aboutsummaryrefslogtreecommitdiffstats
path: root/src/spl/Syntactic.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/spl/Syntactic.v')
-rw-r--r--src/spl/Syntactic.v531
1 files changed, 531 insertions, 0 deletions
diff --git a/src/spl/Syntactic.v b/src/spl/Syntactic.v
new file mode 100644
index 0000000..d7d2594
--- /dev/null
+++ b/src/spl/Syntactic.v
@@ -0,0 +1,531 @@
+(**************************************************************************)
+(* *)
+(* SMTCoq *)
+(* Copyright (C) 2011 - 2015 *)
+(* *)
+(* Michaël Armand *)
+(* Benjamin Grégoire *)
+(* Chantal Keller *)
+(* *)
+(* Inria - École Polytechnique - MSR-Inria Joint Lab *)
+(* *)
+(* This file is distributed under the terms of the CeCILL-C licence *)
+(* *)
+(**************************************************************************)
+
+(*** Spl -- a small checker for simplifications ***)
+
+(* Add LoadPath ".." as SMTCoq. *)
+(* Add LoadPath "../lia" as SMTCoq.lia. *)
+Require Import List PArray Bool Int63 ZMicromega.
+Require Import Misc State SMT_terms.
+Require Lia.
+
+Local Open Scope array_scope.
+Local Open Scope int63_scope.
+
+
+(* Flattening and small arithmetic simplifications *)
+
+Section CheckAtom.
+
+ Import Atom.
+
+ Variable t_i : PArray.array typ_eqb.
+ Variable t_func : PArray.array (tval t_i).
+ Variable t_atom : PArray.array atom.
+
+ Local Notation get_atom := (PArray.get t_atom).
+
+ Section AUX.
+
+ Variable check_hatom : hatom -> hatom -> bool.
+
+ Definition check_atom_aux a b :=
+ match a, b with
+ | Acop o1, Acop o2 => cop_eqb o1 o2
+
+ (* Two ways to define a negative integer *)
+ | Auop UO_Zopp p1, Auop UO_Zneg q =>
+ match get_atom p1 with
+ | Auop UO_Zpos p => check_hatom p q
+ | _ => false
+ end
+ | Auop UO_Zneg p, Auop UO_Zopp q1 =>
+ match get_atom q1 with
+ | Auop UO_Zpos q => check_hatom p q
+ | _ => false
+ end
+
+ | Auop o1 a, Auop o2 b => uop_eqb o1 o2 && check_hatom a b
+ | Abop o1 a1 a2, Abop o2 b1 b2 =>
+ match o1, o2 with
+ | BO_Zplus, BO_Zplus
+ | BO_Zmult, BO_Zmult => (check_hatom a1 b1 && check_hatom a2 b2) || (check_hatom a1 b2 && check_hatom a2 b1)
+ | BO_Zminus, BO_Zminus
+ | BO_Zlt, BO_Zlt
+ | BO_Zle, BO_Zle
+ | BO_Zge, BO_Zge
+ | BO_Zgt, BO_Zgt => check_hatom a1 b1 && check_hatom a2 b2
+ | BO_Zge, BO_Zle
+ | BO_Zle, BO_Zge
+ | BO_Zgt, BO_Zlt
+ | BO_Zlt, BO_Zgt => check_hatom a1 b2 && check_hatom a2 b1
+ | BO_eq t1, BO_eq t2 =>
+ Typ.eqb t1 t2 &&
+ ((check_hatom a1 b1 && check_hatom a2 b2) ||
+ (check_hatom a1 b2 && check_hatom a2 b1))
+ | _, _ => false
+ end
+ | Anop o1 l1, Anop o2 l2 =>
+ match o1, o2 with
+ | NO_distinct t1, NO_distinct t2 => Typ.eqb t1 t2 && list_beq check_hatom l1 l2
+ end
+ | Aapp f1 aargs, Aapp f2 bargs =>(f1 == f2) && list_beq check_hatom aargs bargs
+
+ | _, _ => false
+ end.
+
+
+ Hypothesis check_hatom_correct : forall h1 h2, check_hatom h1 h2 ->
+ interp_hatom t_i t_func t_atom h1 = interp_hatom t_i t_func t_atom h2.
+ Hypothesis Hwf: wf t_atom.
+ Hypothesis Hd: default t_atom = Acop CO_xH.
+
+
+ Lemma list_beq_correct : forall l1 l2,
+ list_beq check_hatom l1 l2 = true ->
+ List.map (interp_hatom t_i t_func t_atom) l1 =
+ List.map (interp_hatom t_i t_func t_atom) l2.
+ Proof.
+ induction l1 as [ |h1 l1 IHl1]; intros [ |h2 l2]; simpl; try discriminate; auto; rewrite andb_true_iff; intros [H1 H2]; rewrite (IHl1 _ H2); rewrite (check_hatom_correct _ _ H1); auto.
+ Qed.
+
+
+ Lemma list_beq_compute_interp : forall t l1 l2,
+ list_beq check_hatom l1 l2 = true -> forall acc,
+ compute_interp t_i (interp_hatom t_i t_func t_atom) t acc l1 =
+ compute_interp t_i (interp_hatom t_i t_func t_atom) t acc l2.
+ Proof.
+ intro t; induction l1 as [ |h1 l1 IHl1]; intros [ |h2 l2]; simpl; try discriminate; auto; rewrite andb_true_iff; intros [H1 H2] acc; rewrite (check_hatom_correct _ _ H1); destruct (interp_hatom t_i t_func t_atom h2) as [ta va]; destruct (Typ.cast ta t) as [ka| ]; auto.
+ Qed.
+
+
+ Lemma check_atom_aux_correct : forall a1 a2, check_atom_aux a1 a2 ->
+ interp t_i t_func t_atom a1 = interp t_i t_func t_atom a2.
+ Proof.
+ intros [op1|op1 i1|op1 i1 j1|op1 li1|f1 args1]; simpl.
+ (* Constants *)
+ intros [op2|op2 i2|op2 i2 j2|op2 li2|f2 args2]; simpl; try discriminate; pose (H:=reflect_cop_eqb op1 op2); inversion H; try discriminate; subst op1; auto.
+ (* Unary operators *)
+ intros [op2|op2 i2|op2 i2 j2|op2 li2|f2 args2]; simpl; try discriminate; try (case op1; discriminate).
+ case op1; case op2; try discriminate; try (unfold is_true; rewrite andb_true_iff; intros [_ H]; rewrite (check_hatom_correct _ _ H); auto).
+ case_eq (get_atom i2); try discriminate; intros [ | | | | ] i Heq H; try discriminate; simpl; unfold apply_unop; rewrite (check_hatom_correct _ _ H); unfold interp_hatom; rewrite (t_interp_wf _ _ _ Hwf Hd i2), Heq; simpl; unfold apply_unop; destruct (t_interp t_i t_func t_atom .[ i]) as [A v]; destruct (Typ.cast A Typ.Tpositive) as [k| ]; auto.
+ case_eq (get_atom i1); try discriminate; intros [ | | | | ] i Heq H; try discriminate; simpl; unfold apply_unop; rewrite <- (check_hatom_correct _ _ H); unfold interp_hatom; rewrite (t_interp_wf _ _ _ Hwf Hd i1), Heq; simpl; unfold apply_unop; destruct (t_interp t_i t_func t_atom .[ i]) as [A v]; destruct (Typ.cast A Typ.Tpositive) as [k| ]; auto.
+ (* Binary operators *)
+ intros [op2|op2 i2|op2 i2 j2|op2 li2|f2 args2]; simpl; try discriminate; case op1; case op2; try discriminate; try (unfold is_true; rewrite andb_true_iff; intros [H1 H2]; rewrite (check_hatom_correct _ _ H1), (check_hatom_correct _ _ H2); auto).
+ unfold is_true, interp_bop, apply_binop. rewrite orb_true_iff, !andb_true_iff. intros [[H1 H2]|[H1 H2]]; rewrite (check_hatom_correct _ _ H1), (check_hatom_correct _ _ H2); destruct (interp_hatom t_i t_func t_atom i2) as [A v1]; destruct (interp_hatom t_i t_func t_atom j2) as [B v2]; destruct (Typ.cast B Typ.TZ) as [k2| ]; destruct (Typ.cast A Typ.TZ) as [k1| ]; auto; rewrite Z.add_comm; reflexivity.
+ unfold is_true, interp_bop, apply_binop. rewrite orb_true_iff, !andb_true_iff. intros [[H1 H2]|[H1 H2]]; rewrite (check_hatom_correct _ _ H1), (check_hatom_correct _ _ H2); destruct (interp_hatom t_i t_func t_atom i2) as [A v1]; destruct (interp_hatom t_i t_func t_atom j2) as [B v2]; destruct (Typ.cast B Typ.TZ) as [k2| ]; destruct (Typ.cast A Typ.TZ) as [k1| ]; auto; rewrite Z.mul_comm; reflexivity.
+ unfold interp_bop, apply_binop; destruct (interp_hatom t_i t_func t_atom j2) as [B v2]; destruct (interp_hatom t_i t_func t_atom i2) as [A v1]; destruct (Typ.cast B Typ.TZ) as [k2| ]; destruct (Typ.cast A Typ.TZ) as [k1| ]; auto; rewrite Z.gtb_ltb; auto.
+ unfold interp_bop, apply_binop; destruct (interp_hatom t_i t_func t_atom j2) as [B v2]; destruct (interp_hatom t_i t_func t_atom i2) as [A v1]; destruct (Typ.cast B Typ.TZ) as [k2| ]; destruct (Typ.cast A Typ.TZ) as [k1| ]; auto; rewrite Z.geb_leb; auto.
+ unfold interp_bop, apply_binop; destruct (interp_hatom t_i t_func t_atom j2) as [B v2]; destruct (interp_hatom t_i t_func t_atom i2) as [A v1]; destruct (Typ.cast B Typ.TZ) as [k2| ]; destruct (Typ.cast A Typ.TZ) as [k1| ]; auto; rewrite Z.geb_leb; auto.
+ unfold interp_bop, apply_binop; destruct (interp_hatom t_i t_func t_atom j2) as [B v2]; destruct (interp_hatom t_i t_func t_atom i2) as [A v1]; destruct (Typ.cast B Typ.TZ) as [k2| ]; destruct (Typ.cast A Typ.TZ) as [k1| ]; auto; rewrite Z.gtb_ltb; auto.
+ intros A B; unfold is_true; rewrite andb_true_iff, orb_true_iff; change (Typ.eqb B A = true) with (is_true (Typ.eqb B A)); rewrite Typ.eqb_spec; intros [H2 [H1|H1]]; subst B; rewrite andb_true_iff in H1; destruct H1 as [H1 H2]; rewrite (check_hatom_correct _ _ H1), (check_hatom_correct _ _ H2); auto; simpl; unfold apply_binop; destruct (interp_hatom t_i t_func t_atom j2) as [B v1]; destruct (interp_hatom t_i t_func t_atom i2) as [C v2]; destruct (Typ.cast B A) as [k1| ]; destruct (Typ.cast C A) as [k2| ]; auto; rewrite Typ.i_eqb_sym; auto.
+ (* N-ary operators *)
+ intros [op2|op2 i2|op2 i2 j2|op2 li2|f2 args2]; simpl; try discriminate; destruct op1 as [t1]; destruct op2 as [t2]; unfold is_true; rewrite andb_true_iff; change (Typ.eqb t1 t2 = true) with (is_true (Typ.eqb t1 t2)); rewrite Typ.eqb_spec; intros [H1 H2]; subst t2; rewrite (list_beq_compute_interp _ _ _ H2); auto.
+ (* Application *)
+ intros [op2|op2 i2|op2 i2 j2|op2 li2|f2 args2]; simpl; try discriminate; unfold is_true; rewrite andb_true_iff, Int63Properties.eqb_spec; intros [H2 H1]; subst f2; rewrite (list_beq_correct _ _ H1); auto.
+ Qed.
+
+ End AUX.
+
+ Definition check_hatom h1 h2 :=
+ foldi_down_cont
+ (fun _ cont h1 h2 => (h1 == h2) || check_atom_aux cont (t_atom.[h1]) (t_atom.[h2]))
+ (PArray.length t_atom) 0 (fun h1 h2 => false) h1 h2.
+
+ Definition check_atom := check_atom_aux check_hatom.
+
+ Definition check_neg_hatom h1 h2 :=
+ match get_atom h1, get_atom h2 with
+ | Abop op1 a1 a2, Abop op2 b1 b2 =>
+ match op1, op2 with
+ | BO_Zlt, BO_Zle => check_hatom a1 b2 && check_hatom a2 b1
+ | BO_Zlt, BO_Zge => check_hatom a1 b1 && check_hatom a2 b2
+ | BO_Zle, BO_Zlt => check_hatom a1 b2 && check_hatom a2 b1
+ | BO_Zle, BO_Zgt => check_hatom a1 b1 && check_hatom a2 b2
+ | BO_Zge, BO_Zlt => check_hatom a1 b1 && check_hatom a2 b2
+ | BO_Zge, BO_Zgt => check_hatom a1 b2 && check_hatom a2 b1
+ | BO_Zgt, BO_Zle => check_hatom a1 b1 && check_hatom a2 b2
+ | BO_Zgt, BO_Zge => check_hatom a1 b2 && check_hatom a2 b1
+ | _, _ => false
+ end
+ | _, _ => false
+ end.
+
+ (* TODO : move this *)
+ Lemma Zge_is_ge_bool : forall x y, (x >= y) <-> (Zge_bool x y = true).
+ Proof.
+ intros x y;assert (W:=Zge_cases x y);destruct (Zge_bool x y).
+ split;auto.
+ split;[intros;elimtype false;auto with zarith | discriminate].
+ Qed.
+
+
+ (* Correctness of check_atom *)
+
+ Lemma check_hatom_correct : wf t_atom ->
+ default t_atom = Acop CO_xH ->
+ forall h1 h2, check_hatom h1 h2 ->
+ interp_hatom t_i t_func t_atom h1 = interp_hatom t_i t_func t_atom h2.
+ Proof.
+ unfold check_hatom;intros Hwf Hdef.
+ apply foldi_down_cont_ind;try discriminate.
+ intros i cont _ _ Hrec h1 h2.
+ unfold is_true; rewrite orb_true_iff; intros [H|H].
+ rewrite Int63Properties.eqb_spec in H; rewrite H; reflexivity.
+ unfold interp_hatom;rewrite !t_interp_wf;trivial.
+ apply check_atom_aux_correct with cont;trivial.
+ Qed.
+
+
+ Lemma check_atom_correct : wf t_atom ->
+ default t_atom = Acop CO_xH ->
+ forall a1 a2, check_atom a1 a2 ->
+ interp t_i t_func t_atom a1 = interp t_i t_func t_atom a2.
+ Proof.
+ intros Hwf Hdef;unfold check_atom;apply check_atom_aux_correct; auto.
+ apply check_hatom_correct;trivial.
+ Qed.
+
+
+ Lemma check_hatom_correct_bool : wf t_atom ->
+ default t_atom = Acop CO_xH ->
+ forall h1 h2, check_hatom h1 h2 ->
+ interp_form_hatom t_i t_func t_atom h1 = interp_form_hatom t_i t_func t_atom h2.
+ Proof.
+ unfold interp_form_hatom; intros H1 H2 h1 h2 H3; rewrite (check_hatom_correct H1 H2 h1 h2 H3); auto.
+ Qed.
+
+
+ (* Correctness of check_neg_atom *)
+
+ Lemma check_neg_hatom_correct : wt t_i t_func t_atom ->
+ wf t_atom -> default t_atom = Acop CO_xH ->
+ forall h1 h2, check_neg_hatom h1 h2 ->
+ match interp_hatom t_i t_func t_atom h1, interp_hatom t_i t_func t_atom h2 with
+ | Val Typ.Tbool v1, Val Typ.Tbool v2 => v1 = negb v2
+ | Val _ _, Val _ _ => False
+ end.
+ Proof.
+ unfold wt; unfold is_true at 1; rewrite forallbi_spec; intros Hwt Hwf Hdef h1 h2; unfold check_neg_hatom; case_eq (get_atom h1); try discriminate; intros b1 t11 t12 H1; case_eq (get_atom h2); try discriminate; intros b2 t21 t22 H2; assert (H7: h1 < length t_atom) by (apply PArray.get_not_default_lt; rewrite H1, Hdef; discriminate); generalize (Hwt _ H7); rewrite H1; simpl; generalize H1; case b1; try discriminate; clear H1 b1; simpl; intro H1; case (get_type' t_i (t_interp t_i t_func t_atom) h1); try discriminate; simpl; rewrite andb_true_iff; intros [H30 H31]; change (is_true (Typ.eqb (get_type' t_i (t_interp t_i t_func t_atom) t11) Typ.TZ)) in H30; change (is_true (Typ.eqb (get_type' t_i (t_interp t_i t_func t_atom) t12) Typ.TZ)) in H31; rewrite Typ.eqb_spec in H30, H31; generalize (check_aux_interp_hatom _ t_func _ Hwf t11), (check_aux_interp_hatom _ t_func _ Hwf t12); rewrite H30, H31; intros [v1 Hv1] [v2 Hv2]; generalize H2; case b2; try discriminate; clear H2 b2; intro H2; unfold is_true; rewrite andb_true_iff; intros [H3 H4]; generalize (check_hatom_correct Hwf Hdef _ _ H3), (check_hatom_correct Hwf Hdef _ _ H4); unfold interp_hatom; intros H5 H6; rewrite t_interp_wf; auto; rewrite H1; simpl; rewrite Hv1, Hv2; simpl; rewrite t_interp_wf; auto; rewrite H2; simpl; rewrite <- H5; rewrite <- H6, Hv1, Hv2; simpl.
+ rewrite Z.ltb_antisym; auto.
+ rewrite Z.geb_leb, Z.ltb_antisym; auto.
+ rewrite Z.leb_antisym; auto.
+ rewrite Z.gtb_ltb, Z.leb_antisym; auto.
+ rewrite Z.geb_leb, Z.leb_antisym; auto.
+ rewrite Z.geb_leb, Z.gtb_ltb, Z.leb_antisym; auto.
+ rewrite Z.gtb_ltb, Z.ltb_antisym; auto.
+ rewrite Z.geb_leb, Z.gtb_ltb, Z.ltb_antisym; auto.
+ Qed.
+
+
+ Lemma check_neg_hatom_correct_bool : wt t_i t_func t_atom ->
+ wf t_atom -> default t_atom = Acop CO_xH ->
+ forall h1 h2, check_neg_hatom h1 h2 ->
+ interp_form_hatom t_i t_func t_atom h1 = negb (interp_form_hatom t_i t_func t_atom h2).
+ Proof.
+ unfold interp_form_hatom. intros Hwt H1 H2 h1 h2 H3. unfold interp_bool. generalize (check_neg_hatom_correct Hwt H1 H2 _ _ H3). case (interp_hatom t_i t_func t_atom h1). case (interp_hatom t_i t_func t_atom h2). simpl. intros [i| | | ] v1 [j| | | ] v2; intro H; inversion H. rewrite Typ.cast_refl. auto.
+ Qed.
+
+End CheckAtom.
+
+
+(* Flattening *)
+
+Section FLATTEN.
+
+ Import Form.
+
+ Variable t_form : PArray.array form.
+
+ Local Notation get_form := (PArray.get t_form).
+
+ Definition remove_not l :=
+ match get_form (Lit.blit l) with
+ | Fnot2 _ l' => if Lit.is_pos l then l' else Lit.neg l'
+ | _ => l
+ end.
+
+ Definition get_and l :=
+ let l := remove_not l in
+ if Lit.is_pos l then
+ match get_form (Lit.blit l) with
+ | Fand args => Some args
+ | _ => None
+ end
+ else None.
+
+ Definition get_or l :=
+ let l := remove_not l in
+ if Lit.is_pos l then
+ match get_form (Lit.blit l) with
+ | For args => Some args
+ | _ => None
+ end
+ else None.
+
+ Definition flatten_op_body (get_op:_lit -> option (array _lit))
+ (frec : list _lit -> _lit -> list _lit)
+ (largs:list _lit) (l:_lit) : list _lit :=
+ match get_op l with
+ | Some a => PArray.fold_left frec largs a
+ | None => l::largs
+ end.
+ Register flatten_op_body as PrimInline.
+
+
+ Definition flatten_op_lit (get_op:_lit -> option (array _lit)) max :=
+ foldi_cont (fun _ => flatten_op_body get_op) 0 max (fun largs l => l::largs).
+
+ Definition flatten_and t :=
+ PArray.fold_left (flatten_op_lit get_and (PArray.length t_form)) nil t.
+
+ Definition flatten_or t :=
+ PArray.fold_left (flatten_op_lit get_or (PArray.length t_form)) nil t.
+
+
+ Variable check_atom check_neg_atom : atom -> atom -> bool.
+
+ Definition check_flatten_body frec (l lf:_lit) :=
+ let l := remove_not l in
+ let lf := remove_not lf in
+ if l == lf then true
+ else if 1 land (l lxor lf) == 0 then
+ match get_form (Lit.blit l), get_form (Lit.blit lf) with
+ | Fatom a1, Fatom a2 => check_atom a1 a2
+ | Ftrue, Ftrue => true
+ | Ffalse, Ffalse => true
+ | Fand args1, Fand args2 =>
+ let args1 := flatten_and args1 in
+ let args2 := flatten_and args2 in
+ forallb2 frec args1 args2
+ | For args1, For args2 =>
+ let args1 := flatten_or args1 in
+ let args2 := flatten_or args2 in
+ forallb2 frec args1 args2
+ | Fxor l1 l2, Fxor lf1 lf2 =>
+ frec l1 lf1 && frec l2 lf2
+ | Fimp args1, Fimp args2 =>
+ if PArray.length args1 == PArray.length args2 then
+ PArray.forallbi (fun i l => frec l (args2.[i])) args1
+ else false
+ | Fiff l1 l2, Fiff lf1 lf2 =>
+ frec l1 lf1 && frec l2 lf2
+ | Fite l1 l2 l3, Fite lf1 lf2 lf3 =>
+ frec l1 lf1 && frec l2 lf2 && frec l3 lf3
+ | _, _ => false
+ end
+ else
+ match get_form (Lit.blit l), get_form (Lit.blit lf) with
+ | Fatom a1, Fatom a2 => check_neg_atom a1 a2
+ | _, _ => false (* We maybe need to extend the rule here ... *)
+ end.
+ Register check_flatten_body as PrimInline.
+
+ Definition check_flatten_aux l lf :=
+ foldi_cont (fun _ => check_flatten_body) 0 (PArray.length t_form) (fun _ _ => false) l lf.
+
+ Definition check_flatten s cid lf :=
+ match S.get s cid with
+ | l :: nil =>
+ if check_flatten_aux l lf then lf::nil else C._true
+ | _ => C._true
+ end.
+
+
+ (** Correctness proofs *)
+ Variable interp_atom : atom -> bool.
+ Hypothesis default_thf : default t_form = Ftrue.
+ Hypothesis wf_thf : wf t_form.
+ Hypothesis check_atom_correct :
+ forall a1 a2, check_atom a1 a2 -> interp_atom a1 = interp_atom a2.
+ Hypothesis check_neg_atom_correct :
+ forall a1 a2, check_neg_atom a1 a2 -> interp_atom a1 = negb (interp_atom a2).
+
+ Local Notation interp_var := (interp_state_var interp_atom t_form).
+ Local Notation interp_lit := (Lit.interp interp_var).
+
+ Lemma interp_Fnot2 : forall i l, interp interp_atom t_form (Fnot2 i l) = interp_lit l.
+ Proof.
+ intros i l;simpl;apply fold_ind;trivial.
+ intros a;rewrite negb_involutive;trivial.
+ Qed.
+
+ Lemma remove_not_correct :
+ forall l, interp_lit (remove_not l) = interp_lit l.
+ Proof.
+ unfold remove_not;intros l.
+ case_eq (get_form (Lit.blit l));intros;trivial.
+ unfold Lit.interp, Var.interp.
+ rewrite (wf_interp_form interp_atom t_form default_thf wf_thf (Lit.blit l)), H, interp_Fnot2.
+ destruct(Lit.is_pos l);trivial.
+ rewrite Lit.is_pos_neg, Lit.blit_neg;unfold Lit.interp;destruct (Lit.is_pos i0);trivial.
+ rewrite negb_involutive;trivial.
+ Qed.
+
+ Lemma get_and_correct : forall l args, get_and l = Some args ->
+ interp_lit l = interp interp_atom t_form (Fand args).
+ Proof.
+ unfold get_and;intros l args.
+ rewrite <- remove_not_correct;unfold Lit.interp;generalize (remove_not l).
+ intros l';unfold Var.interp.
+ destruct (Lit.is_pos l');[ | discriminate].
+ rewrite wf_interp_form;trivial.
+ destruct (get_form (Lit.blit l'));intros Heq;inversion Heq;trivial.
+ Qed.
+
+ Lemma get_or_correct : forall l args, get_or l = Some args ->
+ interp_lit l = interp interp_atom t_form (For args).
+ Proof.
+ unfold get_or;intros l args.
+ rewrite <- remove_not_correct;unfold Lit.interp;generalize (remove_not l).
+ intros l';unfold Var.interp.
+ destruct (Lit.is_pos l');[ | discriminate].
+ rewrite wf_interp_form;trivial.
+ destruct (get_form (Lit.blit l'));intros Heq;inversion Heq;trivial.
+ Qed.
+
+ Lemma flatten_and_correct : forall args,
+ List.fold_right (fun l res => andb res (interp_lit l)) true (flatten_and args) =
+ afold_left _ _ true andb interp_lit args.
+ Proof.
+ intros;rewrite afold_left_spec;auto;unfold flatten_and.
+ set (t:= true);unfold t at 2;
+ change true with
+ (List.fold_right (fun (l : int) (res : bool) => res && interp_lit l) true nil).
+ unfold t;clear t.
+ rewrite !fold_left_to_list.
+ generalize (@nil int);induction (to_list args);simpl;trivial.
+ intros l0;rewrite IHl.
+ clear IHl;f_equal; unfold flatten_op_lit.
+ clear l;revert a l0;apply foldi_cont_ind;simpl;trivial.
+ intros i cont _ Hle Hrec a l;unfold flatten_op_body.
+ case_eq (get_and a);intros;trivial.
+ rewrite get_and_correct with (1:= H);simpl.
+ rewrite afold_left_spec; auto; rewrite !fold_left_to_list.
+ rewrite <- !fold_left_rev_right.
+ clear H a;revert l;induction (List.rev (to_list a0));simpl.
+ intros l;rewrite andb_true_r;trivial.
+ intros;rewrite Hrec, IHl, andb_assoc;trivial.
+ Qed.
+
+ Lemma flatten_or_correct : forall args,
+ List.fold_right (fun l res => orb res (interp_lit l)) false (flatten_or args) =
+ afold_left _ _ false orb interp_lit args.
+ Proof.
+ intros;rewrite afold_left_spec;auto;unfold flatten_or.
+ set (t:= false);unfold t at 2;
+ change false with
+ (List.fold_right (fun (l : int) (res : bool) => res || interp_lit l) false nil).
+ unfold t;clear t.
+ rewrite !fold_left_to_list.
+ generalize (@nil int);induction (to_list args);simpl;trivial.
+ intros l0;rewrite IHl.
+ clear IHl;f_equal; unfold flatten_op_lit.
+ clear l;revert a l0;apply foldi_cont_ind;simpl;trivial.
+ intros i cont _ Hle Hrec a l;unfold flatten_op_body.
+ case_eq (get_or a);intros;trivial.
+ rewrite get_or_correct with (1:= H);simpl.
+ rewrite afold_left_spec; auto; rewrite !fold_left_to_list.
+ rewrite <- !fold_left_rev_right.
+ clear H a;revert l;induction (List.rev (to_list a0));simpl.
+ intros l;rewrite orb_false_r;trivial.
+ intros;rewrite Hrec, IHl, orb_assoc;trivial.
+ Qed.
+
+ Lemma check_flatten_aux_correct : forall l lf,
+ check_flatten_aux l lf = true ->
+ interp_lit l = interp_lit lf.
+ Proof.
+ unfold check_flatten_aux.
+ apply foldi_cont_ind.
+ discriminate.
+ intros i cont _ Hle Hrec l lf;unfold check_flatten_body.
+ rewrite <- (remove_not_correct l), <- (remove_not_correct lf).
+ generalize (remove_not l) (remove_not lf);clear l lf;intros l lf.
+ destruct (reflect_eqb l lf);[ intros;subst;trivial | ].
+ destruct (reflect_eqb (1 land (l lxor lf)) 0).
+ unfold Lit.interp.
+ assert (Lit.is_pos l = Lit.is_pos lf).
+ unfold Lit.is_pos.
+ rewrite <- eqb_spec, land_comm in e.
+ change (is_true (is_even (l lxor lf))) in e.
+ rewrite is_even_xor in e.
+ destruct (is_even l);destruct (is_even lf);trivial;discriminate.
+ rewrite H;match goal with
+ |- ?P -> _ =>
+ assert (W:P -> Var.interp interp_var (Lit.blit l) = Var.interp interp_var (Lit.blit lf));
+ [ | intros;rewrite W;trivial]
+ end.
+ unfold Var.interp;rewrite !wf_interp_form;trivial.
+ clear e n H.
+ destruct (get_form (Lit.blit l));
+ destruct (get_form (Lit.blit lf));intros;try discriminate;simpl;trivial.
+ (* atom *)
+ apply check_atom_correct;trivial.
+ (* and *)
+ rewrite <- !flatten_and_correct.
+ revert H;generalize (flatten_and a) (flatten_and a0);clear a a0.
+ induction l0;intros l1;destruct l1;simpl;trivial;try discriminate.
+ rewrite andb_true_iff;intros (H1, H2).
+ rewrite (Hrec _ _ H1), (IHl0 _ H2);trivial.
+ (* or *)
+ rewrite <- !flatten_or_correct.
+ revert H;generalize (flatten_or a) (flatten_or a0);clear a a0.
+ induction l0;intros l1;destruct l1;simpl;trivial;try discriminate.
+ rewrite andb_true_iff;intros (H1, H2).
+ rewrite (Hrec _ _ H1), (IHl0 _ H2);trivial.
+ (* implb *)
+ revert H;destruct (reflect_eqb (length a) (length a0));[intros|discriminate].
+ apply afold_right_eq;trivial.
+ rewrite forallbi_spec in H;auto.
+ (* xorb *)
+ unfold is_true in H;rewrite andb_true_iff in H;destruct H as [H H0].
+ rewrite (Hrec _ _ H), (Hrec _ _ H0);trivial.
+ (* eqb (i.e iff) *)
+ unfold is_true in H;rewrite andb_true_iff in H;destruct H as [H H0].
+ rewrite (Hrec _ _ H), (Hrec _ _ H0);trivial.
+ (* ifb *)
+ unfold is_true in H;rewrite !andb_true_iff in H;destruct H as [[H H0] H1].
+ rewrite (Hrec _ _ H), (Hrec _ _ H0), (Hrec _ _ H1);trivial.
+ (** opposite sign *)
+ assert (Lit.is_pos l = negb (Lit.is_pos lf)).
+ unfold Lit.is_pos.
+ rewrite <- eqb_spec, land_comm in n0.
+ change (~is_true (is_even (l lxor lf))) in n0.
+ rewrite is_even_xor in n0.
+ destruct (is_even l);destruct (is_even lf);trivial;elim n0;reflexivity.
+ unfold Lit.interp;rewrite H. match goal with
+ |- ?P -> _ =>
+ assert (W:P -> Var.interp interp_var (Lit.blit l) = negb (Var.interp interp_var (Lit.blit lf)));
+ [ | intros;rewrite W;trivial]
+ end.
+ unfold Var.interp;rewrite !wf_interp_form;trivial.
+ destruct (get_form (Lit.blit l));try discriminate.
+ destruct (get_form (Lit.blit lf));try discriminate.
+ apply check_neg_atom_correct.
+ rewrite negb_involutive;destruct (Lit.is_pos lf);trivial.
+ Qed.
+
+ Hypothesis Hwf: Valuation.wf interp_var.
+
+ Lemma valid_check_flatten : forall s, S.valid interp_var s ->
+ forall cid lf, C.valid interp_var (check_flatten s cid lf).
+ Proof.
+ unfold check_flatten; intros s Hs cid lf; case_eq (S.get s cid).
+ intros; apply C.interp_true; auto.
+ intros i [ |l q] Heq; try apply C.interp_true; auto; case_eq (check_flatten_aux i lf); intro Heq2; try apply C.interp_true; auto; unfold C.valid; simpl; rewrite <- (check_flatten_aux_correct _ _ Heq2); unfold S.valid in Hs; generalize (Hs cid); rewrite Heq; auto.
+ Qed.
+
+End FLATTEN.