin).
unfold Rsqr.
rewrite <- bpow_plus.
apply bpow_le.
unfold emin.
generalize (prec_lt_emax prec emax).
clear ; lia.
apply generic_format_ge_bpow with fexp.
intros.
apply Z.le_max_r.
now apply F2R_gt_0.
apply generic_format_canonical.
now apply (canonical_bounded false).
apply round_ge_generic...
apply generic_format_0.
apply sqrt_ge_0.
Qed.

Definition Bsqrt m x :=
  match x with
  | B754_nan => B754_nan
  | B754_infinity false => x
  | B754_infinity true => B754_nan
  | B754_finite true _ _ _ => B754_nan
  | B754_zero _ => x
  | B754_finite sx mx ex Hx =>
    SF2B _ (proj1 (Bsqrt_correct_aux m mx ex Hx))
  end.

Theorem Bsqrt_correct :
  forall m x,
  B2R (Bsqrt m x) = round radix2 fexp (round_mode m) (sqrt (B2R x)) /\
  is_finite (Bsqrt m x) = match x with B754_zero _ => true | B754_finite false _ _ _ => true | _ => false end /\
  (is_nan (Bsqrt m x) = false -> Bsign (Bsqrt m x) = Bsign x).
Proof.
intros m [sx|[|]| |sx mx ex Hx] ;
  try ( simpl ; rewrite sqrt_0, round_0, ?B2R_build_nan, ?is_finite_build_nan, ?is_nan_build_nan ; intuition auto with typeclass_instances ; easy).
simpl.
case Bsqrt_correct_aux.
intros H1 (H2, (H3, H4)).
case sx.
refine (conj _ (conj (refl_equal false) _)).
apply sym_eq.
unfold sqrt.
case Rcase_abs.
intros _.
apply round_0.
auto with typeclass_instances.
intros H.
elim Rge_not_lt with (1 := H).
now apply F2R_lt_0.
easy.
split.
now rewrite B2R_SF2B.
split.
now rewrite is_finite_SF2B.
intros _.
now rewrite Bsign_SF2B.
Qed.

(** NearbyInt and Trunc **)

Definition SFnearbyint_binary_aux m sx mx ex :=
  if (0 <=? ex)%Z then ((Z.pos mx) * 2 ^ ex)%Z else
  let mrs := {| shr_m := Z.pos mx; shr_r := false; shr_s := false |} in
  let mrs' := if (ex <? - prec)%Z then
    {| shr_m := Z0; shr_r := false; shr_s := true |} else
    fst (shr mrs ex (- ex)) in
  let l' := loc_of_shr_record mrs' in
  let mx' := shr_m mrs' in
  choice_mode m sx mx' l'.

Definition SFnearbyint_binary m sx mx ex :=
  if (0 <=? ex)%Z then S754_finite sx mx ex else
  let mx'' := SFnearbyint_binary_aux m sx mx ex in
  match mx'' with
  | Z.pos n =>
    let (mx''', ex''') := shl_align_fexp n 0 in
    S754_finite sx mx''' ex'''
  | Z.neg n => S754_nan
  | Z0      => S754_zero sx
  end.

Lemma Bnearbyint_correct_aux :
  forall md sx mx ex (Hx : bounded mx ex = true),
  let x := F2R (Float radix2 (cond_Zopp sx (Zpos mx)) ex) in
  let z := SFnearbyint_binary md sx mx ex in
  valid_binary z = true /\
  SF2R radix2 z = (round radix2 (FIX_exp 0) (round_mode md) x) /\
  is_finite_SF z = true /\ (is_nan_SF z = false -> sign_SF z = sx).
Proof.
  intros md sx mx ex Hmxex. simpl.
  set (mrs' := if (ex <? - prec)%Z then
    {| shr_m := Z0; shr_r := false; shr_s := true |} else
    fst (shr {| shr_m := Z.pos mx; shr_r := false; shr_s := false |} ex (- ex))).
  assert (mrs'_simpl : mrs' = fst (shr {| shr_m := Z.pos mx; shr_r := false; shr_s := false |} ex (- ex))).
  { unfold mrs'. case Zlt_bool_spec; [ | easy]. intros Hex1. symmetry.
    apply shr_limit; simpl; [now left |]. apply Z.lt_le_trans with (radix2 ^ prec)%Z.
    - unfold bounded, canonical_mantissa, fexp in Hmxex. apply andb_prop in Hmxex.
      destruct Hmxex as [Hmxex _]. apply Zeq_bool_eq in Hmxex.
      rewrite Zpos_digits2_pos in Hmxex. apply Z.eq_le_incl in Hmxex.
      apply Z.max_lub_l in Hmxex.
      assert (Hmx : (Zdigits radix2 (Z.pos mx) <= prec)%Z) by lia.
      replace (Z.pos mx) with (Z.abs (Z.pos mx)); [| now simpl].
      now apply Zpower_gt_Zdigits.
    - apply Zpower_le. lia.
    }
  assert (mrs'_ge_0 : (ex < 0)%Z -> (0 <= shr_m mrs')%Z).
  (* N.B.: The hypothesis (ex < 0)%Z is only here to make the proof simpler. *)
  { intros Hex.
    rewrite mrs'_simpl.
    apply (Z.mul_le_mono_pos_l _ _ (2 ^ (- ex))).
    apply (Zpower_gt_0 radix2).
    lia.
    rewrite Z.mul_0_r.
    apply le_shr_le.
    easy.
    lia. }
  repeat split; unfold SFnearbyint_binary, SFnearbyint_binary_aux;
  case Zle_bool_spec; intros Hex0; fold mrs'; auto.

  - destruct choice_mode eqn:H0; auto.
    unfold shl_align_fexp. destruct shl_align as [mx''' ex'''] eqn:H1; simpl.
    unfold bounded, canonical_mantissa in Hmxex. apply andb_prop in Hmxex.
    destruct Hmxex as [Hmxex Hex'].
    unfold bounded, canonical_mantissa.
    assert (A : (fexp (Z.pos (digits2_pos p) + 0) <= 0)%Z).
    { rewrite Z.add_0_r in *. rewrite Zpos_digits2_pos in *.
      destruct (le_shr_le mrs' ex (- ex)) as [H2 H3]; [now apply mrs'_ge_0 | lia |].
      destruct (le_choice_mode_le md sx (shr_m mrs') (loc_of_shr_record mrs')) as [H4 H5].
      rewrite H0 in H4, H5.
      transitivity (fexp (Zdigits radix2 (shr_m mrs' + 1)));
        [apply fexp_monotone; apply Zdigits_le; [lia | assumption] |
      transitivity (fexp ((Zdigits radix2 (shr_m mrs') + 1)));
        [apply fexp_monotone; apply Zdigits_succ_le; now apply mrs'_ge_0 |
      transitivity (fexp (Zdigits radix2 ((shr_m {| shr_m := Z.pos mx; shr_r := false; shr_s := false |}) / (2 ^ (- ex))) + 1));
        [apply fexp_monotone; apply Zplus_le_compat_r; apply Zdigits_le; simpl; auto | simpl
      ]]].
      - apply Zdiv.Zdiv_le_lower_bound; [lia |]. rewrite Z.mul_comm. rewrite mrs'_simpl.
        apply le_shr_le; simpl; lia.
      - transitivity (fexp (Zdigits radix2 (Z.pos mx / 2 ^ 1) + 1)).
        + apply fexp_monotone. apply Zplus_le_compat_r. apply Zdigits_le.
          * apply Z.div_pos; lia.
          * apply Z.opp_pos_neg in Hex0. apply Z.div_le_compat_l; [lia |].
            split; [lia |]. apply Z.pow_le_mono_r; lia.
        + rewrite Zdigits_div_Zpower; [| lia |].
          * rewrite Z.sub_add. apply Zeq_bool_eq in Hmxex. unfold fexp in *.
            rewrite Z.max_lub_iff. split; [| lia]. apply (Zplus_le_reg_l _ _ ex).
            rewrite Zplus_0_r. rewrite Z.add_sub_assoc. rewrite Z.add_comm.
            rewrite <-Hmxex at 2. apply Z.le_max_l.
          * split; [lia |]. replace 1%Z with (Zdigits radix2 (Z.pos 1)); [| easy].
            apply Zdigits_le; lia. }
    refine (_ (shl_align_correct' p 0 (fexp (Z.pos (digits2_pos p) + 0)) _)).
    + rewrite H1. intros [H2 H3]. rewrite <-H3 in H2.
      apply andb_true_intro; split.
      * apply Zeq_bool_true. rewrite H3 at 2. rewrite !Zpos_digits2_pos.
        rewrite <-!mag_F2R_Zdigits; [| lia | lia].
        now apply (f_equal (fun f => fexp (mag radix2 f))).
      * apply Zle_bool_true. rewrite H3. transitivity 0%Z; [assumption|].
        apply Zle_minus_le_0. apply Z.lt_le_incl. apply prec_lt_emax_.
    + assumption.

  - symmetry. apply round_generic; auto.
    + apply valid_rnd_round_mode.
    + apply generic_format_FIX.
      exists (Float radix2 (cond_Zopp sx (Z.pos mx) * Z.pow 2 ex) 0); auto.
      simpl. rewrite <-(Z.sub_0_r ex) at 2. now apply F2R_change_exp.

  - rewrite round_trunc_sign_any_correct with (choice := choice_mode md)
      (m := Z.pos mx) (e := ex) (l := loc_Exact).
    + fold (shr_record_of_loc (Z.pos mx) loc_Exact) in mrs'_simpl. rewrite mrs'_simpl.
      replace (- ex)%Z with (FIX_exp 0 (Zdigits2 (Z.pos mx) + ex) - ex)%Z; [| auto].
      rewrite !shr_truncate; [ | apply FIX_exp_valid | easy ].
      destruct truncate as (rec, loc) eqn:H0. destruct rec as (z0, z1) eqn:H1.
      simpl. rewrite shr_m_shr_record_of_loc. rewrite loc_of_shr_record_of_loc.
      replace (Rlt_bool (F2R {| Fnum := cond_Zopp sx (Z.pos mx); Fexp := ex |}) 0) with sx.
      * destruct choice_mode as [| p0 | p0] eqn:H2.
        -- simpl. symmetry. rewrite cond_Zopp_0. apply F2R_0.
        -- generalize (shl_align_fexp_correct p0 0).
           destruct shl_align_fexp as (p1, z2). simpl. intros [H3 _].
           rewrite !F2R_cond_Zopp. apply f_equal. simpl in H0.
           rewrite Zlt_bool_true in H0; [| lia].
           rewrite Z.add_opp_diag_r in H0. injection H0.
           intros _ H4 _. now rewrite <-H4.
        -- destruct (le_choice_mode_le md sx z0 loc) as [H3 _].
           rewrite H2 in H3. simpl in H0.
           rewrite Zlt_bool_true in H0 by lia.
           injection H0. intros _ _ H4.
           elim (Zle_not_lt 0 z0).
           rewrite <- H4.
           apply Z_div_pos.
           apply Z.lt_gt, (Zpower_gt_0 radix2). lia.
           easy.
           now apply Z.le_lt_trans with (1 := H3).
      * rewrite F2R_cond_Zopp. apply eq_sym, Rlt_bool_cond_Ropp.
        now apply F2R_gt_0.
    + apply FIX_exp_valid.
    + apply valid_rnd_round_mode.
    + apply round_mode_choice_mode.
    + rewrite <-F2R_abs. simpl. rewrite abs_cond_Zopp. simpl. now apply inbetween_Exact.
    + auto.

  - destruct choice_mode eqn:H0; [easy | now destruct shl_align_fexp |].
    apply mrs'_ge_0 in Hex0.
    destruct (le_choice_mode_le md sx (shr_m mrs') (loc_of_shr_record mrs')) as [H2 H3].
    rewrite H0 in H2, H3. lia.

  - destruct choice_mode eqn:H0; [easy | now destruct shl_align_fexp | easy].
Qed.

Definition Bnearbyint md (x : binary_float) :=
  match x with
  | B754_nan => B754_nan
  | B754_zero s => B754_zero s
  | B754_infinity s => B754_infinity s
  | B754_finite s m e H =>
    SF2B _ (proj1 (Bnearbyint_correct_aux md s m e H))
  end.

Theorem Bnearbyint_correct :
  forall md x,
  B2R (Bnearbyint md x) = round radix2 (FIX_exp 0) (round_mode md) (B2R x) /\
  is_finite (Bnearbyint md x) = is_finite x /\
  (is_nan (Bnearbyint md x) = false -> Bsign (Bnearbyint md x) = Bsign x).
Proof.
  intros md.
  assert (round_0_ : 0%R = (round radix2 (FIX_exp 0) (round_mode md) 0)).
  { symmetry.
    apply round_0.
    apply valid_rnd_round_mode. }
  intros [sx | sx | | sx mx ex Hx]; try easy.
  unfold Bnearbyint. destruct Bnearbyint_correct_aux as [H1 [H2 [H3 H4]]]. repeat split.
  - rewrite B2R_SF2B. easy.
  - rewrite is_finite_SF2B. easy.
  - rewrite is_nan_SF2B. rewrite Bsign_SF2B. easy.
Qed.

Definition Btrunc (x : binary_float) :=
  match x with
  | B754_finite s m e _ =>
    cond_Zopp s (SFnearbyint_binary_aux mode_ZR s m e)
  | _ => 0%Z
  end.

Theorem Btrunc_correct :
  forall x,
  IZR (Btrunc x) = round radix2 (FIX_exp 0) Ztrunc (B2R x).
Proof.
  assert (round_0_to_0 : 0%R = (round radix2 (FIX_exp 0) Ztrunc 0)).
  { symmetry. apply round_0. apply valid_rnd_ZR. }
  intros [sx | sx | | sx mx ex Hx]; simpl; try assumption.
  destruct (Bnearbyint_correct_aux mode_ZR sx mx ex) as [_ [H0 _]]; [easy |].
  simpl round_mode in H0. rewrite <-H0. unfold SFnearbyint_binary, SFnearbyint_binary_aux.
  set (mrs' :=
   (if (ex <? - prec)%Z
    then {| shr_m := 0; shr_r := false; shr_s := true |}
    else fst (shr {| shr_m := Z.pos mx; shr_r := false; shr_s := false |} ex (- ex)))).
  fold mrs'.
  set (n := choice_mode mode_ZR sx (shr_m mrs') (loc_of_shr_record mrs')).
  fold n. case Zle_bool_spec; intros H1.
  - simpl SF2R. unfold F2R. simpl Fnum. simpl bpow. destruct sx; unfold cond_Zopp;
    [rewrite Zopp_mult_distr_l |]; rewrite mult_IZR; apply f_equal; destruct ex; easy.
  - destruct n as [ | p | p] eqn:H2; [now destruct sx | |].
    + generalize (shl_align_fexp_correct p 0). destruct shl_align_fexp.
      simpl SF2R. unfold F2R. simpl. intros [H3 H4]. rewrite Rmult_1_r in H3.
      destruct sx; unfold cond_Zopp; [| assumption].
      rewrite 2Ropp_Ropp_IZR. rewrite <-Ropp_mult_distr_l. now rewrite H3.
    + unfold n in H2.
      destruct (le_choice_mode_le mode_ZR sx (shr_m mrs') (loc_of_shr_record mrs')) as [H3 _].
      rewrite H2 in H3. unfold mrs' in H3. case (ex <? - prec)%Z in H3.
      * simpl in H3. lia.
      * destruct (le_shr_le ({| shr_m := Z.pos mx; shr_r := false; shr_s := false |})
          ex (- ex)) as [[H4 _] _]; [simpl; lia | lia |].
        elim (Zle_not_lt 0 (Z.neg p)). 2: easy.
        apply Z.le_trans with (2 := H3).
        apply Zmult_le_0_reg_r with (2 ^ (- ex))%Z.
        apply Z.lt_gt, (Zpower_gt_0 radix2). lia.
        now rewrite Zmult_comm.
Qed.

(** A few values *)

Definition Bone := SF2B _ (proj1 (binary_round_correct mode_NE false 1 0)).

Theorem Bone_correct : B2R Bone = 1%R.
Proof.
unfold Bone; simpl.
set (Hr := binary_round_correct _ _ _ _).
unfold Hr; rewrite B2R_SF2B.
destruct Hr as (Vz, Hr).
revert Hr.
fold emin; simpl.
rewrite round_generic; [|now apply valid_rnd_N|].
- unfold F2R; simpl; rewrite Rmult_1_r.
  rewrite Rlt_bool_true.
  + now intros (Hr, Hr'); rewrite Hr.
  + rewrite Rabs_R1.
    change 1%R with (bpow radix2 0); apply bpow_lt.
    generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
    lia.
- apply generic_format_F2R; intros _.
  unfold cexp, fexp, FLT_exp, F2R; simpl; rewrite Rmult_1_r, mag_1.
  unfold emin.
  generalize (prec_gt_0 prec) (prec_lt_emax prec emax).
  lia.
Qed.

Theorem is_finite_strict_Bone :
  is_finite_strict Bone = true.
Proof.
apply is_finite_strict_B2R.
rewrite Bone_correct.
apply R1_neq_R0.
Qed.

Theorem is_nan_Bone :
  is_nan Bone = false.
Proof.
unfold Bone.
rewrite is_nan_SF2B.
apply is_nan_binary_round.
Qed.

Theorem is_finite_Bone :
  is_finite Bone = true.
Proof.
generalize is_finite_strict_Bone.
now destruct Bone.
Qed.

Theorem Bsign_Bone :
  Bsign Bone = false.
Proof.
generalize Bone_correct is_finite_strict_Bone.
destruct Bone as [sx|sx| |[|] mx ex Bx] ; try easy.
intros H _.
contradict H.
apply Rlt_not_eq, Rlt_trans with (2 := Rlt_0_1).
now apply F2R_lt_0.
Qed.

Lemma Bmax_float_proof :
  valid_binary
    (S754_finite false (shift_pos (Z.to_pos prec) 1 - 1) (emax - prec))
  = true.
Proof.
unfold valid_binary, bounded; apply andb_true_intro; split.
- unfold canonical_mantissa; apply Zeq_bool_true.
  set (p := Z.pos (digits2_pos _)).
  assert (H : p = prec).
  { unfold p; rewrite Zpos_digits2_pos, Pos2Z.inj_sub.
    - rewrite shift_pos_correct, Z.mul_1_r.
      assert (P2pm1 : (0 <= 2 ^ prec - 1)%Z).
      { apply Z.lt_le_pred.
        apply (Zpower_gt_0 radix2).
        now apply Zlt_le_weak. }
      apply Zdigits_unique ;
        rewrite Z.pow_pos_fold, Z2Pos.id; [|exact prec_gt_0_]; simpl; split.
      + rewrite (Z.abs_eq _ P2pm1).
        apply Z.lt_le_pred.
        apply (Zpower_lt radix2).
        now apply Zlt_le_weak.
        apply Z.lt_pred_l.
      + rewrite Z.abs_eq by easy.
        apply Z.lt_pred_l.
    - change (Z.pos 1 < Z.pos (shift_pos (Z.to_pos prec) 1))%Z.
      rewrite shift_pos_correct, Z.mul_1_r, Z.pow_pos_fold.
      rewrite Z2Pos.id; [|exact prec_gt_0_].
      now apply (Zpower_gt_1 radix2). }
  rewrite H.
  ring_simplify (prec + (emax - prec))%Z.
  apply fexp_emax.
- apply Zle_bool_true, Z.le_refl.
Qed.

Definition Bmax_float := SF2B _ Bmax_float_proof.

(** Extraction/modification of mantissa/exponent *)

Definition Bnormfr_mantissa x := SFnormfr_mantissa prec (B2SF x).

Lemma Bnormfr_mantissa_correct :
  forall x,
  (/ 2 <= Rabs (B2R x) < 1)%R ->
  match x with
  | B754_finite _ m e _ =>
    Bnormfr_mantissa x = N.pos m
    /\ Z.pos (digits2_pos m) = prec /\ (e = - prec)%Z
  | _ => False
  end.
Proof.
intro x.
destruct x as [s|s| |s m e B]; [now simpl; rewrite Rabs_R0; lra..| ].
unfold Bnormfr_mantissa, SFnormfr_mantissa; simpl.
intro Hx.
cut (e = -prec /\ Z.pos (digits2_pos m) = prec)%Z.
{ now intros [-> ->]; rewrite Z.eqb_refl. }
revert Hx.
change (/ 2)%R with (bpow radix2 (0 - 1)); change 1%R with (bpow radix2 0).
intro H; generalize (mag_unique _ _ _ H); clear H.
rewrite Float_prop.mag_F2R_Zdigits; [ |now case s].
replace (Digits.Zdigits _ _)
  with (Digits.Zdigits radix2 (Z.pos m)); [ |now case s].
clear s.
rewrite <-Digits.Zpos_digits2_pos.
intro He; replace e with (e - 0)%Z by ring; rewrite <-He.
cut (Z.pos (digits2_pos m) = prec)%Z.
{ now intro H; split; [ |exact H]; ring_simplify; rewrite H. }
revert B; unfold bounded, canonical_mantissa.
intro H; generalize (andb_prop _ _ H); clear H; intros [H _]; revert H.
intro H; generalize (Zeq_bool_eq _ _ H); clear H.
unfold fexp, emin.
unfold Prec_gt_0 in prec_gt_0_; unfold Prec_lt_emax in prec_lt_emax_.
lia.
Qed.

Definition Bldexp mode f e :=
  match f with
  | B754_finite sx mx ex _ =>
    SF2B _ (proj1 (binary_round_correct mode sx mx (ex+e)))
  | _ => f
  end.

Theorem is_nan_Bldexp :
  forall mode x e,
  is_nan (Bldexp mode x e) = is_nan x.
Proof.
intros mode [sx|sx| |sx mx ex Bx] e ; try easy.
unfold Bldexp.
rewrite is_nan_SF2B.
apply is_nan_binary_round.
Qed.

Theorem Bldexp_correct :
  forall m (f : binary_float) e,
  if Rlt_bool
       (Rabs (round radix2 fexp (round_mode m) (B2R f * bpow radix2 e)))
       (bpow radix2 emax) then
    (B2R (Bldexp m f e)
     = round radix2 fexp (round_mode m) (B2R f * bpow radix2 e))%R /\
    is_finite (Bldexp m f e) = is_finite f /\
    Bsign (Bldexp m f e) = Bsign f
  else
    B2SF (Bldexp m f e) = binary_overflow m (Bsign f).
Proof.
intros m f e.
case f.
- intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
  now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
- intro s; simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
  now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
- simpl; rewrite Rmult_0_l, round_0; [|apply valid_rnd_round_mode].
  now rewrite Rabs_R0, Rlt_bool_true; [|now apply bpow_gt_0].
- intros s mf ef Hmef.
  case (Rlt_bool_spec _ _); intro Hover.
  + unfold Bldexp; rewrite B2R_SF2B, is_finite_SF2B, Bsign_SF2B.
    simpl; unfold F2R; simpl; rewrite Rmult_assoc, <-bpow_plus.
    destruct (binary_round_correct m s mf (ef + e)) as (Hf, Hr).
    fold emin in Hr; simpl in Hr; rewrite Rlt_bool_true in Hr.
    * now destruct Hr as (Hr, (Hfr, Hsr)); rewrite Hr, Hfr, Hsr.
    * now revert Hover; unfold B2R, F2R; simpl; rewrite Rmult_assoc, bpow_plus.
  + unfold Bldexp; rewrite B2SF_SF2B; simpl.
    destruct (binary_round_correct m s mf (ef + e)) as (Hf, Hr).
    fold emin in Hr; simpl in Hr; rewrite Rlt_bool_false in Hr; [exact Hr|].
    now revert Hover; unfold B2R, F2R; simpl; rewrite Rmult_assoc, bpow_plus.
Qed.

Lemma Bldexp_Bopp_NE x e : Bldexp mode_NE (Bopp x) e = Bopp (Bldexp mode_NE x e).
Proof.
case x as [s|s| |s m e' B]; [now simpl..| ].
apply B2SF_inj.
replace (B2SF (Bopp _)) with (SFopp (B2SF (Bldexp mode_NE (B754_finite s m e' B) e))).
{ unfold Bldexp, Bopp; rewrite !B2SF_SF2B.
  unfold binary_round.
  set (shl := shl_align_fexp _ _); case shl; intros mz ez.
  unfold binary_round_aux.
  set (shr := shr_fexp _ _ _); case shr; intros mrs e''.
  unfold choice_mode.
  set (shr' := shr_fexp _ _ _); case shr'; intros mrs' e'''.
  unfold binary_fit_aux.
  now case (shr_m mrs') as [|p|p]; [|case Z.leb|]. }
now case Bldexp as [s'|s'| |s' m' e'' B'].
Qed.

Definition Ffrexp_core_binary s m e :=
  if Zlt_bool (-prec) emin then
    (S754_finite s m e, 0%Z)
  else if (Z.to_pos prec <=? digits2_pos m)%positive then
    (S754_finite s m (-prec), (e + prec)%Z)
  else
    let d := (prec - Z.pos (digits2_pos m))%Z in
    (S754_finite s (shift_pos (Z.to_pos d) m) (-prec), (e + prec - d)%Z).

Lemma Bfrexp_correct_aux :
  forall sx mx ex (Hx : bounded mx ex = true),
  let x := F2R (Float radix2 (cond_Zopp sx (Z.pos mx)) ex) in
  let z := fst (Ffrexp_core_binary sx mx ex) in
  let e := snd (Ffrexp_core_binary sx mx ex) in
  valid_binary z = true /\
  ((2 < emax)%Z -> (/2 <= Rabs (SF2R radix2 z) < 1)%R) /\
  (x = SF2R radix2 z * bpow radix2 e)%R.
Proof.
intros sx mx ex Bx.
set (x := F2R _).
set (z := fst _).
set (e := snd _); simpl.
assert (Dmx_le_prec : (Z.pos (digits2_pos mx) <= prec)%Z).
{ revert Bx; unfold bounded; rewrite Bool.andb_true_iff.
  unfold canonical_mantissa; rewrite <-Zeq_is_eq_bool; unfold fexp, FLT_exp.
  case (Z.max_spec (Z.pos (digits2_pos mx) + ex - prec) emin); lia. }
assert (Dmx_le_prec' : (digits2_pos mx <= Z.to_pos prec)%positive).
{ change (_ <= _)%positive
    with (Z.pos (digits2_pos mx) <= Z.pos (Z.to_pos prec))%Z.
  now rewrite Z2Pos.id; [|now apply prec_gt_0_]. }
unfold z, e, Ffrexp_core_binary.
case Z.ltb_spec ; intros Hp ; unfold emin in Hp.
{ apply (conj Bx).
  split.
  clear -Hp ; lia.
  now rewrite Rmult_1_r. }
case (Pos.leb_spec _ _); simpl; intro Dmx.
- unfold bounded, F2R; simpl.
  assert (Dmx' : digits2_pos mx = Z.to_pos prec).
  { now apply Pos.le_antisym. }
  assert (Dmx'' : Z.pos (digits2_pos mx) = prec).
  { now rewrite Dmx', Z2Pos.id; [|apply prec_gt_0_]. }
  split; [|split].
  + apply andb_true_intro.
    split ; cycle 1.
    { apply Zle_bool_true. clear -Hp ; lia. }
    apply Zeq_bool_true; unfold fexp, FLT_exp.
    rewrite Dmx', Z2Pos.id by apply prec_gt_0_.
    rewrite Z.max_l.
    ring.
    clear -Hp.
    unfold emin ; lia.
  + intros _.
    rewrite Rabs_mult, (Rabs_pos_eq (bpow _ _)) by now apply bpow_ge_0.
    rewrite <-abs_IZR, abs_cond_Zopp; simpl; split.
    * apply (Rmult_le_reg_r (bpow radix2 prec)); [now apply bpow_gt_0|].
      rewrite Rmult_assoc, <-bpow_plus, Z.add_opp_diag_l; simpl.
      rewrite Rmult_1_r.
      change (/ 2)%R with (bpow radix2 (- 1)); rewrite <-bpow_plus.
      rewrite <-Dmx'', Z.add_comm, Zpos_digits2_pos, Zdigits_mag; [|lia].
      set (b := bpow _ _).
      rewrite <- (Rabs_pos_eq (IZR _)) by now apply IZR_le.
      now apply bpow_mag_le, IZR_neq.
    * apply (Rmult_lt_reg_r (bpow radix2 prec)); [now apply bpow_gt_0|].
      rewrite Rmult_assoc, <-bpow_plus, Z.add_opp_diag_l; simpl.
      rewrite Rmult_1_l, Rmult_1_r.
      rewrite <-Dmx'', Zpos_digits2_pos, Zdigits_mag; [|lia].
      set (b := bpow _ _).
      rewrite <- (Rabs_pos_eq (IZR _)) by now apply IZR_le.
      apply bpow_mag_gt.
  + rewrite Rmult_assoc, <- bpow_plus.
    now replace (_ + _)%Z with ex by ring.
- unfold bounded, F2R; simpl.
  assert (Dmx' : (Z.pos (digits2_pos mx) < prec)%Z).
  { now rewrite <-(Z2Pos.id prec); [|now apply prec_gt_0_]. }
  split; [|split].
  + unfold bounded; apply andb_true_intro.
    split ; cycle 1.
    { apply Zle_bool_true. clear -Hp ; lia. }
    apply Zeq_bool_true; unfold fexp, FLT_exp.
    rewrite Zpos_digits2_pos, shift_pos_correct, Z.pow_pos_fold.
    rewrite Z2Pos.id; [|lia].
    rewrite Z.mul_comm; change 2%Z with (radix2 : Z).
    rewrite Zdigits_mult_Zpower; [|lia|lia].
    rewrite Zpos_digits2_pos; replace (_ - _)%Z with (- prec)%Z by ring.
    now apply Z.max_l.
  + rewrite Rabs_mult, (Rabs_pos_eq (bpow _ _)); [|now apply bpow_ge_0].
    rewrite <-abs_IZR, abs_cond_Zopp; simpl.
    rewrite shift_pos_correct, mult_IZR.
    change (IZR (Z.pow_pos _ _))
      with (bpow radix2 (Z.pos (Z.to_pos ((prec - Z.pos (digits2_pos mx)))))).
    rewrite Z2Pos.id; [|lia].
    rewrite Rmult_comm, <-Rmult_assoc, <-bpow_plus.
    set (d := Z.pos (digits2_pos mx)).
    replace (_ + _)%Z with (- d)%Z by ring; split.
    * apply (Rmult_le_reg_l (bpow radix2 d)); [now apply bpow_gt_0|].
      rewrite <-Rmult_assoc, <-bpow_plus, Z.add_opp_diag_r.
      rewrite Rmult_1_l.
      change (/ 2)%R with (bpow radix2 (- 1)); rewrite <-bpow_plus.
      rewrite <- (Rabs_pos_eq (IZR _)) by now apply IZR_le.
      unfold d; rewrite Zpos_digits2_pos, Zdigits_mag; [|lia].
      now apply bpow_mag_le, IZR_neq.
    * apply (Rmult_lt_reg_l (bpow radix2 d)); [now apply bpow_gt_0|].
      rewrite <-Rmult_assoc, <-bpow_plus, Z.add_opp_diag_r.
      rewrite Rmult_1_l, Rmult_1_r.
      rewrite <- (Rabs_pos_eq (IZR _)) by now apply IZR_le.
      unfold d; rewrite Zpos_digits2_pos, Zdigits_mag; [|lia].
      apply bpow_mag_gt.
  + rewrite Rmult_assoc, <-bpow_plus, shift_pos_correct.
    rewrite IZR_cond_Zopp, mult_IZR, cond_Ropp_mult_r, <-IZR_cond_Zopp.
    change (IZR (Z.pow_pos _ _))
      with (bpow radix2 (Z.pos (Z.to_pos (prec - Z.pos (digits2_pos mx))))).
    rewrite Z2Pos.id; [|lia].
    rewrite Rmult_comm, <-Rmult_assoc, <-bpow_plus.
    now replace (_ + _)%Z with ex by ring; rewrite Rmult_comm.
Qed.

Definition Bfrexp f :=
  match f with
  | B754_finite s m e H =>
    let e' := snd (Ffrexp_core_binary s m e) in
    (SF2B _ (proj1 (Bfrexp_correct_aux s m e H)), e')
  | _ => (f, (-2*emax-prec)%Z)
  end.

Theorem is_nan_Bfrexp :
  forall x,
  is_nan (fst (Bfrexp x)) = is_nan x.
Proof.
intros [sx|sx| |sx mx ex Bx] ; try easy.
simpl.
rewrite is_nan_SF2B.
unfold Ffrexp_core_binary.
destruct Zlt_bool ; try easy.
now destruct Pos.leb.
Qed.

Theorem Bfrexp_correct :
  forall f,
  is_finite_strict f = true ->
  let (z, e) := Bfrexp f in
  (B2R f = B2R z * bpow radix2 e)%R /\
  ( (2 < emax)%Z -> (/2 <= Rabs (B2R z) < 1)%R /\ e = mag radix2 (B2R f) ).
Proof.
intro f; case f; intro s; try discriminate; intros m e Hf _.
generalize (Bfrexp_correct_aux s m e Hf).
intros (_, (Hb, Heq)); simpl; rewrite B2R_SF2B.
split.
easy.
intros Hp.
specialize (Hb Hp).
split.
easy.
rewrite Heq, mag_mult_bpow.
- apply (Z.add_reg_l (- (snd (Ffrexp_core_binary s m e)))).
  now ring_simplify; symmetry; apply mag_unique.
- intro H; destruct Hb as (Hb, _); revert Hb; rewrite H, Rabs_R0; lra.
Qed.

(** Ulp *)

Lemma Bulp_correct_aux :
  bounded 1 emin = true.
Proof.
unfold bounded, canonical_mantissa.
rewrite Zeq_bool_true.
apply Zle_bool_true.
apply Z.max_l_iff, fexp_emax.
apply Z.max_r.
simpl digits2_pos.
generalize (prec_gt_0 prec).
lia.
Qed.

Definition Bulp x :=
  match x with
  | B754_zero _ => B754_finite false 1 emin Bulp_correct_aux
  | B754_infinity _ => B754_infinity false
  | B754_nan => B754_nan
  | B754_finite _ _ e _ => binary_normalize mode_ZR 1 e false
  end.

Theorem is_nan_Bulp :
  forall x,
  is_nan (Bulp x) = is_nan x.
Proof.
intros [sx|sx| |sx mx ex Bx] ; try easy.
unfold Bulp.
apply is_nan_binary_normalize.
Qed.

Theorem Bulp_correct :
  forall x,
  is_finite x = true ->
  B2R (Bulp x) = ulp radix2 fexp (B2R x) /\
  is_finite (Bulp x) = true /\
  Bsign (Bulp x) = false.
Proof.
intros [sx|sx| |sx mx ex Hx] Fx ; try easy ; simpl.
- repeat split.
  change fexp with (FLT_exp emin prec).
  rewrite ulp_FLT_0 by easy.
  apply F2R_bpow.
- destruct (binary_round_correct mode_ZR false 1 ex) as [H1 H2].
  revert H2.
  simpl.
  destruct (andb_prop _ _ Hx) as [H5 H6].
  replace (round _ _ _ _) with (bpow radix2 ex).
  rewrite Rlt_bool_true.
  intros [H2 [H3 H4]].
  split ; [|split].
  + rewrite B2R_SF2B.
    rewrite ulp_canonical.
    exact H2.
    now case sx.
    now apply canonical_canonical_mantissa.
  + now rewrite is_finite_SF2B.
  + now rewrite Bsign_SF2B.
  + rewrite Rabs_pos_eq by apply bpow_ge_0.
    apply bpow_lt.
    generalize (prec_gt_0 prec) (Zle_bool_imp_le _ _ H6).
    clear ; lia.
  + rewrite F2R_bpow.
    apply sym_eq, round_generic.
    typeclasses eauto.
    apply generic_format_FLT_bpow.
    easy.
    rewrite (canonical_canonical_mantissa false _ _ H5).
    apply Z.max_le_iff.
    now right.
Qed.

Theorem is_finite_strict_Bulp :
  forall x,
  is_finite_strict (Bulp x) = is_finite x.
Proof.
intros [sx|sx| |sx mx ex Bx] ; try easy.
generalize (Bulp_correct (B754_finite sx mx ex Bx) eq_refl).
destruct Bulp as [sy| | |] ; try easy.
intros [H _].
contradict H.
rewrite ulp_neq_0.
apply Rlt_not_eq.
apply bpow_gt_0.
apply F2R_neq_0.
now destruct sx.
Qed.

Definition Bulp' x := Bldexp mode_NE Bone (fexp (snd (Bfrexp x))).

Theorem Bulp'_correct :
  (2 < emax)%Z ->
  forall x,
  is_finite x = true ->
  Bulp' x = Bulp x.
Proof.
intros Hp x Fx.
assert (B2R (Bulp' x) = ulp radix2 fexp (B2R x) /\
        is_finite (Bulp' x) = true /\
        Bsign (Bulp' x) = false) as [H1 [H2 H3]].
{ destruct x as [sx|sx| |sx mx ex Hx] ; unfold Bulp'.
- replace (fexp _) with emin.
  + generalize (Bldexp_correct mode_NE Bone emin).
    rewrite Bone_correct, Rmult_1_l, round_generic;
      [|now apply valid_rnd_N|apply generic_format_bpow; unfold fexp, FLT_exp;
        rewrite Z.max_r; unfold Prec_gt_0 in prec_gt_0_; lia].
    rewrite Rlt_bool_true.
    * intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs.
      split; [|now split; [apply is_finite_Bone|apply Bsign_Bone]].
      simpl; unfold ulp; rewrite Req_bool_true; [|reflexivity].
      destruct (negligible_exp_FLT emin prec) as (n, (Hn, Hn')).
      change fexp with (FLT_exp emin prec); rewrite Hn.
      now unfold FLT_exp; rewrite Z.max_r;
        [|unfold Prec_gt_0 in prec_gt_0_; lia].
    * rewrite Rabs_pos_eq; [|now apply bpow_ge_0]; apply bpow_lt.
      apply emin_lt_emax.
  + simpl; change (fexp _) with (fexp (-2 * emax - prec)).
    unfold fexp, FLT_exp; rewrite Z.max_r; [reflexivity|].
    unfold emin; unfold Prec_gt_0 in prec_gt_0_; lia.
- discriminate.
- discriminate.
- unfold ulp, cexp.
  set (f := B754_finite _ _ _ _).
  rewrite Req_bool_false.
  + destruct (Bfrexp_correct f (eq_refl _)) as (Hfr1, (Hfr2, Hfr3)).
    apply Hp.
    simpl.
    rewrite Hfr3.
    set (e' := fexp _).
    generalize (Bldexp_correct mode_NE Bone e').
    rewrite Bone_correct, Rmult_1_l, round_generic; [|now apply valid_rnd_N|].
    { rewrite Rlt_bool_true.
      - intros (Hr, (Hf, Hs)); rewrite Hr, Hf, Hs.
        now split; [|split; [apply is_finite_Bone|apply Bsign_Bone]].
      - rewrite Rabs_pos_eq; [|now apply bpow_ge_0].
        unfold e', fexp, FLT_exp.
        apply bpow_lt.
        case (Z.max_spec (mag radix2 (B2R f) - prec) emin)
          as [(_, Hm)|(_, Hm)]; rewrite Hm.
        apply emin_lt_emax.
        apply (Zplus_lt_reg_r _ _ prec); ring_simplify.
        assert (mag radix2 (B2R f) <= emax)%Z;
          [|now unfold Prec_gt_0 in prec_gt_0_; lia].
        apply mag_le_bpow; [|now apply abs_B2R_lt_emax].
        now unfold f, B2R; apply F2R_neq_0; case sx. }
    apply generic_format_bpow, Z.max_lub.
    * unfold Prec_gt_0 in prec_gt_0_; lia.
    * apply Z.le_max_r.
  + now unfold f, B2R; apply F2R_neq_0; case sx. }
destruct (Bulp_correct x Fx) as [H4 [H5 H6]].
apply B2R_Bsign_inj ; try easy.
now rewrite H4.
now rewrite H3.
Qed.

(** Successor (and predecessor) *)

Definition Bsucc x :=
  match x with
  | B754_zero _ => B754_finite false 1 emin Bulp_correct_aux
  | B754_infinity false => x
  | B754_infinity true => Bopp Bmax_float
  | B754_nan => B754_nan
  | B754_finite false mx ex _ =>
    SF2B _ (proj1 (binary_round_correct mode_UP false (mx + 1) ex))
  | B754_finite true mx ex _ =>
    SF2B _ (proj1 (binary_round_correct mode_ZR true (xO mx - 1) (ex - 1)))
  end.

Theorem is_nan_Bsucc :
  forall x,
  is_nan (Bsucc x) = is_nan x.
Proof.
unfold Bsucc.
intros [sx|[|]| |[|] mx ex Bx] ; try easy.
rewrite is_nan_SF2B.
apply is_nan_binary_round.
rewrite is_nan_SF2B.
apply is_nan_binary_round.
Qed.

Theorem Bsucc_correct :
  forall x,
  is_finite x = true ->
  if Rlt_bool (succ radix2 fexp (B2R x)) (bpow radix2 emax) then
    B2R (Bsucc x) = succ radix2 fexp (B2R x) /\
    is_finite (Bsucc x) = true /\
    (Bsign (Bsucc x) = Bsign x && is_finite_strict x)%bool
  else
    B2SF (Bsucc x) = S754_infinity false.
Proof.
intros [sx|sx| | [|] mx ex Bx] Hx ; try easy ; clear Hx.
- simpl.
  change fexp with (FLT_exp emin prec).
  rewrite succ_0, ulp_FLT_0 by easy.
  rewrite Rlt_bool_true.
  repeat split ; cycle 1.
  now case sx.
  apply F2R_bpow.
  apply bpow_lt.
  apply emin_lt_emax.
- change (B2R (B754_finite _ _ _ _)) with (F2R (Fopp (Float radix2 (Zpos mx) ex))).
  rewrite F2R_opp, succ_opp.
  rewrite Rlt_bool_true ; cycle 1.
  { apply Rle_lt_trans with 0%R.
    2: apply bpow_gt_0.
    rewrite <- Ropp_0.
    apply Ropp_le_contravar.
    apply pred_ge_0.
    now apply FLT_exp_valid.
    now apply F2R_gt_0.
    apply generic_format_canonical.
    now apply (canonical_bounded false). }
  simpl.
  rewrite B2R_SF2B, is_finite_SF2B, Bsign_SF2B.
  generalize (binary_round_correct mode_ZR true (xO mx - 1) (ex - 1)).
  set (z := binary_round _ _ _ _).
  rewrite F2R_cond_Zopp.
  simpl.
  rewrite round_ZR_opp.
  rewrite round_ZR_DN by now apply F2R_ge_0.
  assert (H: F2R (Float radix2 (Zpos (xO mx - 1)) (ex - 1)) = (F2R (Float radix2 (Zpos mx) ex) - F2R (Float radix2 1 (ex - 1)))%R).
  { rewrite (F2R_change_exp _ (ex - 1) _ ex) by apply Z.le_pred_l.
    rewrite <- F2R_minus, Fminus_same_exp.
    apply F2R_eq.
    replace (ex - (ex - 1))%Z with 1%Z by ring.
    now rewrite Zmult_comm. }
  rewrite Rlt_bool_true.
  + intros [_ [H1 [H2 H3]]].
    split.
    2: now split.
    rewrite H1, H.
    apply f_equal.
    apply round_DN_minus_eps_pos.
      now apply FLT_exp_valid.
      now apply F2R_gt_0.
      apply (generic_format_B2R (B754_finite false mx ex Bx)).
    split.
      now apply F2R_gt_0.
    rewrite F2R_bpow.
    change fexp with (FLT_exp emin prec).
    destruct (ulp_FLT_pred_pos radix2 emin prec (F2R (Float radix2 (Zpos mx) ex))) as [Hu|[Hu1 Hu2]].
    * apply (generic_format_B2R (B754_finite false mx ex Bx)).
    * now apply F2R_ge_0.
    * rewrite Hu.
      rewrite ulp_canonical.
      apply bpow_le.
      apply Z.le_pred_l.
      easy.
      now apply (canonical_bounded false).
    * rewrite Hu2.
      rewrite ulp_canonical.
      rewrite <- (Zmult_1_r radix2).
      change (_ / _)%R with (bpow radix2 ex * bpow radix2 (-1))%R.
      rewrite <- bpow_plus.
      apply Rle_refl.
      easy.
      now apply (canonical_bounded false).
  + rewrite Rabs_Ropp, Rabs_pos_eq.
    eapply Rle_lt_trans.
    2: apply bounded_lt_emax with (1 := Bx).
    apply Rle_trans with (F2R (Float radix2 (Zpos (xO mx - 1)) (ex - 1))).
    apply round_DN_pt.
    now apply FLT_exp_valid.
    rewrite H.
    rewrite <- (Rminus_0_r (F2R _)) at 2.
    apply Rplus_le_compat_l.
    apply Ropp_le_contravar.
    now apply F2R_ge_0.
    apply round_DN_pt.
    now apply FLT_exp_valid.
    apply generic_format_0.
    now apply F2R_ge_0.
- assert (Cx := proj1 (andb_prop _ _ Bx)).
  apply (canonical_canonical_mantissa false) in Cx.
  replace (succ _ _ _) with (F2R (Float radix2 (Zpos mx + 1) ex)) ; cycle 1.
  { unfold succ, B2R.
    rewrite Rle_bool_true by now apply F2R_ge_0.
    rewrite ulp_canonical by easy.
    rewrite <- F2R_bpow.
    rewrite <- F2R_plus.
    now rewrite Fplus_same_exp. }
  simpl.
  rewrite B2R_SF2B, is_finite_SF2B, Bsign_SF2B.
  generalize (binary_round_correct mode_UP false (mx + 1) ex).
  simpl.
  rewrite round_generic.
  + rewrite Rabs_pos_eq by now apply F2R_ge_0.
    case Rlt_bool_spec ; intros Hs.
    now intros [_ H].
    intros H.
    rewrite B2SF_SF2B.
    now rewrite (proj2 H).
  + apply valid_rnd_UP.
  + destruct (mag radix2 (F2R (Float radix2 (Zpos mx) ex))) as [e He].
    rewrite Rabs_pos_eq in He by now apply F2R_ge_0.
    refine (_ (He _)).
    2: now apply F2R_neq_0.
    clear He. intros He.
    destruct (F2R_p1_le_bpow _ (Zpos mx) _ _ eq_refl (proj2 He)) as [H|H].
    * apply generic_format_F2R.
      intros _.
      rewrite Cx at 2.
      apply cexp_ge_bpow.
      apply FLT_exp_monotone.
      rewrite Rabs_pos_eq by now apply F2R_ge_0.
      rewrite (mag_unique_pos _ _ e).
      apply He.
      split.
      apply Rle_trans with (1 := proj1 He).
      apply F2R_le.
      apply Z.le_succ_diag_r.
      exact H.
    * simpl in H.
      rewrite H.
      apply generic_format_FLT_bpow.
      easy.
      apply le_bpow with radix2.
      apply Rlt_le.
      apply Rle_lt_trans with (2 := proj2 He).
      apply generic_format_ge_bpow with fexp.
      intros e'.
      apply Z.le_max_r.
      now apply F2R_gt_0.
      now apply generic_format_canonical.
Qed.

Definition Bpred x := Bopp (Bsucc (Bopp x)).

Theorem is_nan_Bpred :
  forall x,
  is_nan (Bpred x) = is_nan x.
Proof.
intros x.
unfold Bpred.
rewrite is_nan_Bopp, is_nan_Bsucc.
apply is_nan_Bopp.
Qed.

Theorem Bpred_correct :
  forall x,
  is_finite x = true ->
  if Rlt_bool (- bpow radix2 emax) (pred radix2 fexp (B2R x)) then
    B2R (Bpred x) = pred radix2 fexp (B2R x) /\
    is_finite (Bpred x) = true /\
    (Bsign (Bpred x) = Bsign x || negb (is_finite_strict x))%bool
  else
    B2SF (Bpred x) = S754_infinity true.
Proof.
intros x Fx.
assert (Fox : is_finite (Bopp x) = true).
{ now rewrite is_finite_Bopp. }
rewrite <-(Ropp_involutive (B2R x)), <-B2R_Bopp.
rewrite pred_opp, Rlt_bool_opp.
generalize (Bsucc_correct _ Fox).
case (Rlt_bool _ _).
- intros (HR, (HF, HS)); unfold Bpred.
  rewrite B2R_Bopp, HR, is_finite_Bopp.
  rewrite <-(Bool.negb_involutive (Bsign x)), <-Bool.negb_andb.
  apply (conj eq_refl).
  apply (conj HF).
  rewrite Bsign_Bopp, <-(Bsign_Bopp x), HS.
  + now rewrite is_finite_strict_Bopp.
  + now revert Fx; case x.
  + now revert HF; case (Bsucc _).
- now unfold Bpred; case (Bsucc _); intro s; case s.
Qed.

Definition Bpred_pos' x :=
  match x with
  | B754_finite _ mx _ _ =>
    let d :=
      if (mx~0 =? shift_pos (Z.to_pos prec) 1)%positive then
        Bldexp mode_NE Bone (fexp (snd (Bfrexp x) - 1))
      else
        Bulp' x in
    Bminus mode_NE x d
  | _ => x
  end.

Theorem Bpred_pos'_correct :
  (2 < emax)%Z ->
  forall x,
  (0 < B2R x)%R ->
  Bpred_pos' x = Bpred x.
Proof.
intros Hp x Fx.
assert (B2R (Bpred_pos' x) = pred_pos radix2 fexp (B2R x) /\
        is_finite (Bpred_pos' x) = true /\
        Bsign (Bpred_pos' x) = false) as [H1 [H2 H3]].
{ generalize (Bfrexp_correct x).
  destruct x as [sx|sx| |sx mx ex Bx] ; try elim (Rlt_irrefl _ Fx).
  intros Hfrexpx.
  assert (Hsx : sx = false).
  { apply gt_0_F2R in Fx.
    revert Fx.
    now case sx. }
  clear Fx.
  rewrite Hsx in Hfrexpx |- *; clear Hsx sx.
  specialize (Hfrexpx (eq_refl _)).
  simpl in Hfrexpx; rewrite B2R_SF2B in Hfrexpx.
  destruct Hfrexpx as (Hfrexpx_bounds, (Hfrexpx_eq, Hfrexpx_exp)).
  apply Hp.
  unfold Bpred_pos', Bfrexp.
  simpl (snd (_, snd _)).
  rewrite Hfrexpx_exp.
  set (x' := B754_finite _ _ _ _).
  set (xr := F2R _).
  assert (Nzxr : xr <> 0%R).
  { now apply F2R_neq_0. }
  assert (Hulp := Bulp_correct x' (eq_refl _)).
  rewrite <- (Bulp'_correct Hp x') in Hulp by easy.
  assert (Hldexp := Bldexp_correct mode_NE Bone (fexp (mag radix2 xr - 1))).
  rewrite Bone_correct, Rmult_1_l in Hldexp.
  assert (Fbpowxr : generic_format radix2 fexp
                      (bpow radix2 (fexp (mag radix2 xr - 1)))).
  { apply generic_format_bpow, Z.max_lub.
    - unfold Prec_gt_0 in prec_gt_0_; lia.
    - apply Z.le_max_r. }
  assert (H : Rlt_bool (Rabs
               (round radix2 fexp (round_mode mode_NE)
                  (bpow radix2 (fexp (mag radix2 xr - 1)))))
              (bpow radix2 emax) = true); [|rewrite H in Hldexp; clear H].
  { apply Rlt_bool_true; rewrite round_generic;
      [|apply valid_rnd_round_mode|apply Fbpowxr].
    rewrite Rabs_pos_eq; [|apply bpow_ge_0]; apply bpow_lt.
    apply Z.max_lub_lt. 2: apply emin_lt_emax.
    apply (Zplus_lt_reg_r _ _ (prec + 1)); ring_simplify.
    rewrite Z.add_1_r; apply Zle_lt_succ, mag_le_bpow.
    - exact Nzxr.
    - apply (Rlt_le_trans _ (bpow radix2 emax)).
      + change xr with (B2R x'); apply abs_B2R_lt_emax.
      + apply bpow_le; unfold Prec_gt_0 in prec_gt_0_; lia. }
  set (d := if (mx~0 =? _)%positive then _ else _).
  assert (Hminus := Bminus_correct mode_NE x' d (eq_refl _)).
  assert (Fd : is_finite d = true).
  { unfold d; case (_ =? _)%positive.
    - now rewrite (proj1 (proj2 Hldexp)), is_finite_Bone.
    - now rewrite (proj1 (proj2 Hulp)). }
  specialize (Hminus Fd).
  assert (Px : (0 <= B2R x')%R).
  { unfold B2R, x', F2R; simpl.
    now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. }
  assert (Pd : (0 <= B2R d)%R).
  { unfold d; case (_ =? _)%positive.
    - rewrite (proj1 Hldexp).
      now rewrite round_generic; [apply bpow_ge_0|apply valid_rnd_N|].
    - rewrite (proj1 Hulp); apply ulp_ge_0. }
  assert (Hdlex : (B2R d <= B2R x')%R).
  { unfold d; case (_ =? _)%positive.
    - rewrite (proj1 Hldexp).
      rewrite round_generic; [|now apply valid_rnd_N|now simpl].
      apply (Rle_trans _ (bpow radix2 (mag radix2 xr - 1))).
      + apply bpow_le, Z.max_lub.
        * unfold Prec_gt_0 in prec_gt_0_; lia.
        * apply (Zplus_le_reg_r _ _ 1); ring_simplify.
          apply mag_ge_bpow.
          replace (_ - 1)%Z with emin by ring.
          now change xr with (B2R x'); apply abs_B2R_ge_emin.
      + rewrite <-(Rabs_pos_eq _ Px).
        now change xr with (B2R x'); apply bpow_mag_le.
    - rewrite (proj1 Hulp); apply ulp_le_id.
      + assert (B2R x' <> 0%R); [exact Nzxr|lra].
      + apply generic_format_B2R. }
  assert (H : Rlt_bool
            (Rabs
               (round radix2 fexp
                  (round_mode mode_NE) (B2R x' - B2R d)))
            (bpow radix2 emax) = true); [|rewrite H in Hminus; clear H].
  { apply Rlt_bool_true.
    rewrite <-round_NE_abs; [|now apply FLT_exp_valid].
    rewrite Rabs_pos_eq; [|lra].
    apply (Rle_lt_trans _ (B2R x')).
    - apply round_le_generic;
        [now apply FLT_exp_valid|now apply valid_rnd_N| |lra].
      apply generic_format_B2R.
    - apply (Rle_lt_trans _ _ _ (Rle_abs _)), abs_B2R_lt_emax. }
  rewrite (proj1 Hminus).
  rewrite (proj1 (proj2 Hminus)).
  rewrite (proj2 (proj2 Hminus)).
  split; [|split; [reflexivity|now case (Rcompare_spec _ _); [lra| |]]].
  unfold pred_pos, d.
  case (Pos.eqb_spec _ _); intro Hd; case (Req_bool_spec _ _); intro Hpred.
  + rewrite (proj1 Hldexp).
    rewrite (round_generic _ _ _ _ Fbpowxr).
    change xr with (B2R x').
    replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
    * rewrite round_generic; [reflexivity|now apply valid_rnd_N|].
      apply generic_format_pred_pos;
        [now apply FLT_exp_valid|apply generic_format_B2R|].
      change xr with (B2R x') in Nzxr; lra.
    * now unfold pred_pos; rewrite Req_bool_true.
  + exfalso; apply Hpred.
    assert (Hmx : IZR (Z.pos mx) = bpow radix2 (prec - 1)).
    { apply (Rmult_eq_reg_l 2); [|lra]; rewrite <-mult_IZR.
      change (2 * Z.pos mx)%Z with (Z.pos mx~0); rewrite Hd.
      rewrite shift_pos_correct, Z.mul_1_r.
      change (IZR (Z.pow_pos _ _)) with (bpow radix2 (Z.pos (Z.to_pos prec))).
      rewrite Z2Pos.id; [|exact prec_gt_0_].
      change 2%R with (bpow radix2 1); rewrite <-bpow_plus.
      f_equal; ring. }
    unfold x' at 1; unfold B2R at 1; unfold F2R; simpl.
    rewrite Hmx, <-bpow_plus; f_equal.
    apply (Z.add_reg_l 1); ring_simplify; symmetry; apply mag_unique_pos.
    unfold F2R; simpl; rewrite Hmx, <-bpow_plus; split.
    * right; f_equal; ring.
    * apply bpow_lt; lia.
  + rewrite (proj1 Hulp).
    assert (H : ulp radix2 fexp (B2R x')
                = bpow radix2 (fexp (mag radix2 (B2R x') - 1)));
      [|rewrite H; clear H].
    { unfold ulp; rewrite Req_bool_false; [|now simpl].
      unfold cexp; f_equal.
      assert (H : (mag radix2 (B2R x') <= emin + prec)%Z).
      { assert (Hcm : canonical_mantissa mx ex = true).
        { now generalize Bx; unfold bounded; rewrite Bool.andb_true_iff. }
        apply (canonical_canonical_mantissa false) in Hcm.
        revert Hcm; fold emin; unfold canonical, cexp; simpl.
        change (F2R _) with (B2R x'); intro Hex.
        apply Z.nlt_ge; intro H'; apply Hd.
        apply Pos2Z.inj_pos; rewrite shift_pos_correct, Z.mul_1_r.
        apply eq_IZR; change (IZR (Z.pow_pos _ _))
          with (bpow radix2 (Z.pos (Z.to_pos prec))).
        rewrite Z2Pos.id; [|exact prec_gt_0_].
        change (Z.pos mx~0) with (2 * Z.pos mx)%Z.
        rewrite Z.mul_comm, mult_IZR.
        apply (Rmult_eq_reg_r (bpow radix2 (ex - 1)));
          [|apply Rgt_not_eq, bpow_gt_0].
        change 2%R with (bpow radix2 1); rewrite Rmult_assoc, <-!bpow_plus.
        replace (1 + _)%Z with ex by ring.
        unfold B2R at 1, F2R in Hpred; simpl in Hpred; rewrite Hpred.
        change (F2R _) with (B2R x'); rewrite Hex.
        unfold fexp, FLT_exp; rewrite Z.max_l; [f_equal; ring|lia]. }
      now unfold fexp, FLT_exp; do 2 (rewrite Z.max_r; [|lia]). }
    replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
    * rewrite round_generic; [reflexivity|apply valid_rnd_N|].
      apply generic_format_pred_pos;
        [now apply FLT_exp_valid| |change xr with (B2R x') in Nzxr; lra].
      apply generic_format_B2R.
    * now unfold pred_pos; rewrite Req_bool_true.
  + rewrite (proj1 Hulp).
    replace (_ - _)%R with (pred_pos radix2 fexp (B2R x')).
    * rewrite round_generic; [reflexivity|now apply valid_rnd_N|].
      apply generic_format_pred_pos;
        [now apply FLT_exp_valid|apply generic_format_B2R|].
      change xr with (B2R x') in Nzxr; lra.
    * now unfold pred_pos; rewrite Req_bool_false. }
assert (is_finite x = true /\ Bsign x = false) as [H4 H5].
{ clear -Fx.
  destruct x as [| | |sx mx ex Hx] ; try elim Rlt_irrefl with (1 := Fx).
  repeat split.
  destruct sx.
  elim Rlt_not_le with (1 := Fx).
  now apply F2R_le_0.
  easy. }
generalize (Bpred_correct x H4).
rewrite Rlt_bool_true ; cycle 1.
{ apply Rlt_le_trans with 0%R.
  rewrite <- Ropp_0.
  apply Ropp_lt_contravar.
  apply bpow_gt_0.
  apply pred_ge_0.
  now apply FLT_exp_valid.
  exact Fx.
  apply generic_format_B2R. }
intros [H7 [H8 H9]].
apply eq_sym.
apply B2R_Bsign_inj ; try easy.
rewrite H7, H1.
apply pred_eq_pos.
now apply Rlt_le.
rewrite H9, H3.
rewrite is_finite_strict_B2R by now apply Rgt_not_eq.
now rewrite H5.
Qed.

Definition Bsucc' x :=
  match x with
  | B754_zero _ => Bldexp mode_NE Bone emin
  | B754_infinity false => x
  | B754_infinity true => Bopp Bmax_float
  | B754_nan => B754_nan
  | B754_finite false _ _ _ => Bplus mode_NE x (Bulp x)
  | B754_finite true _ _ _ => Bopp (Bpred_pos' (Bopp x))
  end.

Theorem Bsucc'_correct :
  (2 < emax)%Z ->
  forall x,
  is_finite x = true ->
  Bsucc' x = Bsucc x.
Proof.
intros Hp x Fx.
destruct x as [sx|sx| |sx mx ex Bx] ; try easy.
{ generalize (Bldexp_correct mode_NE Bone emin).
  rewrite Bone_correct, Rmult_1_l.
  rewrite round_generic.
  rewrite Rlt_bool_true.
  simpl.
  intros [H1 [H2 H3]].
  apply B2R_inj.
  apply is_finite_strict_B2R.
  rewrite H1.
  apply Rgt_not_eq.
  apply bpow_gt_0.
  easy.
  rewrite H1.
  apply eq_sym, F2R_bpow.
  rewrite Rabs_pos_eq by now apply bpow_ge_0.
  apply bpow_lt, emin_lt_emax.
  apply valid_rnd_N.
  apply generic_format_bpow.
  unfold fexp.
  rewrite Z.max_r.
  apply Z.le_refl.
  generalize (prec_gt_0 prec).
  lia. }
set (x := B754_finite sx mx ex Bx).
assert (H:
  if Rlt_bool (succ radix2 fexp (B2R x)) (bpow radix2 emax) then
    B2R (Bsucc' x) = succ radix2 fexp (B2R x) /\
    is_finite (Bsucc' x) = true /\
    Bsign (Bsucc' x) = sx
  else
    B2SF (Bsucc' x) = S754_infinity false).
{
  assert (Hsucc : succ radix2 fexp 0 = bpow radix2 emin).
  { rewrite succ_0.
    now apply ulp_FLT_0. }
  unfold Bsucc', x; destruct sx.
  + case Rlt_bool_spec; intro Hover.
    * rewrite B2R_Bopp; simpl (Bopp (B754_finite _ _ _ _)).
      rewrite is_finite_Bopp.
      set (ox := B754_finite false mx ex Bx).
      assert (Hpred := Bpred_correct ox eq_refl).
      rewrite Bpred_pos'_correct ; cycle 1.
        exact Hp.
        now apply F2R_gt_0.
      rewrite Rlt_bool_true in Hpred.
      rewrite (proj1 Hpred), (proj1 (proj2 Hpred)).
      split.
      rewrite <- succ_opp.
      simpl.
      now rewrite <- F2R_opp.
      apply (conj eq_refl).
      rewrite Bsign_Bopp, (proj2 (proj2 Hpred)).
      easy.
      generalize (proj1 (proj2 Hpred)).
      now case Bpred.
      apply Rlt_le_trans with 0%R.
      rewrite <- Ropp_0.
      apply Ropp_lt_contravar, bpow_gt_0.
      apply pred_ge_0.
      now apply FLT_exp_valid.
      now apply F2R_gt_0.
      apply generic_format_B2R.
    * exfalso; revert Hover; apply Rlt_not_le.
      apply (Rle_lt_trans _ (succ radix2 fexp 0)).
      { apply succ_le; [now apply FLT_exp_valid|apply generic_format_B2R|
                        apply generic_format_0|].
        unfold B2R, F2R; simpl; change (Z.neg mx) with (- Z.pos mx)%Z.
        rewrite opp_IZR, <-Ropp_mult_distr_l, <-Ropp_0; apply Ropp_le_contravar.
        now apply Rmult_le_pos; [apply IZR_le|apply bpow_ge_0]. }
      rewrite Hsucc; apply bpow_lt.
      apply emin_lt_emax.
  + fold x.
    assert (Hulp := Bulp_correct x (eq_refl _)).
    assert (Hplus := Bplus_correct mode_NE x (Bulp x) (eq_refl _)).
    rewrite (proj1 (proj2 Hulp)) in Hplus; specialize (Hplus (eq_refl _)).
    assert (Px : (0 <= B2R x)%R).
    { now apply F2R_ge_0. }
    assert (Hsucc' : (succ radix2 fexp (B2R x)
                      = B2R x + ulp radix2 fexp (B2R x))%R).
    { now unfold succ; rewrite (Rle_bool_true _ _ Px). }
    rewrite (proj1 Hulp), <- Hsucc' in Hplus.
    rewrite round_generic in Hplus;
      [|apply valid_rnd_N| now apply generic_format_succ;
                           [apply FLT_exp_valid|apply generic_format_B2R]].
    rewrite Rabs_pos_eq in Hplus; [|apply (Rle_trans _ _ _ Px), succ_ge_id].
    revert Hplus; case Rlt_bool_spec; intros Hover Hplus.
    * split; [now simpl|split; [now simpl|]].
      rewrite (proj2 (proj2 Hplus)); case Rcompare_spec.
      { intro H; exfalso; revert H.
        apply Rle_not_lt, (Rle_trans _ _ _ Px), succ_ge_id. }
      { intro H; exfalso; revert H; apply Rgt_not_eq, Rlt_gt.
        apply (Rlt_le_trans _ (B2R x)); [|apply succ_ge_id].
        now apply Rmult_lt_0_compat; [apply IZR_lt|apply bpow_gt_0]. }
      now simpl.
    * now rewrite (proj1 Hplus). }
generalize (Bsucc_correct x Fx).
revert H.
case Rlt_bool_spec ; intros H.
intros [H1 [H2 H3]] [H4 [H5 H6]].
apply B2R_Bsign_inj ; try easy.
now rewrite H4.
rewrite H3, H6.
simpl.
now case sx.
intros H1 H2.
apply B2SF_inj.
now rewrite H1, H2.
Qed.

End Binary.

Arguments B754_zero {prec} {emax}.
Arguments B754_infinity {prec} {emax}.
Arguments B754_nan {prec} {emax}.
Arguments B754_finite {prec} {emax}.

Arguments SF2B {prec} {emax}.
Arguments B2SF {prec} {emax}.
Arguments B2R {prec} {emax}.

Arguments is_finite_strict {prec} {emax}.
Arguments is_finite {prec} {emax}.
Arguments is_nan {prec} {emax}.

Arguments erase {prec} {emax}.
Arguments Bsign {prec} {emax}.
Arguments Bcompare {prec} {emax}.
Arguments Beqb {prec} {emax}.
Arguments Bltb {prec} {emax}.
Arguments Bleb {prec} {emax}.
Arguments Bopp {prec} {emax}.
Arguments Babs {prec} {emax}.
Arguments Bone {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bmax_float {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.

Arguments Bplus {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bminus {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bmult {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bfma {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bdiv {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bsqrt {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bnearbyint {prec} {emax} {prec_lt_emax_}.
Arguments Btrunc {prec} {emax}.

Arguments Bldexp {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bnormfr_mantissa {prec} {emax}.
Arguments Bfrexp {prec} {emax} {prec_gt_0_}.
Arguments Bulp {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bulp' {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bsucc {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bpred {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.
Arguments Bpred_pos' {prec} {emax} {prec_gt_0_} {prec_lt_emax_}.