aboutsummaryrefslogtreecommitdiffstats
path: root/examples/Example.v
blob: cd532124d38a55a330a5fbc1425a0269b6fd527b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
(**************************************************************************)
(*                                                                        *)
(*     SMTCoq                                                             *)
(*     Copyright (C) 2011 - 2022                                          *)
(*                                                                        *)
(*     See file "AUTHORS" for the list of authors                         *)
(*                                                                        *)
(*   This file is distributed under the terms of the CeCILL-C licence     *)
(*                                                                        *)
(**************************************************************************)


(* [Require Import SMTCoq.SMTCoq.] loads the SMTCoq library.
   If you are using native-coq instead of Coq 8.11, replace it with:
     Require Import SMTCoq.
   *)

Require Import SMTCoq.SMTCoq.
Require Import Bool.

Require Import ZArith.

Import BVList.BITVECTOR_LIST.
Local Open Scope bv_scope.

Import FArray.
Local Open Scope farray_scope.

(* Examples that check ZChaff certificates *)

Local Open Scope int63_scope.

Zchaff_Checker "sat.cnf" "sat.log".
Zchaff_Theorem sat "sat.cnf" "sat.log".
Check sat.

Zchaff_Checker "hole4.cnf" "hole4.log".


(* Example that checks a VeriT certificate, for logic QF_UFLIA *)

Section Verit.
  Verit_Checker "lia.smt2" "lia.vtlog".
End Verit.


(* Example that checks a LFSC certificate, for logic QF_UFLIA *)

Section Lfsc.
  Lfsc_Checker "lia.smt2" "lia.lfsc".
End Lfsc.


(* Examples of the zchaff tactic (requires zchaff in your PATH
   environment variable):
   - with booleans
   - with concrete terms *)

Goal forall a b c,
  (a || b || c) && ((negb a) || (negb b) || (negb c)) && ((negb a) || b) && ((negb b) || c) && ((negb c) || a) = false.
Proof.
  zchaff.
Qed.

Goal forall (i j k : Z),
    let a := Z.eqb i j in
    let b := Z.eqb j k in
    let c := Z.eqb k i in
  (a || b || c) && ((negb a) || (negb b) || (negb c)) && ((negb a) || b) && ((negb b) || c) && ((negb c) || a) = false.
Proof.
  zchaff.
Qed.


(* Examples of the verit tactics (requires verit in your PATH environment
   variable), which handle
   - propositional logic
   - theory of equality
   - linear integer arithmetic
   - universally quantified hypotheses *)

Goal forall a b c, ((a || b || c) && ((negb a) || (negb b) || (negb c)) && ((negb a) || b) && ((negb b) || c) && ((negb c) || a)) = false.
Proof.
  verit_bool.
Qed.

Local Open Scope Z_scope.

Goal forall (a b : Z) (P : Z -> bool) (f : Z -> Z),
  (negb (Z.eqb (f a) b)) || (negb (P (f a))) || (P b).
Proof.
  verit_bool.
Qed.

Goal forall b1 b2 x1 x2,
    implb
      (ifb b1
           (ifb b2 (Z.eqb (2*x1+1) (2*x2+1)) (Z.eqb (2*x1+1) (2*x2)))
           (ifb b2 (Z.eqb (2*x1) (2*x2+1)) (Z.eqb (2*x1) (2*x2))))
      ((implb b1 b2) && (implb b2 b1) && (Z.eqb x1 x2)).
Proof.
  verit_bool.
Qed.

Goal forall
    (x y: Z)
    (f: Z -> Z),
    x = y + 1 -> f y = f (x - 1).
Proof.
  verit.
Qed.


(* Some examples of using verit with lemmas. Use <verit H1 .. Hn> to
   temporarily add the lemmas H1 .. Hn to the verit environment.
 *)

Lemma const_fun_is_eq_val_0 :
  forall f : Z -> Z,
    (forall a b, f a =? f b) ->
    forall x, f x =? f 0.
Proof.
  intros f Hf.
  verit Hf.
Qed.

Section With_lemmas.
  Variable f : Z -> Z.
  Variable k : Z.
  Hypothesis f_k_linear : forall x, f (x + 1) =? f x + k.

  Lemma fSS2:
    forall x, f (x + 2) =? f x + 2 * k.
  Proof. verit_no_check f_k_linear. Qed.
End With_lemmas.

(* Instantiating a lemma with multiple quantifiers *)

Section NonLinear.
  Lemma distr_right_inst a b (mult : Z -> Z -> Z) :
    (forall x y z, mult (x + y)  z =? mult x z + mult y z) ->
    (mult (3 + a) b =? mult 3 b + mult a b).
  Proof.
    intro H.
    verit H.
  Qed.
End NonLinear.

(* You can use <Add_lemmas H1 .. Hn> to permanently add the lemmas H1 .. Hn to
   the environment. If you did so in a section then, at the end of the section,
   you should use <Clear_lemmas> to empty the globally added lemmas because
   those lemmas won't be available outside of the section. *)

Section mult3.
  Variable mult3 : Z -> Z.
  Hypothesis mult3_0 : mult3 0 =? 0.
  Hypothesis mult3_Sn : forall n, mult3 (n+1) =? mult3 n + 3.
  Add_lemmas mult3_0 mult3_Sn.

  Lemma mult_3_4_12 : mult3 4 =? 12.
  Proof. verit. Qed.

  Clear_lemmas.
End mult3.


(* Examples of the smt tactic (requires verit and cvc4 in your PATH environment
   variable):
   - propositional logic
   - theory of equality
   - linear integer arithmetic
   - theory of fixed-sized bit-vectors
   - theory of arrays *)

Goal forall a b c, ((a || b || c) && ((negb a) || (negb b) || (negb c)) && ((negb a) || b) && ((negb b) || c) && ((negb c) || a)) = false.
Proof.
  smt.
Qed.

Goal forall (a b : Z) (P : Z -> bool) (f : Z -> Z),
  (negb (Z.eqb (f a) b)) || (negb (P (f a))) || (P b).
Proof.
  smt.
Qed.
Goal forall b1 b2 x1 x2,
    implb
      (ifb b1
           (ifb b2 (Z.eqb (2*x1+1) (2*x2+1)) (Z.eqb (2*x1+1) (2*x2)))
           (ifb b2 (Z.eqb (2*x1) (2*x2+1)) (Z.eqb (2*x1) (2*x2))))
      ((implb b1 b2) && (implb b2 b1) && (Z.eqb x1 x2)).
Proof.
  smt.
Qed.

Goal forall
    (x y: Z)
    (f: Z -> Z),
    x = y + 1 -> f y = f (x - 1).
Proof.
  smt.
Qed.

Goal forall (bv1 bv2 bv3: bitvector 4),
    bv1 = #b|0|0|0|0|  /\
    bv2 = #b|1|0|0|0|  /\
    bv3 = #b|1|1|0|0|  ->
    bv_ultP bv1 bv2 /\ bv_ultP bv2 bv3.
Proof.
  smt.
Qed.

Goal forall (a b: farray Z Z) (v w x y z t: Z)
            (r s: bitvector 4)
            (f: Z -> Z)
            (g: farray Z Z -> Z)
            (h: bitvector 4 -> Z),
    a[x <- v] = b /\ a[y <- w] = b ->
    a[z <- w] = b /\ a[t <- v] = b ->
    r = s -> v < x + 10 /\ v > x - 5 ->
    ~ (g a = g b) \/ f (h r) = f (h s).
Proof.
  smt.
Qed.


(* All tactics have a "no_check" variant that is faster but, in case of
   failure, it will only fail at Qed *)

Goal forall (bv1 bv2 bv3: bitvector 4),
    bv1 = #b|0|0|0|0|  /\
    bv2 = #b|1|0|0|0|  /\
    bv3 = #b|1|1|0|0|  ->
    bv_ultP bv1 bv2 /\ bv_ultP bv2 bv3.
Proof.
  smt_no_check.
Qed.

Goal forall (a b: farray Z Z) (v w x y z t: Z)
            (r s: bitvector 4)
            (f: Z -> Z)
            (g: farray Z Z -> Z)
            (h: bitvector 4 -> Z),
    a[x <- v] = b /\ a[y <- w] = b ->
    a[z <- w] = b /\ a[t <- v] = b ->
    r = s -> v < x + 10 /\ v > x - 5 ->
    ~ (g a = g b) \/ f (h r) = f (h s).
Proof.
  smt_no_check.
Qed.


(** SMTCoq also provides conversion tactics, to inject various integer
    types into the type Z supported by SMTCoq. They can be called before
    the standard SMTCoq tactics. **)

Local Open Scope positive_scope.

Goal forall (f : positive -> positive) (x y : positive),
  implb ((x + 3) =? y)
        ((f (x + 3)) <=? (f y))
  = true.
Proof.
  pos_convert.
  verit.
Qed.

Goal forall (f : positive -> positive) (x y : positive),
  implb ((x + 3) =? y)
        ((3 <? y) && ((f (x + 3)) <=? (f y)))
  = true.
Proof.
  pos_convert.
  verit.
Qed.

Local Close Scope positive_scope.

Local Open Scope N_scope.

Goal forall (f : N -> N) (x y : N),
    implb ((x + 3) =? y)
          ((f (x + 3)) <=? (f y))
    = true.
Proof.
  N_convert.
  verit.
Qed.

Goal forall (f : N -> N) (x y : N),
    implb ((x + 3) =? y)
          ((2 <? y) && ((f (x + 3)) <=? (f y)))
    = true.
Proof.
  N_convert.
  verit.
Qed.

Local Close Scope N_scope.

Require Import NPeano.
Local Open Scope nat_scope.

Goal forall (f : nat -> nat) (x y : nat),
    implb (Nat.eqb (x + 3) y)
          ((f (x + 3)) <=? (f y))
    = true.
Proof.
  nat_convert.
  verit.
Qed.

Goal forall (f : nat -> nat) (x y : nat),
    implb (Nat.eqb (x + 3) y)
          ((2 <? y) && ((f (x + 3)) <=? (f y)))
    = true.
Proof.
  nat_convert.
  verit.
Qed.

Local Close Scope nat_scope.

(* An example with all 3 types and a binary function *)
Goal forall f : positive -> nat -> N, forall (x : positive) (y : nat),
  implb (x =? 3)%positive
    (implb (Nat.eqb y 7)
      (implb (f 3%positive 7%nat =? 12)%N
        (f x y =? 12)%N)) = true.
  pos_convert.
  nat_convert.
  N_convert.
  verit.
Qed.

Open Scope Z_scope.


(** Now more insightful examples. The first one automatically proves
    properties in group theory. **)

Section Group.
  Variable G : Type.
  (* We suppose that G has a decidable equality *)
  Variable HG : CompDec G.
  Variable op : G -> G -> G.
  Variable inv : G -> G.
  Variable e : G.

  Local Notation "a ==? b" := (@eqb_of_compdec G HG a b) (at level 60).

  (* We can prove automatically that we have a group if we only have the
     "left" versions of the axioms of a group *)
  Hypothesis associative :
    forall a b c : G, op a (op b c) ==? op (op a b) c.
  Hypothesis inverse :
    forall a : G, op (inv a) a ==? e.
  Hypothesis identity :
    forall a : G, op e a ==? a.
  Add_lemmas associative inverse identity.

  (* The "right" version of inverse *)
  Lemma inverse' :
    forall a : G, op a (inv a) ==? e.
  Proof. smt. Qed.

  (* The "right" version of identity *)
  Lemma identity' :
    forall a : G, op a e ==? a.
  Proof. smt inverse'. Qed.

  (* Some other interesting facts about groups *)
  Lemma unique_identity e':
    (forall z, op e' z ==? z) -> e' ==? e.
  Proof. intros pe'; smt pe'. Qed.

  Lemma simplification_right x1 x2 y:
      op x1 y ==? op x2 y -> x1 ==? x2.
  Proof. intro H. smt_no_check (H, inverse'). Qed.

  Lemma simplification_left x1 x2 y:
      op y x1 ==? op y x2 -> x1 ==? x2.
  Proof. intro H. smt_no_check (H, inverse'). Qed.

  Clear_lemmas.
End Group.


(* A full example coming from CompCert, slightly revisited.
   See: https://hal.inria.fr/inria-00289542
        https://xavierleroy.org/memory-model/doc/Memory.html (Section 3)
 *)
Section CompCert.

  Variable block : Set.
  Hypothesis eq_block : CompDec block.

  Variable mem: Set.
  Hypothesis dec_mem : CompDec mem.
  Variable alloc_block: mem -> Z -> Z -> block.
  Variable alloc_mem: mem -> Z -> Z -> mem.
  Variable valid_block: mem -> block -> bool.

  Hypothesis alloc_valid_block_1:
    forall m lo hi b,
      valid_block (alloc_mem m lo hi) b -> ((b = (alloc_block m lo hi)) \/ valid_block m b).

  Hypothesis alloc_valid_block_2:
    forall m lo hi b,
      ((b = (alloc_block m lo hi)) \/ valid_block m b) -> (valid_block (alloc_mem m lo hi) b).

  Hypothesis alloc_not_valid_block:
    forall m lo hi,
       negb (valid_block m (alloc_block m lo hi)).

  Lemma alloc_valid_block_inv m lo hi b :
    valid_block m b -> valid_block (alloc_mem m lo hi) b.
  Proof.
    intro H. verit (alloc_valid_block_2, H).
  Qed.

  Lemma alloc_not_valid_block_2 m lo hi b' :
    valid_block m b' -> b' <> (alloc_block m lo hi).
  Proof.
    intro H. verit (alloc_not_valid_block, H).
  Qed.

End CompCert.