aboutsummaryrefslogtreecommitdiffstats
path: root/src/Conversion_tactics.v
blob: d85d193386f53e29b1dce199a635ef1a1df5578a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
(**************************************************************************)
(*                                                                        *)
(*     SMTCoq                                                             *)
(*     Copyright (C) 2011 - 2022                                          *)
(*                                                                        *)
(*     See file "AUTHORS" for the list of authors                         *)
(*                                                                        *)
(*   This file is distributed under the terms of the CeCILL-C licence     *)
(*                                                                        *)
(**************************************************************************)


(* This file provides:
   - a generic way to inject, via tactics, types of natural numbers into
     the type Z, which is the type known by SMT solvers and, thus, by
     SMTCoq
   - an instanciation for the types nat, positive and N.
*)



Require Import ZArith.

(* This module represents the structure to be injected into Z *)
Module Type convert_type.

(* The type to be injected *)
Parameter T : Type.

(* Mapping both ways *)
Parameter Z2T : Z -> T.
Parameter T2Z : T -> Z.
(* T2Z is an injection *)
Axiom T2Z_id : forall x : T, Z2T (T2Z x) = x.

(* A property about elements of Z coming from elements of T.
   For instance, for nat, all elements are non-negative: (0 <=? z)%Z *)
Parameter inT : Z -> bool.
(* The image of the injection satisfies this property *)
Axiom T2Z_pres : forall x : T, inT (T2Z x) = true.
(* It is always possible to define inT as <fun z => Z.eqb z (T2Z (Z2T z))>.
   In this case, the proof of the axiom is simply:
    <rewrite T2Z_id, Z.eqb_eq>. *)

(* We ask this injection to be a morphism for all the following symbols *)

(* Addition *)
Parameter add : T -> T -> T.
Axiom t2z_add_morph : forall x' y', Z.add (T2Z x') (T2Z y') = T2Z (add x' y').

(* Multiplication *)
Parameter mul : T -> T -> T.
Axiom t2z_mul_morph : forall x' y', Z.mul (T2Z x') (T2Z y') = T2Z (mul x' y').

(* <= *)
Parameter leb : T -> T -> bool.
Axiom t2z_leb_morph : forall x' y', Z.leb (T2Z x') (T2Z y') = leb x' y'.

(* < *)
Parameter ltb : T -> T -> bool.
Axiom t2z_ltb_morph : forall x' y', Z.ltb (T2Z x') (T2Z y') = ltb x' y'.

(* = *)
Parameter eqb : T -> T -> bool.
Axiom t2z_eqb_morph : forall x' y', Z.eqb (T2Z x') (T2Z y') = eqb x' y'.
End convert_type.

(* This fonctor builds a conversion tactic from a module of the signature above *)
Module convert (M : convert_type).

Import M.

(* SMTCoq uses Booleans *)
Lemma implb_impl : forall a b : bool, (implb a b = true -> a = true -> b = true).
Proof.
intros a b H.
destruct a; destruct b; try reflexivity; discriminate.
Qed.

(* Get the head symbol of an application *)
Ltac get_head x := lazymatch x with ?x _ => get_head x | _ => x end.

(* [inverse_tactic tactic] succceds when [tactic] fails, and the other way round *)
Ltac inverse_tactic tactic := try (tactic; fail 1).

(* [constr_neq t u] fails if and only if [t] and [u] are convertible *)
Ltac constr_neq t u := inverse_tactic ltac:(constr_eq t u).

(* [is_not_constructor U sym] fails if and only if [sym] is a constructor of [U] *)
Ltac is_not_constructor U sym :=
let H := fresh in
assert (U -> True) as H by
       (let x := fresh in
        let y := fresh in
        intro x;
        pose x as y;
        destruct x;
        let C := eval unfold y in y in
        let c := get_head C in
        constr_neq sym c;
        exact I); clear H.

(* [is_constructor U sym] succeeds if and only if [sym] is a constructor of [U] *)
Ltac is_constructor U sym := inverse_tactic ltac:(is_not_constructor U sym).

(* Replaces the sub-terms [x] of type [T] which are not under a known
   symbol by Z2T (T2Z x) *)
Ltac converting :=
  (* The heart of the tactic *)
  repeat
    match goal with
    (* We capture each subèterm [x] together with its context, i.e. the goal is C[x] *)
    | |- context C[?x]  =>
      (* If [x] has type [T] *)
      let U := type of x in
      lazymatch eval fold T in U with
      | T =>
        lazymatch x with
        (* If x is of the shape Z2T (T2Z _) we stop since [x] is already in the expected shape *)
        | Z2T (T2Z _) => fail
        | _ =>
          (* We generate a fresh variable of type T *)
          let var := fresh in
          pose proof x as var;
          (* Otherwise, we analyze the formula obtained by replacing [x] by the fresh variable in the goal *)
          lazymatch context C[var] with
          | context [?h var] =>
            let h := get_head h in
            lazymatch h with
            (* [x] is already in the expected shape *)
            | T2Z => fail
            (* Not necessary to rewrite under symbols commuting with T2Z *)
            | add => fail | mul => fail | ltb => fail | leb => fail | eqb => fail
            (* Do not rewrite inside a constant *)
            | Zpos => fail | Zneg => fail
            | _ =>
            (* Idem: if the context contains a constructor of [T], and
               [x] starts with a constructor of [T], we are inside a
               constant *)
            let hx := get_head x in
            try (is_constructor T h; is_constructor T hx; fail 1);
            (* Otherwise, we rewrite *)
            let old_goal := context C[x] in
            let new_goal := context C[Z2T (T2Z x)] in
            replace old_goal with new_goal by (rewrite (T2Z_id x); reflexivity) end
          end;
          (* We clear the fresh variable *)
          clear var
        end
      end
    end.

Ltac rewriting :=
  repeat (try rewrite <- t2z_leb_morph;
          try rewrite <- t2z_ltb_morph;
          try rewrite <- t2z_eqb_morph;
          try rewrite <- t2z_add_morph;
          try rewrite <- t2z_mul_morph).


(* expand_type [Tn;...T2;;T1] T = T1->T2->...->Tn->T *)
Fixpoint expand_type l T : Type :=
  match l with
    | nil => T
    | cons h l => expand_type l (h -> T)
  end.
(* get_args (f t1 t2 ... tn) = [(Tn,tn);...;(T2,t2);(T1,t1)] *)
Ltac get_args X :=
  lazymatch X with
    | ?x ?y => let x_args := get_args x in let T := type of y in constr:(cons (existT (fun z => z) T y) x_args)
    | _ => constr:(@nil (sigT (fun x => x)))
  end.
(* get_args_types [(Tn,tn);...;(T2,t2);(T1,t1)] = [Tn;...;T2;T1] *)
Fixpoint get_args_types (l : list (sigT (fun x => x))) : list Type :=
  match l with
    | nil => nil
    | cons (@existT _ _ T _) l => cons T (get_args_types l)
  end.
(* apply_args [(Tn,tn);...;(T2,t2);(T1,t1)] T (f : T1->T2->...->Tn->T) = f t1 t2 ... tn *)
Ltac apply_args f args :=
  lazymatch args with
    | nil => constr:(f)
    | cons ?arg ?args => match arg with existT _ _ ?arg => let f := apply_args f args in constr:(f arg) end
  end.

(* expand_fun [Tn;...;T2;T1] T U (f : T1->T2->...->Tn->T) (g : T->U) = fun x1 x2 ... xn => g (f x1 x2 ... xn) *)
Fixpoint expand_fun (l : list Type) (T : Type) (U : Type) : expand_type l T -> (T -> U) -> expand_type l U :=
  match l with
    | nil => fun f g => g f
    | cons h l' => fun f g => expand_fun l' (h -> T) (h -> U) f (fun a x => g (a x))
  end.
(* expand (f (t1:T1) (t2:T2) ... (tn:Tn) : T) (g : T->U) = fun x1 x2 ... xn => g (f x1 x2 ... xn) *)
Ltac expand X g :=
  (* Let argsX = [(Tn,tn);...;(T2,t2);(T1,t1)] *)
  let argsX := get_args X in
  (* Let argsXtypes = [Tn;...;T2;T1] *)
  let argsXtypes := constr:(get_args_types argsX) in
  (* Let typeX = T *)
  let typeX := type of X in
  (* Let h = f *)
  let h := get_head X in
  (* Let typeg = U *)
  let typeg := match type of g with _ -> ?U => U end in
  (* We return expand_fun [Tn;...;T2;T1] T Z f T2Z = fun x1 x2 ... xn => g (f x1 x2 ... xn) *)
  constr:(expand_fun argsXtypes typeX typeg h g).

(* Replaces function symbols with return type in T, and variables in T,
   by their counterparts in Z, adding the positivity hypotheses *)
Ltac renaming :=
  repeat
    match goal with
      (* If there is a term of the shape (T2Z (f t1 ... tn)) *)
      | |- context [T2Z ?X] =>
        (* Get the head symbol *)
        let f := get_head X in
        (* Nothing to do if it is a constructor *)
        is_not_constructor T f;
        (* Otherwise, let fe = fun x1 ... xn => T2Z (f x1 ... xn) *)
        let fe := expand X T2Z in
        let fe := eval cbv in fe in
        (* Pose fe_id := fun x1 ... xn => T2Z (f x1 ... xn) *)
        let fe_id := fresh in pose (fe_id := fe);
        repeat
          match goal with
            (* For each term of the shape (T2Z (f' t'1 ... t'n)) *)
            | |- context [T2Z ?X'] =>
              (* Get the head symbol *)
              let f' := get_head X' in
              (* If f' = f *)
              constr_eq f f';
              (* Add the hypothesis inT (T2Z X') *)
              generalize (T2Z_pres X'); apply implb_impl;
              (* Let args = [t'1;...;t'n] *)
              let args := get_args X' in
              (* Let Y = fe_id t'1 ... t'n *)
              let Y := apply_args fe_id args in
              (* Replace [T2Z (f' t'1 ... t'n)] by [Y] *)
              change (T2Z X') with Y
          end;
        (* Abstract over [fe_id := fun x1 ... xn => T2Z (f x1 ... xn)] *)
        generalize fe_id;
        (* Erase the old f and the temporary fe_id *)
        clear f fe_id;
        (* Introduce the new f with the same name *)
        let f := fresh f in
        intro f
    end.

(* expand_fun' [Tn;...;T2;T1] T U (f : T1->T2->...->Tn->T) (a : T->U) = fun x1 x2 ... xn => a (f x1 x2 ... xn) *)
Fixpoint expand_fun' (l : list Type) : forall T U : Type, expand_type l T -> (T -> U) -> expand_type l U :=
  match l as l return forall T U, expand_type l T -> (T ->U) -> expand_type l U with
    | nil => fun T U f a => a f
    | cons T' l => fun T U f a => expand_fun' l (T' -> T) (T' -> U) f (fun g xn => a (g xn))
  end.
(* expand' (f (t1:T1) (t2:T2) ... (tn:Tn) : T) (g : U->Tn) = fun x1 x2 ... xn => f x1 x2 ... (g xn) *)
Ltac expand' X g :=
  (* Let argsX = [(Tn,tn);...;(T2,t2);(T1,t1)] *)
  let argsX := get_args X in
  (* Let argsXtypes = [Tn;...;T2;T1] *)
  let argsXtypes := constr:(get_args_types argsX) in
  let argsXtypes := eval cbv in argsXtypes in
  (* Let Tn = Tn *)
  let Tn := match argsXtypes with cons ?T _ => T end in
  (* Let argsXtypes = [Tn-1;...;T2;T1] *)
  let argsXtypes := match argsXtypes with cons _ ?args => args end in
  (* Let typeX = T *)
  let typeX := type of X in
  (* Let h = f *)
  let h := get_head X in
  (* Let typeg = U *)
  let typeg := match type of g with ?U -> _ => U end in
  (* Return expand_fun' [Tn-1;...;T2;T1] (Tn->T) (Z->T) f (fun b x => b (g x))) = fun x1 x2 ... xn => f x1 x2 ... (g xn) *)
  constr:(expand_fun' argsXtypes (Tn -> typeX) (typeg -> typeX) h (fun b x => b (g x))).

(* Replaces function symbols with parameters in T, with their
   counterparts with parameters in Z *)
Ltac renaming' :=
  repeat
    match goal with
      (* If there is a term of the shape (f t1 ... (Z2T tn)) *)
      | |- context [?X (Z2T ?Y)] =>
        (* Get the head symbol *)
        let f := get_head X in
        (* Nothing to do if it is a constructor *)
        is_not_constructor T f;
        (* Otherwise, let fe = fun x1 ... xn => f x1 ... (Z2T xn) *)
        let fe := expand' (X (Z2T Y)) Z2T in
        let fe := eval simpl in fe in
        repeat
          match goal with
            (* For each term of the shape (f' t'1 ... (Z2T t'n)) *)
            | |- context [?X' (Z2T ?Y')] =>
              (* Get the head symbol *)
              let f' := get_head X' in
              (* If f' = f *)
              constr_eq f f';
              (* Let args = [t'1;...;t'(n-1)] *)
              let args := get_args X' in
              (* Let Z = (fun x1 ... xn => f x1 ... (Z2T xn)) t'1 ... t'(n-1) *)
              let Z := apply_args fe args in
              (* Replace (f' t'1 ... (Z2T t'n)) with (Z t'n) *)
              change (X' (Z2T Y')) with (Z Y')
          end;
        (* Abstract over (fun x1 ... xn => (f x1 ... (Z2T xn)) *)
        generalize fe;
        (* Erase the old f *)
        clear f;
        (* Introduce the new f with the same name *)
        let f := fresh f in
        intro f
    end.

(* The whole tactic *)
Ltac convert :=
fold T add mul ltb leb eqb;
intros;
converting;
rewriting;
renaming;
renaming';
let T2Z_unfolded := eval red in T2Z in change T2Z with T2Z_unfolded;
let inT_unfolded := eval red in inT in change inT with inT_unfolded;
simpl.

End convert.

(* Instanciation for the type [positive] *)
Module pos_convert_type <: convert_type.

Definition T : Type := positive.

Definition Z2T : Z -> T := fun z =>
  match z with
    | 0%Z => 1%positive
    | Zpos p => p
    | Zneg _ => 1%positive
  end.

Definition T2Z : T -> Z := Zpos.
Lemma T2Z_id : forall x : T, Z2T (T2Z x) = x. reflexivity. Qed.

Definition inT : Z -> bool := fun z => Z.ltb 0 z.
Lemma T2Z_pres : forall x, inT (T2Z x) = true. reflexivity. Qed.

Definition add : T -> T -> T := Pos.add.
Lemma t2z_add_morph : forall x' y', Z.add (T2Z x') (T2Z y') = T2Z (add x' y').
Proof. reflexivity. Qed.

Definition mul : T -> T -> T := Pos.mul.
Lemma t2z_mul_morph : forall x' y', Z.mul (T2Z x') (T2Z y') = T2Z (mul x' y').
Proof. reflexivity. Qed.

Definition leb : T -> T -> bool := Pos.leb.
Lemma t2z_leb_morph : forall x' y', Z.leb (T2Z x') (T2Z y') = leb x' y'.
Proof. reflexivity. Qed.

Definition ltb : T -> T -> bool := Pos.ltb.
Lemma t2z_ltb_morph : forall x' y', Z.ltb (T2Z x') (T2Z y') = ltb x' y'.
Proof. reflexivity. Qed.

Definition eqb : T -> T -> bool := Pos.eqb.
Lemma t2z_eqb_morph : forall x' y', Z.eqb (T2Z x') (T2Z y') = eqb x' y'.
Proof. reflexivity. Qed.
End pos_convert_type.

Module pos_convert_mod := convert pos_convert_type.

Ltac pos_convert := pos_convert_mod.convert.


(* Instanciation for the type [N] *)
Module N_convert_type <: convert_type.

Definition T : Type := N.

Definition Z2T : Z -> T := Z.to_N.

Definition T2Z : T -> Z := Z.of_N.
Lemma T2Z_id : forall x : T, Z2T (T2Z x) = x. exact N2Z.id. Qed.

Definition inT : Z -> bool := fun z => Z.leb 0 z.
Lemma T2Z_pres : forall x, inT (T2Z x) = true. intro; unfold inT; rewrite Z.leb_le; apply N2Z.is_nonneg. Qed.

Definition add : T -> T -> T := N.add.
Lemma t2z_add_morph : forall x' y', Z.add (T2Z x') (T2Z y') = T2Z (add x' y').
Proof. intros x y; destruct x, y; reflexivity. Qed.

Definition mul : T -> T -> T := N.mul.
Lemma t2z_mul_morph : forall x' y', Z.mul (T2Z x') (T2Z y') = T2Z (mul x' y').
Proof. intros x y; destruct x, y; reflexivity. Qed.

Definition leb : T -> T -> bool := N.leb.
Lemma t2z_leb_morph : forall x' y', Z.leb (T2Z x') (T2Z y') = leb x' y'.
Proof. intros x y; destruct x, y; reflexivity. Qed.

Definition ltb : T -> T -> bool := N.ltb.
Lemma t2z_ltb_morph : forall x' y', Z.ltb (T2Z x') (T2Z y') = ltb x' y'.
Proof. intros x y; destruct x, y; reflexivity. Qed.

Definition eqb : T -> T -> bool := N.eqb.
Lemma t2z_eqb_morph : forall x' y', Z.eqb (T2Z x') (T2Z y') = eqb x' y'.
Proof. intros x y; destruct x, y; reflexivity. Qed.

End N_convert_type.

Module N_convert_mod := convert N_convert_type.

Ltac N_convert := N_convert_mod.convert.

(* Instanciation for the type [nat] *)
Require Import NPeano.
Module nat_convert_type <: convert_type.

Definition T : Type := nat.

Definition Z2T : Z -> T := Z.to_nat.

Definition T2Z : T -> Z := Z.of_nat.
Lemma T2Z_id : forall x : T, Z2T (T2Z x) = x. exact Nat2Z.id. Qed.

Definition inT : Z -> bool := fun z => Z.leb 0 z.
Lemma T2Z_pres : forall x, inT (T2Z x) = true. intro; unfold inT; rewrite Z.leb_le; apply Nat2Z.is_nonneg. Qed.

Definition add : T -> T -> T := Nat.add.
Lemma t2z_add_morph : forall x' y', Z.add (T2Z x') (T2Z y') = T2Z (add x' y').
Proof. symmetry. apply Nat2Z.inj_add. Qed.

Definition mul : T -> T -> T := Nat.mul.
Lemma t2z_mul_morph : forall x' y', Z.mul (T2Z x') (T2Z y') = T2Z (mul x' y').
Proof. symmetry. apply Nat2Z.inj_mul. Qed.

Definition leb : T -> T -> bool := Nat.leb.
Lemma t2z_leb_morph : forall x' y', Z.leb (T2Z x') (T2Z y') = leb x' y'.
Proof.
  intros x y; unfold leb.
  case_eq (Nat.leb x y); [| rewrite <- 2 Bool.not_true_iff_false];
  rewrite <- Zle_is_le_bool; rewrite Nat.leb_le; rewrite Nat2Z.inj_le; auto.
Qed.

Definition ltb : T -> T -> bool := Nat.ltb.
Lemma t2z_ltb_morph : forall x' y', Z.ltb (T2Z x') (T2Z y') = ltb x' y'.
Proof.
  intros x y; unfold ltb.
  case_eq (Nat.ltb x y); [| rewrite <- 2 Bool.not_true_iff_false];
  rewrite <- Zlt_is_lt_bool; rewrite Nat.ltb_lt; rewrite Nat2Z.inj_lt; auto.
Qed.

Definition eqb : T -> T -> bool := Nat.eqb.
Lemma t2z_eqb_morph : forall x' y', Z.eqb (T2Z x') (T2Z y') = eqb x' y'.
Proof.
  intros x y; unfold eqb.
  case_eq (Nat.eqb x y); [| rewrite <- 2 Bool.not_true_iff_false];
  rewrite Z.eqb_eq; rewrite Nat.eqb_eq; rewrite Nat2Z.inj_iff; auto.
Qed.

End nat_convert_type.

Module nat_convert_mod := convert nat_convert_type.

Ltac nat_convert := nat_convert_mod.convert.