aboutsummaryrefslogtreecommitdiffstats
path: root/unit-tests
diff options
context:
space:
mode:
authorckeller <ckeller@users.noreply.github.com>2021-04-26 16:25:57 +0200
committerGitHub <noreply@github.com>2021-04-26 16:25:57 +0200
commit1cd1e8d4e3399a582c2f5b8de203ba59cd3f8010 (patch)
treec5e7203ff4ac418a5d6206690bf13df2ef0f59a1 /unit-tests
parentf7ecc2f20d4cd8d777e6169675a4057148bf6ccb (diff)
downloadsmtcoq-1cd1e8d4e3399a582c2f5b8de203ba59cd3f8010.tar.gz
smtcoq-1cd1e8d4e3399a582c2f5b8de203ba59cd3f8010.zip
Take hypotheses from the local context (#91)
* The tactics sets veritXXX and smtXXX now automatically take hypotheses from the local context * `prop2bool_hyps` also apply to hypotheses not in the local context * Second strategy for vauto (still incomplete)
Diffstat (limited to 'unit-tests')
-rw-r--r--unit-tests/Tests_lfsc_tactics.v10
-rw-r--r--unit-tests/Tests_verit_tactics.v98
2 files changed, 51 insertions, 57 deletions
diff --git a/unit-tests/Tests_lfsc_tactics.v b/unit-tests/Tests_lfsc_tactics.v
index eb9744b..280ed17 100644
--- a/unit-tests/Tests_lfsc_tactics.v
+++ b/unit-tests/Tests_lfsc_tactics.v
@@ -714,13 +714,13 @@ Section A_BV_EUF_LIA_PR.
Goal forall (x: bitvector 1), bv_subt x #b|0| = x.
Proof using.
smt.
- Admitted.
+ Abort.
(* The original issue (invalid) *)
Goal forall (x: bitvector 1), bv_subt (bv_shl #b|0| x) #b|0| = #b|0|.
Proof using.
smt.
- Admitted.
+ Abort.
End A_BV_EUF_LIA_PR.
@@ -760,15 +760,15 @@ Section Group.
(* Some other interesting facts about groups *)
Lemma unique_identity e':
(forall z, op e' z ==? z) -> e' ==? e.
- Proof. intros pe'; smt pe'. Qed.
+ Proof. smt. Qed.
Lemma simplification_right x1 x2 y:
op x1 y ==? op x2 y -> x1 ==? x2.
- Proof. intro H. smt_no_check (H, inverse'). Qed.
+ Proof. smt_no_check inverse'. Qed.
Lemma simplification_left x1 x2 y:
op y x1 ==? op y x2 -> x1 ==? x2.
- Proof. intro H. smt_no_check (H, inverse'). Qed.
+ Proof. smt_no_check inverse'. Qed.
Clear_lemmas.
End Group.
diff --git a/unit-tests/Tests_verit_tactics.v b/unit-tests/Tests_verit_tactics.v
index 59c40a1..a270fdd 100644
--- a/unit-tests/Tests_verit_tactics.v
+++ b/unit-tests/Tests_verit_tactics.v
@@ -30,9 +30,7 @@ Qed.
Lemma fun_const2 :
forall f (g : Z -> Z -> bool),
(forall x, g (f x) 2) -> g (f 3) 2.
-Proof using.
- intros f g Hf. verit Hf.
-Qed.
+Proof using. verit. Qed.
(* Simple connectives *)
@@ -531,140 +529,140 @@ Qed.
Lemma taut1_bool :
forall f, f 2 =? 0 -> f 2 =? 0.
-Proof using. intros f p. verit p. Qed.
+Proof using. verit. Qed.
Lemma taut1 :
forall f, f 2 = 0 -> f 2 = 0.
-Proof using. intros f p. verit p. Qed.
+Proof using. verit. Qed.
Lemma taut2_bool :
forall f, 0 =? f 2 -> 0 =? f 2.
-Proof using. intros f p. verit p. Qed.
+Proof using. verit. Qed.
Lemma taut2 :
forall f, 0 = f 2 -> 0 = f 2.
-Proof using. intros f p. verit p. Qed.
+Proof using. verit. Qed.
Lemma taut3_bool :
forall f, f 2 =? 0 -> f 3 =? 5 -> f 2 =? 0.
-Proof using. intros f p1 p2. verit (p1, p2). Qed.
+Proof using. verit. Qed.
Lemma taut3 :
forall f, f 2 = 0 -> f 3 = 5 -> f 2 = 0.
-Proof using. intros f p1 p2. verit (p1, p2). Qed.
+Proof using. verit. Qed.
Lemma taut4_bool :
forall f, f 3 =? 5 -> f 2 =? 0 -> f 2 =? 0.
-Proof using. intros f p1 p2. verit (p1, p2). Qed.
+Proof using. verit. Qed.
Lemma taut4 :
forall f, f 3 = 5 -> f 2 = 0 -> f 2 = 0.
-Proof using. intros f p1 p2. verit (p1, p2). Qed.
+Proof using. verit. Qed.
Lemma test_eq_sym a b : implb (a =? b) (b =? a).
Proof using. verit. Qed.
Lemma taut5_bool :
forall f, 0 =? f 2 -> f 2 =? 0.
-Proof using. intros f p. verit p. Qed.
+Proof using. verit. Qed.
Lemma taut5 :
forall f, 0 = f 2 -> f 2 = 0.
-Proof using. intros f p. verit p. Qed.
+Proof using. verit. Qed.
Lemma fun_const_Z_bool :
forall f , (forall x, f x =? 2) ->
f 3 =? 2.
-Proof using. intros f Hf. verit Hf. Qed.
+Proof using. verit. Qed.
Lemma fun_const_Z :
forall f , (forall x, f x = 2) ->
f 3 = 2.
-Proof using. intros f Hf. verit Hf. Qed.
+Proof using. verit. Qed.
Lemma lid (A : bool) : A -> A.
-Proof using. intro a. verit a. Qed.
+Proof using. verit. Qed.
Lemma lpartial_id A :
(xorb A A) -> (xorb A A).
-Proof using. intro xa. verit xa. Qed.
+Proof using. verit. Qed.
Lemma llia1_bool X Y Z:
(X <=? 3) && ((Y <=? 7) || (Z <=? 9)) ->
(X + Y <=? 10) || (X + Z <=? 12).
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma llia1 X Y Z:
(X <= 3) /\ ((Y <= 7) \/ (Z <= 9)) ->
(X + Y <= 10) \/ (X + Z <= 12).
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma llia2_bool X:
X - 3 =? 7 -> X >=? 10.
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma llia2 X:
X - 3 = 7 -> X >= 10.
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma llia3_bool X Y:
X >? Y -> Y + 1 <=? X.
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma llia3 X Y:
X > Y -> Y + 1 <= X.
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma llia6_bool X:
andb ((X - 3) <=? 7) (7 <=? (X - 3)) -> X >=? 10.
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma llia6 X:
((X - 3) <= 7) /\ (7 <= (X - 3)) -> X >= 10.
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma even_odd b1 b2 x1 x2:
(ifb b1
(ifb b2 (2*x1+1 =? 2*x2+1) (2*x1+1 =? 2*x2))
(ifb b2 (2*x1 =? 2*x2+1) (2*x1 =? 2*x2))) ->
((implb b1 b2) && (implb b2 b1) && (x1 =? x2)).
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma lcongr1_bool (a b : Z) (P : Z -> bool) f:
(f a =? b) -> (P (f a)) -> P b.
-Proof using. intros eqfab pfa. verit (eqfab, pfa). Qed.
+Proof using. verit. Qed.
Lemma lcongr1 (a b : Z) (P : Z -> bool) f:
(f a = b) -> (P (f a)) -> P b.
-Proof using. intros eqfab pfa. verit (eqfab, pfa). Qed.
+Proof using. verit. Qed.
Lemma lcongr2_bool (f:Z -> Z -> Z) x y z:
x =? y -> f z x =? f z y.
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma lcongr2 (f:Z -> Z -> Z) x y z:
x = y -> f z x = f z y.
-Proof using. intro p. verit p. Qed.
+Proof using. verit. Qed.
Lemma lcongr3_bool (P:Z -> Z -> bool) x y z:
x =? y -> P z x -> P z y.
-Proof using. intros eqxy pzx. verit (eqxy, pzx). Qed.
+Proof using. verit. Qed.
Lemma lcongr3 (P:Z -> Z -> bool) x y z:
x = y -> P z x -> P z y.
-Proof using. intros eqxy pzx. verit (eqxy, pzx). Qed.
+Proof using. verit. Qed.
Lemma test20_bool : forall x, (forall a, a <? x) -> 0 <=? x = false.
-Proof using. intros x H. verit H. Qed.
+Proof using. verit. Qed.
Lemma test20 : forall x, (forall a, a < x) -> ~ (0 <= x).
-Proof using. intros x H. verit H. Qed.
+Proof using. verit. Qed.
Lemma test21_bool : forall x, (forall a, negb (x <=? a)) -> negb (0 <=? x).
-Proof using. intros x H. verit H. Qed.
+Proof using. verit. Qed.
Lemma test21 : forall x, (forall a, ~ (x <= a)) -> ~ (0 <= x).
-Proof using. intros x H. verit H. Qed.
+Proof using. verit. Qed.
Lemma un_menteur_bool (a b c d : Z) dit:
dit a =? c ->
@@ -673,7 +671,7 @@ Lemma un_menteur_bool (a b c d : Z) dit:
(a =? c) || (a =? d) ->
(b =? c) || (b =? d) ->
a =? d.
-Proof using. intros H1 H2 H3 H4 H5. verit (H1, H2, H3, H4, H5). Qed.
+Proof using. verit. Qed.
Lemma un_menteur (a b c d : Z) dit:
dit a = c ->
@@ -682,19 +680,19 @@ Lemma un_menteur (a b c d : Z) dit:
(a = c) \/ (a = d) ->
(b = c) \/ (b = d) ->
a = d.
-Proof using. intros H1 H2 H3 H4 H5. verit (H1, H2, H3, H4, H5). Qed.
+Proof using. verit. Qed.
Lemma const_fun_is_eq_val_0_bool :
forall f : Z -> Z,
(forall a b, f a =? f b) ->
forall x, f x =? f 0.
-Proof using. intros f Hf. verit Hf. Qed.
+Proof using. verit. Qed.
Lemma const_fun_is_eq_val_0 :
forall f : Z -> Z,
(forall a b, f a = f b) ->
forall x, f x = f 0.
-Proof using. intros f Hf. verit Hf. Qed.
+Proof using. verit. Qed.
(* You can use <Add_lemmas H1 .. Hn> to permanently add the lemmas H1 ..
Hn to the environment. You should use <Clear_lemmas> when you do not
@@ -899,15 +897,15 @@ Section GroupZ.
Lemma unique_identity_Z e':
(forall z, op e' z =? z) -> e' =? e.
- Proof using associative identity inverse. intros pe'. verit pe'. Qed.
+ Proof using associative identity inverse. verit. Qed.
Lemma simplification_right_Z x1 x2 y:
op x1 y =? op x2 y -> x1 =? x2.
- Proof using associative identity inverse. intro H. verit H. Qed.
+ Proof using associative identity inverse. verit. Qed.
Lemma simplification_left_Z x1 x2 y:
op y x1 =? op y x2 -> x1 =? x2.
- Proof using associative identity inverse. intro H. verit H. Qed.
+ Proof using associative identity inverse. verit. Qed.
Clear_lemmas.
End GroupZ.
@@ -932,15 +930,15 @@ Section GroupBool.
Lemma unique_identity_bool e':
(forall z, op e' z ==? z) -> e' ==? e.
- Proof using associative identity inverse. intros pe'. verit pe'. Qed.
+ Proof using associative identity inverse. verit. Qed.
Lemma simplification_right_bool x1 x2 y:
op x1 y ==? op x2 y -> x1 ==? x2.
- Proof using associative identity inverse. intro H. verit H. Qed.
+ Proof using associative identity inverse. verit. Qed.
Lemma simplification_left_bool x1 x2 y:
op y x1 ==? op y x2 -> x1 ==? x2.
- Proof using associative identity inverse. intro H. verit H. Qed.
+ Proof using associative identity inverse. verit. Qed.
Clear_lemmas.
End GroupBool.
@@ -972,15 +970,13 @@ Section Group.
Lemma simplification_right x1 x2 y:
op x1 y = op x2 y -> x1 = x2.
Proof using associative identity inverse HG.
- intro H.
- verit (associative, identity, inverse, H).
+ verit (associative, identity, inverse).
Qed.
Lemma simplification_left x1 x2 y:
op y x1 = op y x2 -> x1 = x2.
Proof using associative identity inverse HG.
- intro H.
- verit (associative, identity, inverse, H).
+ verit (associative, identity, inverse).
Qed.
Clear_lemmas.
@@ -1144,14 +1140,12 @@ Qed.
Goal forall (x : positive), Zpos x <=? Zpos x.
Proof using.
- intros.
verit.
Qed.
Goal forall (x : positive) (a : Z), (Z.eqb a a) || negb (Zpos x <? Zpos x).
Proof using.
- intros.
verit.
Qed.