aboutsummaryrefslogtreecommitdiffstats
path: root/src/SMT_terms.v
blob: 5f6120ee703bfd3955f57e87aee2d5af431a2150 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
(**************************************************************************)
(*                                                                        *)
(*     SMTCoq                                                             *)
(*     Copyright (C) 2011 - 2015                                          *)
(*                                                                        *)
(*     Michaël Armand                                                     *)
(*     Benjamin Grégoire                                                  *)
(*     Chantal Keller                                                     *)
(*                                                                        *)
(*     Inria - École Polytechnique - MSR-Inria Joint Lab                  *)
(*                                                                        *)
(*   This file is distributed under the terms of the CeCILL-C licence     *)
(*                                                                        *)
(**************************************************************************)


Add LoadPath "." as SMTCoq.
Require Import Bool List Int63 PArray.
Require Import Misc State.

Local Open Scope array_scope.
Local Open Scope int63_scope.

Hint Unfold is_true.


(* Remark: I use Notation instead of Definition du eliminate conversion check during the type checking *)
Notation atom := int (only parsing).

Module Form.

  Notation fargs := (array _lit) (only parsing).

  Inductive form : Type :=
  | Fatom (_:atom)
  | Ftrue
  | Ffalse
  | Fnot2 (_:int) (_:_lit)
  | Fand (_:fargs)
  | For  (_:fargs)
  | Fimp (_:fargs)
  | Fxor (_:_lit) (_:_lit)
  | Fiff (_:_lit) (_:_lit)
  | Fite (_:_lit) (_:_lit) (_:_lit).

  Definition is_Ftrue h :=
    match h with Ftrue => true | _ => false end.

  Definition is_Ffalse h :=
    match h with Ffalse => true | _ => false end.

  Lemma is_Ftrue_correct : forall h, is_Ftrue h -> h = Ftrue.
  Proof. destruct h;trivial;discriminate. Qed.

  Lemma is_Ffalse_correct : forall h, is_Ffalse h -> h = Ffalse.
  Proof. destruct h;trivial;discriminate. Qed.

  Section Interp.
    Variable interp_atom : atom -> bool.

    Section Interp_form.

    (* On suppose qu'on a l'interprétation des litéraux *)
      Variable interp_var : var -> bool.

      (* Interprétation d'une formule en supposant l'interprétation
         des litéraux *)
      (* (les litéraux font office d'index de hachage) *)
      Definition interp_aux (h:form) : bool :=
        match h with
        | Fatom a => interp_atom a
        | Ftrue => true
        | Ffalse => false
        | Fnot2 i l => fold (fun b => negb (negb b)) 1 i (Lit.interp interp_var l)
        | Fand args => afold_left _ _ true andb (Lit.interp interp_var) args
        | For args => afold_left _ _ false orb (Lit.interp interp_var) args
        | Fimp args => afold_right _ _ true implb (Lit.interp interp_var) args
        | Fxor a b => xorb (Lit.interp interp_var a) (Lit.interp interp_var b)
        | Fiff a b => Bool.eqb (Lit.interp interp_var a) (Lit.interp interp_var b)
        | Fite a b c =>
          if Lit.interp interp_var a then Lit.interp interp_var b
          else Lit.interp interp_var c
        end.

    End Interp_form.

    Section Interp_get.

      Variable t_form : PArray.array form.

      Definition t_interp : PArray.array bool :=
        PArray.foldi_left (fun i t_b hf => 
            t_b.[i <- interp_aux (PArray.get t_b) hf])
        (PArray.make (PArray.length t_form) true) t_form.

      Fixpoint lt_form i h:=
        match h with
        | Fatom _ | Ftrue | Ffalse => true
        | Fnot2 _ l => Lit.blit l < i
        | Fand args | For args | Fimp args =>
          PArray.forallb (fun l => Lit.blit l < i) args
        | Fxor a b | Fiff a b => (Lit.blit a < i) && (Lit.blit b < i) 
        | Fite a b c => (Lit.blit a < i) && (Lit.blit b < i) && (Lit.blit c < i)
        end.

      Lemma lt_form_interp_form_aux :
        forall f1 f2 i h,
          (forall j, j < i -> f1 j = f2 j) ->
          lt_form i h ->
          interp_aux f1 h = interp_aux f2 h.
      Proof.
        destruct h;simpl;intros;trivial;
          try (apply afold_left_eq;unfold is_true in H0;
            rewrite PArray.forallb_spec in H0;intros;
              auto using Lit.interp_eq_compat).
        f_equal;auto using Lit.interp_eq_compat.
        apply afold_right_eq;unfold is_true in H0;
          rewrite PArray.forallb_spec in H0;intros;
            auto using Lit.interp_eq_compat.
        unfold is_true in H0;rewrite !andb_true_iff in H0;decompose [and] H0;
          rewrite !(Lit.interp_eq_compat f1 f2);auto.
        unfold is_true in H0;rewrite !andb_true_iff in H0;decompose [and] H0;
          rewrite !(Lit.interp_eq_compat f1 f2);auto.
        unfold is_true in H0;rewrite !andb_true_iff in H0;decompose [and] H0;
          rewrite !(Lit.interp_eq_compat f1 f2);auto.
      Qed.

      Definition wf := PArray.forallbi lt_form t_form.

      Hypothesis wf_t_i : wf.

      Lemma length_t_interp : length t_interp = length t_form.
      Proof.
        unfold t_interp;apply PArray.foldi_left_Ind with (P := fun i a => length a = length t_form).
        intros;rewrite length_set;trivial.
        rewrite length_make, ltb_length;trivial.
      Qed.

      Lemma default_t_interp : default t_interp = true.
      Proof.
        unfold t_interp;apply PArray.foldi_left_Ind with
          (P := fun i a => default a = true).
        intros;rewrite default_set;trivial.
        apply default_make.
      Qed.

      Lemma t_interp_wf : forall i, i < PArray.length t_form ->
        t_interp.[i] = interp_aux (PArray.get t_interp) (t_form.[i]).
      Proof.
        set (P' i t := length t = length t_form ->
          forall j, j < i ->
            t.[j] = interp_aux (PArray.get t) (t_form.[j])).
        assert (P' (length t_form) t_interp).
        unfold is_true, wf in wf_t_i;rewrite PArray.forallbi_spec in wf_t_i.
        unfold t_interp;apply foldi_left_Ind;unfold P';intros.
        rewrite length_set in H1.
        destruct (Int63Properties.reflect_eqb j i).
        rewrite e, PArray.get_set_same.
        apply lt_form_interp_form_aux with (2:= wf_t_i i H).
        intros;rewrite get_set_other;trivial.
        intros Heq;elim (not_ltb_refl i);rewrite Heq at 1;trivial.
        rewrite H1;trivial.
        assert (j < i).
        assert ([|j|] <> [|i|]) by (intros Heq1;elim n;apply to_Z_inj;trivial).
        generalize H2;unfold is_true;rewrite !ltb_spec, (to_Z_add_1 _ _ H);
          auto with zarith.
        rewrite get_set_other, H0;auto.
        apply lt_form_interp_form_aux with
          (2:= wf_t_i j (ltb_trans _ _ _ H3 H)).
        intros;rewrite get_set_other;trivial.
        intros Heq;elim (not_ltb_refl i);apply ltb_trans with j;
          [ rewrite Heq| ];trivial.
        elim (ltb_0 _ H0).
        apply H;apply length_t_interp.
      Qed.

    End Interp_get.

    Definition interp_state_var t_form :=
      let t_interp := t_interp t_form in
      PArray.get t_interp.

    Register interp_aux as PrimInline.
    Definition interp t_form := interp_aux (interp_state_var t_form).

    Lemma wf_interp_form_lt :
      forall t_form, wf t_form ->
        forall x, x < PArray.length t_form ->
          interp_state_var t_form x = interp t_form (t_form.[x]).
    Proof.
      unfold interp_state_var;intros.
      apply t_interp_wf;trivial.
    Qed.

    Lemma wf_interp_form :
      forall t_form, PArray.default t_form = Ftrue -> wf t_form ->
        forall x, interp_state_var t_form x = interp t_form (t_form.[x]).
    Proof.
      intros t Hd Hwf x;case_eq (x < PArray.length t);intros.
      apply wf_interp_form_lt;trivial.
      unfold interp_state_var;rewrite !PArray.get_outofbound;trivial.
      rewrite default_t_interp, Hd;trivial.
      rewrite length_t_interp;trivial.
    Qed.

    Definition check_form t_form :=
      is_Ftrue (PArray.default t_form) &&
      is_Ftrue (t_form.[0]) &&
      is_Ffalse (t_form.[1]) &&
      wf t_form.

    Lemma check_form_correct : forall t_form,
       check_form t_form ->
       ((PArray.default t_form = Ftrue /\ wf t_form) /\
        Valuation.wf (interp_state_var t_form)).
    Proof.
     unfold is_true, check_form;intros t;rewrite !andb_true_iff.
     intros H;decompose [and] H;clear H;
     assert (PArray.default t = Ftrue) by (apply is_Ftrue_correct;trivial).
     repeat split;trivial.
     rewrite wf_interp_form;trivial.
     apply is_Ftrue_correct in H4;trivial;rewrite H4;reflexivity.
     rewrite wf_interp_form;trivial.
     apply is_Ffalse_correct in H3;trivial;rewrite H3;discriminate.
    Qed.

  End Interp.

End Form.

(* TODO Move this *)
Record typ_eqb : Type := Typ_eqb {
  te_carrier : Type;
  te_eqb : te_carrier -> te_carrier -> bool;
  te_reflect : forall x y, reflect (x = y) (te_eqb x y)
}.

(* Common used types into which we interpret *)

(* Unit *)

Section Unit_typ_eqb.

  Let carrier : Type := unit.

  Let eqb : carrier -> carrier -> bool :=
    fun _ _ => true.

  Lemma unit_reflect :
    forall x y, reflect (x = y) (eqb x y).
  Proof.
    unfold eqb; intros x y; case x; case y; simpl;
      constructor; reflexivity.
  Qed.

  Definition unit_typ_eqb :=
    Typ_eqb carrier eqb unit_reflect.

End Unit_typ_eqb.
(* End TODO *)

Module Typ.

  Notation index := int (only parsing).

  Inductive type :=
  | Tindex : index -> type
  | TZ : type
  | Tbool : type
  | Tpositive : type.

  Definition ftype := (list type * type)%type.

  Section Interp.

    Variable t_i : PArray.array typ_eqb.

    Definition interp t :=
      match t with
      | Tindex i => (t_i.[i]).(te_carrier)
      | TZ => Z
      | Tbool => bool
      | Tpositive => positive
      end.

    Definition interp_ftype (t:ftype) :=
      List.fold_right (fun dom codom =>interp dom -> codom)
      (interp (snd t)) (fst t).

    (* Boolean equality over interpretation of a btype *)
    Section Interp_Equality.

      Definition i_eqb (t:type) : interp t -> interp t -> bool :=
        match t with
        | Tindex i => (t_i.[i]).(te_eqb)
        | TZ => Zeq_bool
        | Tbool => Bool.eqb
        | Tpositive => Peqb
        end.

      Lemma i_eqb_spec : forall t x y, i_eqb t x y <-> x = y.
      Proof.
       destruct t;simpl;intros.
       symmetry;apply reflect_iff;apply te_reflect.
       symmetry;apply Zeq_is_eq_bool.
       apply Bool.eqb_true_iff.
       apply Peqb_eq.
      Qed.

      Lemma reflect_i_eqb : forall t x y, reflect (x = y) (i_eqb t x y).
      Proof.
        intros;apply iff_reflect;symmetry;apply i_eqb_spec.
      Qed.

      Lemma i_eqb_sym : forall t x y, i_eqb t x y = i_eqb t y x.
      Proof.
        intros t x y; case_eq (i_eqb t x y); case_eq (i_eqb t y x); auto.
        change (i_eqb t x y = true) with (is_true (i_eqb t x y)); rewrite i_eqb_spec; intros H1 H2; subst y; pose (H:=reflect_i_eqb t x x); inversion H; [rewrite <- H0 in H1; discriminate|elim H2; auto].
        change (i_eqb t y x = true) with (is_true (i_eqb t y x)); rewrite i_eqb_spec; intros H1 H2; subst y; pose (H:=reflect_i_eqb t x x); inversion H; [rewrite <- H0 in H2; discriminate|elim H1; auto].
      Qed.

    End Interp_Equality.

  End Interp.

  (* Plutôt que de tester l'égalité entre deux btypes dans Prop, on
     écrit une fonction calculant:
     - si deux btype A et B sont égaux
     - si oui, une fonction permettant de passer les objets de type A en
     objets de type B
     On montre que cette fonction réfléchit l'égalité de Coq. *)

  Section Cast.

  (* L'inductif cast_result spécifie si deux btype sont égaux (Cast) ou
     non (NoCast). Dans le cas où ils sont égaux, une fonction permet de
     passer de l'un à l'autre. *)

    Inductive cast_result (A B: type) : Type :=
    | Cast (k: forall P, P A -> P B)
    | NoCast.

    Implicit Arguments Cast [A B].
    Implicit Arguments NoCast [A B].

    Notation idcast := (Cast (fun P x => x)).
    (* La fonction cast calcule cast_result *)

    Definition cast (A B: type) : cast_result A B :=
      match A as C, B as D return cast_result C D with
      | Tindex i, Tindex j =>
        match cast i j with
        | Some k => Cast (fun P => k (fun y => P (Tindex y)))
        | None => NoCast
        end
      | TZ, TZ => idcast
      | Tbool, Tbool => idcast
      | Tpositive, Tpositive => idcast
      | _, _ => NoCast
      end.

    Lemma cast_refl:
      forall A, cast A A = Cast (fun P (H : P A) => H).
    Proof.
      intros A0;destruct A0;simpl;trivial.
      rewrite cast_refl;trivial.
    Qed.

    (* Remark : I use this definition because eqb will not be used only in the interpretation *)
    Definition eqb (A B: type) : bool :=
      match A, B with
      | Tindex i, Tindex j => i == j
      | TZ, TZ => true
      | Tbool, Tbool => true
      | Tpositive, Tpositive => true
      | _, _ => false
      end.


    (* TODO : Move this *)
    Lemma not_false : ~ false.
    Proof. intro;discriminate. Qed.
    Hint Resolve not_false.

    Lemma is_true_true : true.
    Proof. reflexivity. Qed.
    Hint Resolve is_true_true.

    Lemma not_is_true_eq_false : forall b:bool, ~ b <-> b = false.
    Proof. exact not_true_iff_false. Qed.

    Lemma cast_diff: forall A B, eqb A B = false -> cast A B = NoCast.
    Proof.
      intros A0 B0;destruct A0; destruct B0;simpl;trivial;try discriminate.
      intros Heq;rewrite (cast_diff _ _ Heq);trivial.
    Qed.

    Lemma neq_cast : forall A B,
      cast A B = (if eqb A B then cast A B else NoCast).
    Proof.
      intros C D;case_eq (eqb C D);trivial;apply cast_diff.
    Qed.

    Lemma reflect_eqb : forall x y, reflect (x = y) (eqb x y).
    Proof.
      intros x y;destruct x;destruct y;simpl;try constructor;trivial;try discriminate.
      apply iff_reflect;rewrite eqb_spec;split;intros H;[inversion H | subst];trivial.
    Qed.

    Lemma eqb_spec : forall x y, eqb x y <-> x = y.
    Proof.
      intros;symmetry;apply reflect_iff;apply reflect_eqb.
    Qed.

    Lemma eqb_refl : forall x, eqb x x.
    Proof. intros; rewrite eqb_spec; auto. Qed.

  End Cast.

End Typ.

(* TODO move this *)
Inductive dlist (A:Type) (P:A->Type) : list A -> Type :=
| Dnil : dlist A P nil
| Dcons : forall a l, P a -> dlist A P l -> dlist A P (cons a l).

Set Implicit Arguments.
Definition list_beq := fun (A : Type) (eq_A : A -> A -> bool) =>
fix list_eqrec (X Y : list A) : bool :=
  match X with
  | nil => match Y with
           | nil => true
           | (_ :: _)%list => false
           end
  | (x :: x0)%list =>
      match Y with
      | nil => false
      | (x1 :: x2)%list => (eq_A x x1 && list_eqrec x0 x2)%bool
      end
  end.
Unset Implicit Arguments.

Lemma reflect_list_beq : forall (A:Type) (beq:A -> A -> bool),
  (forall x y, reflect (x = y) (beq x y)) ->
  forall x y, reflect (x = y) (list_beq beq x y).
Proof.
  intros A beq Hbeq;induction x;destruct y;simpl;try (constructor;trivial;discriminate).
  destruct (Hbeq a a0) as [Heq | Hd];simpl;[ | constructor;intros Heq;elim Hd;inversion Heq;trivial].
  destruct (IHx y) as [Heq0 | Hd];simpl;[ | constructor;intros Heq0;elim Hd;inversion Heq0;trivial].
  constructor;subst;trivial.
Qed.

Lemma list_beq_spec : forall (A:Type) (beq:A -> A -> bool),
  (forall x y, beq x y <-> x = y) ->
  forall x y, list_beq beq x y <-> x = y.
Proof.
  intros A beq HA x y;symmetry;apply reflect_iff;apply reflect_list_beq.
  intros;apply iff_reflect;symmetry;apply HA.
Qed.
(* End move *)

Module Atom.

  Notation func := int (only parsing).
 
  Inductive cop : Type := 
   | CO_xH
   | CO_Z0.

  Inductive unop : Type :=
   | UO_xO
   | UO_xI
   | UO_Zpos 
   | UO_Zneg
   | UO_Zopp.

  Inductive binop : Type :=
   | BO_Zplus
   | BO_Zminus
   | BO_Zmult
   | BO_Zlt
   | BO_Zle
   | BO_Zge
   | BO_Zgt
   | BO_eq (_ : Typ.type).

  Inductive nop : Type :=
   | NO_distinct (_ : Typ.type).

  Notation hatom := int (only parsing).
 
  Inductive atom : Type :=
   | Acop (_: cop)
   | Auop (_ : unop) (_:hatom)
   | Abop (_ : binop) (_:hatom) (_:hatom)
   | Anop (_ : nop) (_: list hatom)
   | Aapp (_:func) (_: list hatom).


  (* Generic predicates and operations *)

  (** Equality *)
  Definition cop_eqb o o' :=
   match o, o' with
   | CO_xH, CO_xH 
   | CO_Z0, CO_Z0 => true
   | _,_ => false
   end.

  Definition uop_eqb o o' :=
   match o, o' with
   | UO_xO, UO_xO 
   | UO_xI, UO_xI
   | UO_Zpos, UO_Zpos 
   | UO_Zneg, UO_Zneg
   | UO_Zopp, UO_Zopp => true
   | _,_ => false
   end.

  Definition bop_eqb o o' :=
   match o, o' with
   | BO_Zplus, BO_Zplus
   | BO_Zminus, BO_Zminus
   | BO_Zmult, BO_Zmult
   | BO_Zlt, BO_Zlt
   | BO_Zle, BO_Zle
   | BO_Zge, BO_Zge
   | BO_Zgt, BO_Zgt => true
   | BO_eq t, BO_eq t' => Typ.eqb t t'
   | _,_ => false
   end.

  Definition nop_eqb o o' :=
    match o, o' with
      | NO_distinct t, NO_distinct t' => Typ.eqb t t'
    end.

  Definition eqb (t t':atom) :=
    match t,t' with
    | Acop o, Acop o' => cop_eqb o o'
    | Auop o t, Auop o' t' => uop_eqb o o' && (t == t')
    | Abop o t1 t2, Abop o' t1' t2' => bop_eqb o o' && (t1 == t1') && (t2 == t2')
    | Anop o t, Anop o' t' => nop_eqb o o' && list_beq Int63Native.eqb t t'
    | Aapp a la, Aapp b lb => (a == b) && list_beq Int63Native.eqb la lb
    | _, _ => false
    end.

  Ltac preflect t :=
    let Heq := fresh "Heq" in
      let Hd := fresh "Hd" in
        destruct t as [Heq | Hd];simpl;
          [ | constructor;intros Heq;elim Hd;inversion Heq;trivial].

  Lemma reflect_cop_eqb : forall o1 o2, reflect (o1 = o2) (cop_eqb o1 o2).
  Proof.
   destruct o1;destruct o2;simpl;constructor;trivial;discriminate.
  Qed.

  Lemma reflect_uop_eqb : forall o1 o2, reflect (o1 = o2) (uop_eqb o1 o2).
  Proof.
   destruct o1;destruct o2;simpl;constructor;trivial;discriminate.
  Qed.
 
  Lemma reflect_bop_eqb : forall o1 o2, reflect (o1 = o2) (bop_eqb o1 o2).
  Proof.
   destruct o1;destruct o2;simpl;try (constructor;trivial;discriminate).
   preflect (Typ.reflect_eqb t t0).
   constructor;subst;trivial.
  Qed.

  Lemma reflect_nop_eqb : forall o1 o2, reflect (o1 = o2) (nop_eqb o1 o2).
  Proof.
    intros [t1] [t2]; simpl; preflect (Typ.reflect_eqb t1 t2); constructor; subst; reflexivity.
  Qed.

  Lemma reflect_eqb : forall t1 t2, reflect (t1 = t2) (eqb t1 t2).
  Proof.
    destruct t1;destruct t2;simpl; try (constructor;trivial;discriminate).
    (* Constants *)
    preflect (reflect_cop_eqb c c0);constructor;subst;trivial.
    (* Unary operators *)
    preflect (reflect_uop_eqb u u0); preflect (Int63Properties.reflect_eqb i i0);
      constructor;subst;trivial.
    (* Binary operators *)
    preflect (reflect_bop_eqb b b0); 
    preflect (Int63Properties.reflect_eqb i i1);
    preflect (Int63Properties.reflect_eqb i0 i2);
    constructor;subst;trivial.
    (* N-ary operators *)
    preflect (reflect_nop_eqb n n0); preflect (reflect_list_beq _ _ Int63Properties.reflect_eqb l l0); constructor; subst; reflexivity.
    (* Application *)
    preflect (Int63Properties.reflect_eqb i i0);
    preflect (reflect_list_beq _ _ Int63Properties.reflect_eqb l l0);
    constructor;subst;trivial.
  Qed.
  
  Lemma eqb_spec : forall t1 t2, eqb t1 t2 <-> t1 = t2.
  Proof.
    intros;symmetry;apply reflect_iff;apply reflect_eqb.
  Qed.
  
  (** Typing and interpretation *)
  
  Record val (t:Type) (I:t -> Type) := Val {
    v_type : t;
    v_val : I v_type
  }.

  Section Typing_Interp.
    Variable t_i : PArray.array typ_eqb.

    Local Notation interp_t := (Typ.interp t_i).
    Local Notation interp_ft := (Typ.interp_ftype t_i).

    Definition bval := val Typ.type interp_t.
    Definition Bval := Val Typ.type interp_t.
    Definition tval := val Typ.ftype interp_ft.
    Definition Tval := Val Typ.ftype interp_ft.

    Definition bvtrue : bval := Bval Typ.Tbool true.
    Definition bvfalse : bval := Bval Typ.Tbool false.

    Lemma Bval_inj1 : forall T U t u, Bval T t = Bval U u -> T = U.
    Proof. intros T U t u H; inversion H; auto. Qed.

    Lemma Bval_inj2 : forall T t u, Bval T t = Bval T u -> t = u.
    Proof.
      intros T t u H; assert (H1: (fun (x:bval) =>
      match Typ.cast (v_type _ _ x) T with
        | Typ.Cast k => k _ (v_val _ _ x) = v_val _ _ (Bval T u)
        | Typ.NoCast => True
      end) (Bval T t)).
      rewrite H, Typ.cast_refl; reflexivity.
      simpl in H1; rewrite Typ.cast_refl in H1; auto.
    Qed.

    (* Interprétation d'une fonction*)
    Variable t_func : PArray.array tval.

    (** Type checking of atom assuming an type for hatom *)
    Section Typ_Aux.
      Variable get_type : hatom -> Typ.type.

      Definition typ_cop o := 
        match o with
        | CO_xH => Typ.Tpositive 
        | CO_Z0 => Typ.TZ
        end.

      Definition typ_uop o :=
        match o with
        | UO_xO => (Typ.Tpositive,Typ.Tpositive) 
        | UO_xI => (Typ.Tpositive,Typ.Tpositive) 
        | UO_Zpos => (Typ.Tpositive, Typ.TZ)
        | UO_Zneg => (Typ.Tpositive, Typ.TZ)
        | UO_Zopp => (Typ.TZ, Typ.TZ)
        end.

      Definition typ_bop o := 
        match o with
        | BO_Zplus  => ((Typ.TZ,Typ.TZ), Typ.TZ) 
        | BO_Zminus => ((Typ.TZ,Typ.TZ), Typ.TZ) 
        | BO_Zmult  => ((Typ.TZ,Typ.TZ), Typ.TZ) 
        | BO_Zlt    => ((Typ.TZ,Typ.TZ), Typ.Tbool) 
        | BO_Zle    => ((Typ.TZ,Typ.TZ), Typ.Tbool) 
        | BO_Zge    => ((Typ.TZ,Typ.TZ), Typ.Tbool) 
        | BO_Zgt    => ((Typ.TZ,Typ.TZ), Typ.Tbool)
        | BO_eq t   => ((t,t),Typ.Tbool)
        end.

      Definition typ_nop o :=
        match o with
          | NO_distinct t => (t,Typ.Tbool)
        end.

      Fixpoint check_args (args:list hatom) (targs:list Typ.type) :=
        match args, targs with
        | nil, nil => true
        | a::args, t::targs => Typ.eqb (get_type a) t && check_args args targs
        | _, _ => false
        end.

      Definition check_aux (a:atom) (t:Typ.type) : bool := 
        match a with
        | Acop o => Typ.eqb (typ_cop o) t 
        | Auop o a =>
          let (ta,t') := typ_uop o in
          Typ.eqb t' t && Typ.eqb (get_type a) ta
        | Abop o a1 a2 =>
          let (ta,t') := typ_bop o in
          let (ta1,ta2) := ta in
          Typ.eqb t' t && Typ.eqb (get_type a1) ta1 && Typ.eqb (get_type a2) ta2 
        | Anop o a =>
          let (ta,t') := typ_nop o in
          (Typ.eqb t' t) && (List.forallb (fun t1 => Typ.eqb (get_type t1) ta) a)
        | Aapp f args =>
          let (targs,tr) := v_type _ _ (t_func.[f]) in
          check_args args targs && Typ.eqb tr t
        end.

      (* Typing is unique *)

      Lemma unicity : forall a t1 t2,
        check_aux a t1 -> check_aux a t2 -> t1 = t2.
      Proof.
        destruct a;simpl. 
        (* Constants *)
        intros t1 t2;rewrite !Typ.eqb_spec;intros;subst;trivial.
        (* Unary operators *)
        unfold is_true; intros t1 t2;rewrite (surjective_pairing (typ_uop u)),!andb_true_iff.
        intros [H1 _] [H2 _]; change (is_true (Typ.eqb (snd (typ_uop u)) t1)) in H1.
        change (is_true (Typ.eqb (snd (typ_uop u)) t2)) in H2.
        rewrite Typ.eqb_spec in H1, H2;subst;trivial.
        (* Binary operators *)
        unfold is_true; intros t1 t2;rewrite (surjective_pairing (typ_bop b)),
           (surjective_pairing (fst (typ_bop b))) ,!andb_true_iff.
        intros [[H1 _] _] [[H2 _] _]; change (is_true (Typ.eqb (snd (typ_bop b)) t1)) in H1.
        change (is_true (Typ.eqb (snd (typ_bop b)) t2)) in H2.
        rewrite Typ.eqb_spec in H1, H2;subst;trivial.
        (* N-ary operators *)
        intros t1 t2; destruct (typ_nop n) as [ta t']; unfold is_true; rewrite !andb_true_iff; change (is_true (Typ.eqb t' t1) /\ is_true (List.forallb (fun t3 : int => Typ.eqb (get_type t3) ta) l) -> is_true (Typ.eqb t' t2) /\ is_true (List.forallb (fun t3 : int => Typ.eqb (get_type t3) ta) l) -> t1 = t2); rewrite !Typ.eqb_spec; intros [H1 _] [H2 _]; subst; auto.
        (* Application *)
        intros t1 t2;destruct (v_type Typ.ftype interp_ft (t_func.[ i])).
        unfold is_true;rewrite !andb_true_iff;intros [_ H1] [_ H2].
        transitivity t;[ symmetry| ];rewrite <-Typ.eqb_spec;trivial.
      Qed.

      (* Typing is decidable *)

      Lemma check_args_dec : forall tr args targs,
        {exists T : Typ.type,
          check_args args targs && Typ.eqb tr T} +
        {forall T : Typ.type,
          check_args args targs && Typ.eqb tr T = false}.
      Proof.
        intro A; induction args as [ |h l IHl]; simpl.
        (* Base case *)
        intros [ | ]; simpl.
        left; exists A; apply Typ.eqb_refl.
        intros; right; reflexivity.
        (* Inductive case *)
        intros [ |B targs]; simpl.
        right; reflexivity.
        case (Typ.eqb (get_type h) B); simpl; auto.
      Qed.

      Lemma check_aux_dec : forall a,
        {exists T, check_aux a T} + {forall T, check_aux a T = false}.
      Proof.
        intros [op|op h|op h1 h2|op ha|f args]; simpl.
        (* Constants *)
        left; destruct op; simpl.
        exists Typ.Tpositive; auto.
        exists Typ.TZ; auto.
        (* Unary operators *)
        destruct op; simpl; try (case (Typ.eqb (get_type h) Typ.Tpositive); [left; exists Typ.Tpositive|right; intro; rewrite andb_false_r]; reflexivity); try (case (Typ.eqb (get_type h) Typ.Tpositive); [left; exists Typ.TZ|right; intro; rewrite andb_false_r]; reflexivity); case (Typ.eqb (get_type h) Typ.TZ); [left; exists Typ.TZ|right; intro; rewrite andb_false_r]; reflexivity.
        (* Binary operators *)
        destruct op; simpl; try (case (Typ.eqb (get_type h1) Typ.TZ); [case (Typ.eqb (get_type h2) Typ.TZ); [left; exists Typ.TZ|right; intro; rewrite andb_false_r]|right; intro; rewrite andb_false_r]; reflexivity); try (case (Typ.eqb (get_type h1) Typ.TZ); [case (Typ.eqb (get_type h2) Typ.TZ); [left; exists Typ.Tbool|right; intro; rewrite andb_false_r]|right; intro; rewrite andb_false_r]; reflexivity); case (Typ.eqb (get_type h1) t); [case (Typ.eqb (get_type h2) t); [left; exists Typ.Tbool|right; intro; rewrite andb_false_r]|right; intro; rewrite andb_false_r]; reflexivity.
        (* N-ary operators *)
        destruct op as [ty]; simpl; case (List.forallb (fun t1 : int => Typ.eqb (get_type t1) ty) ha).
        left; exists Typ.Tbool; auto.
        right; intro T; rewrite andb_false_r; auto.
        (* Application *)
        case (v_type Typ.ftype interp_ft (t_func .[ f])); intros; apply check_args_dec.
      Qed.

    End Typ_Aux.
    (** Interpretation of hatom assuming an interpretation for atom *)
    Section Interp_Aux.

      Variable interp_hatom : hatom -> bval.

      Definition apply_unop (t  r : Typ.type)
            (op : interp_t t -> interp_t r) (tv:bval) :=
        let (t', v) := tv in
        match Typ.cast t' t with
        | Typ.Cast k => Bval r (op (k _ v))
        | _ => bvtrue
        end.

      Definition apply_binop (t1 t2 r : Typ.type)
            (op : interp_t t1 -> interp_t t2 -> interp_t r) (tv1 tv2:bval) :=
        let (t1', v1) := tv1 in
        let (t2', v2) := tv2 in
        match Typ.cast t1' t1, Typ.cast t2' t2 with
        | Typ.Cast k1, Typ.Cast k2 => Bval r (op (k1 _ v1) (k2 _ v2))
        | _, _ => bvtrue
        end.

      Fixpoint apply_func
           targs tr (f:interp_ft (targs,tr)) (lv:list bval) : bval :=
        match targs as targs0 return interp_ft (targs0,tr) -> bval with
        | nil => fun v =>
          match lv with
          | nil => Bval tr v
          | _ => bvtrue
          end
        | t::targs => fun f =>
          match lv with
          | v::lv =>
            let (tv,v) := v in
            match Typ.cast tv t with
            | Typ.Cast k =>
              let f := f (k _ v) in apply_func targs tr f lv
            | _ => bvtrue
            end
          | _ => bvtrue
          end
        end f.

      Definition interp_cop o :=
        match o with
        | CO_xH => Bval Typ.Tpositive xH
        | CO_Z0 => Bval Typ.TZ Z0
        end.

      Definition interp_uop o :=    
        match o with
        | UO_xO   => apply_unop Typ.Tpositive Typ.Tpositive xO
        | UO_xI   => apply_unop Typ.Tpositive Typ.Tpositive xI
        | UO_Zpos => apply_unop Typ.Tpositive Typ.TZ Zpos
        | UO_Zneg => apply_unop Typ.Tpositive Typ.TZ Zneg
        | UO_Zopp => apply_unop Typ.TZ Typ.TZ Zopp
        end.

      Definition interp_bop o :=
         match o with
         | BO_Zplus => apply_binop Typ.TZ Typ.TZ Typ.TZ Zplus
         | BO_Zminus => apply_binop Typ.TZ Typ.TZ Typ.TZ Zminus
         | BO_Zmult => apply_binop Typ.TZ Typ.TZ Typ.TZ Zmult
         | BO_Zlt => apply_binop Typ.TZ Typ.TZ Typ.Tbool Zlt_bool
         | BO_Zle => apply_binop Typ.TZ Typ.TZ Typ.Tbool Zle_bool
         | BO_Zge => apply_binop Typ.TZ Typ.TZ Typ.Tbool Zge_bool
         | BO_Zgt => apply_binop Typ.TZ Typ.TZ Typ.Tbool Zgt_bool
         | BO_eq t => apply_binop t t Typ.Tbool (Typ.i_eqb t_i t)
         end.

      Fixpoint compute_interp ty acc l :=
        match l with
          | nil => Some acc
          | a::q =>
            let (ta,va) := interp_hatom a in
            match Typ.cast ta ty with
              | Typ.Cast ka => compute_interp ty ((ka _ va)::acc) q
              | _ => None
            end
        end.

      (* Lemma compute_interp_spec : forall ty l acc, *)
      (*   match compute_interp ty acc l with *)
      (*     | Some l' => forall i, In i l' <-> (In i acc \/ (exists a, In a l /\ interp_hatom a = Bval ty i)) *)
      (*     | None => exists a, In a l /\ let (ta,_) := interp_hatom a in ta <> ty *)
      (*   end. *)
      (* Proof. *)
      (*   intro ty; induction l as [ |a q IHq]; simpl. *)
      (*   intros acc i; split. *)
      (*   intro H; left; auto. *)
      (*   intros [H|[a [H _]]]; auto; elim H. *)
      (*   intro acc; case_eq (interp_hatom a); intros ta va Heq; rewrite Typ.neq_cast; case_eq (Typ.eqb ta ty). *)
      (*   change (Typ.eqb ta ty = true) with (is_true (Typ.eqb ta ty)); rewrite Typ.eqb_spec; intro; subst ta; rewrite Typ.cast_refl; generalize (IHq (va :: acc)); clear IHq; case (compute_interp ty (va :: acc) q). *)
      (*   intros l IH i; rewrite (IH i); clear IH; split; intros [H|[a1 [H1 H2]]]. *)
      (*   inversion H; auto. *)
      (*   subst va; clear H; right; exists a; split; auto. *)
      (*   right; exists a1; split; auto. *)
      (*   left; constructor 2; auto. *)
      (*   destruct H1 as [H1|H1]. *)
      (*   subst a1; left; constructor 1; rewrite Heq in H2; apply (Bval_inj2 ty); auto. *)
      (*   right; exists a1; auto. *)
      (*   intros [a1 [H1 H2]]; exists a1; split; auto. *)
      (*   intro H; exists a; split; auto; rewrite Heq; intro H1; subst ta; rewrite Typ.eqb_refl in H; discriminate. *)
      (* Qed. *)

      Lemma compute_interp_spec : forall ty l acc,
        match compute_interp ty acc l with
          | Some l' => forall i j, In2 i j l' <-> (In2 i j acc \/ (In j acc /\ exists a, In a l /\ interp_hatom a = Bval ty i) \/ (exists a b, In2 b a l /\ interp_hatom a = Bval ty i /\ interp_hatom b = Bval ty j))
          | None => exists a, In a l /\ let (ta,_) := interp_hatom a in ta <> ty
        end.
      Proof.
        intro ty; induction l as [ |a q IHq]; simpl.
        intros acc i; split.
        intro H; left; auto.
        intros [H|[[_ [a [H _]]]|[a [b [H _]]]]]; auto.
        elim H.
        inversion H.
        intro acc; case_eq (interp_hatom a); intros ta va Heq; rewrite Typ.neq_cast; case_eq (Typ.eqb ta ty).
        change (Typ.eqb ta ty = true) with (is_true (Typ.eqb ta ty)); rewrite Typ.eqb_spec; intro; subst ta; rewrite Typ.cast_refl; generalize (IHq (va :: acc)); clear IHq; case (compute_interp ty (va :: acc) q).
        intros l IH i j; rewrite (IH i j); clear IH; split.
        intros [H|[[H [b [H1 H2]]]|[b [c [H [H1 H2]]]]]].
        inversion H; clear H.
        subst i l0; right; left; split; auto; exists a; split; auto.
        subst k l0; left; auto.
        inversion H; clear H.
        subst va; right; right; exists b; exists a; repeat split; auto; constructor 1; auto.
        right; left; split; auto; exists b; auto.
        right; right; exists b; exists c; repeat split; auto; constructor 2; auto.
        intros [H|[[H [b [[H1|H1] H2]]]|[b [c [H [H1 H2]]]]]].
        left; constructor 2; auto.
        subst b; rewrite Heq in H2; generalize (Bval_inj2 _ _ _ H2); intro; subst va; left; constructor; auto.
        right; left; split.
        constructor 2; auto.
        exists b; auto.
        inversion H; clear H.
        subst c l0; rewrite Heq in H2; generalize (Bval_inj2 _ _ _ H2); intro; subst va; right; left; split.
        constructor 1; auto.
        exists b; auto.
        subst k l0; right; right; exists b; exists c; auto.
        intros [a1 [H1 H2]]; exists a1; split; auto.
        intro H; exists a; split; auto; rewrite Heq; intro H1; subst ta; rewrite Typ.eqb_refl in H; discriminate.
      Qed.

      (* Lemma compute_interp_spec_rev : forall ty l, *)
      (*   match compute_interp ty nil l with *)
      (*     | Some l' => forall i, In i (rev l') <-> (exists a, In a l /\ interp_hatom a = Bval ty i) *)
      (*     | None => exists a, In a l /\ let (ta,_) := interp_hatom a in ta <> ty *)
      (*   end. *)
      (* Proof. (* ICI *) *)
      (*   intros ty l; generalize (compute_interp_spec ty l nil); case (compute_interp ty nil l); auto; intros l' H i; rewrite <- In_rev, (H i); split; auto; intros [H1|H1]; auto; inversion H1. *)
      (* Qed. *)

      Lemma compute_interp_spec_rev : forall ty l,
        match compute_interp ty nil l with
          | Some l' => forall i j, In2 j i (rev l') <-> (exists a b, In2 b a l /\ interp_hatom a = Bval ty i /\ interp_hatom b = Bval ty j)
          | None => exists a, In a l /\ let (ta,_) := interp_hatom a in ta <> ty
        end.
      Proof.
        intros ty l; generalize (compute_interp_spec ty l nil); case (compute_interp ty nil l); auto; intros l' H i j; rewrite In2_rev, (H i j); split; auto; intros [H1|[[H1 _]|H1]]; auto; inversion H1.
      Qed.

      Definition interp_aux (a:atom) : bval :=
        match a with
        | Acop o => interp_cop o
        | Auop o a => interp_uop o (interp_hatom a)
        | Abop o a1 a2 => interp_bop o (interp_hatom a1) (interp_hatom a2)
        | Anop (NO_distinct t) a =>
          match compute_interp t nil a with
            | Some l => Bval Typ.Tbool (distinct (Typ.i_eqb t_i t) (rev l))
            | None => bvtrue
          end
        | Aapp f args =>
          let (tf,f) := t_func.[f] in
          let lv := List.map interp_hatom args in
          apply_func (fst tf) (snd tf) f lv
        end.

      Definition interp_bool (v:bval) : bool :=
        let (t,v) := v in
        match Typ.cast t Typ.Tbool with
        | Typ.Cast k => k _ v
        | _ => true
        end.


      (* If an atom is well-typed, it has an interpretation *)

      Variable get_type : hatom -> Typ.type.
      Hypothesis check_aux_interp_hatom : forall h,
        exists v, interp_hatom h = (Bval (get_type h) v).

      Lemma check_args_interp_aux : forall t l f,
        (let (targs, tr) := v_type Typ.ftype interp_ft f in
          check_args get_type l targs && Typ.eqb tr t) ->
        exists v : interp_t t,
          (let (tf, f0) := f in
            apply_func (fst tf) (snd tf) f0 (List.map interp_hatom l)) =
          Bval t v.
      Proof.
        intro A; induction l as [ |h l IHl]; simpl; intros [tf f]; simpl.
        (* Base case *)
        destruct tf as [[ | ] tr]; try discriminate; simpl; rewrite Typ.eqb_spec; intro; subst tr; exists f; auto.
        (* Inductive case *)
        destruct tf as [[ |B targs] tr]; try discriminate; simpl; rewrite <- andb_assoc; unfold is_true; rewrite andb_true_iff; change (Typ.eqb (get_type h) B = true /\ check_args get_type l targs && Typ.eqb tr A = true) with (is_true (Typ.eqb (get_type h) B) /\ is_true (check_args get_type l targs && Typ.eqb tr A)); rewrite Typ.eqb_spec; intros [H1 H2]; destruct (check_aux_interp_hatom h) as [v0 Heq0]; rewrite Heq0; generalize v0 Heq0; rewrite H1; intros v1 Heq1; simpl; generalize (IHl (Tval (targs,tr) (f v1))); simpl; intro IH; destruct (IH H2) as [v2 Heq2]; exists v2; rewrite Typ.cast_refl; auto.
      Qed.

      Lemma check_aux_interp_aux_aux : forall a t,
         check_aux get_type a t ->
         exists v, interp_aux a = (Bval t v).
      Proof.
        intros [op|op h|op h1 h2|op ha|f l]; simpl.
        (* Constants *)
        destruct op; intros [i| | | ]; simpl; try discriminate; intros _.
        exists 1%positive; auto.
        exists 0%Z; auto.
        (* Unary operators *)
        destruct op; intros [i| | | ]; simpl; try discriminate; rewrite Typ.eqb_spec; intro H1; destruct (check_aux_interp_hatom h) as [x Hx]; rewrite Hx; simpl; generalize x Hx; rewrite H1; intros y Hy; rewrite Typ.cast_refl.
        exists (y~0)%positive; auto.
        exists (y~1)%positive; auto.
        exists (Zpos y); auto.
        exists (Zneg y); auto.
        exists (- y)%Z; auto.
        (* Binary operators *)
        destruct op as [ | | | | | | |A]; intros [i| | | ]; simpl; try discriminate; unfold is_true; rewrite andb_true_iff; try (change (Typ.eqb (get_type h1) Typ.TZ = true /\ Typ.eqb (get_type h2) Typ.TZ = true) with (is_true (Typ.eqb (get_type h1) Typ.TZ) /\ is_true (Typ.eqb (get_type h2) Typ.TZ)); rewrite !Typ.eqb_spec; intros [H1 H2]; destruct (check_aux_interp_hatom h1) as [x1 Hx1]; rewrite Hx1; destruct (check_aux_interp_hatom h2) as [x2 Hx2]; rewrite Hx2; simpl; generalize x1 Hx1 x2 Hx2; rewrite H1, H2; intros y1 Hy1 y2 Hy2; rewrite !Typ.cast_refl).
        exists (y1 + y2)%Z; auto.
        exists (y1 - y2)%Z; auto.
        exists (y1 * y2)%Z; auto.
        exists (y1 <? y2)%Z; auto.
        exists (y1 <=? y2)%Z; auto.
        exists (y1 >=? y2)%Z; auto.
        exists (y1 >? y2)%Z; auto.
        change (Typ.eqb (get_type h1) A = true /\ Typ.eqb (get_type h2) A = true) with (is_true (Typ.eqb (get_type h1) A) /\ is_true (Typ.eqb (get_type h2) A)); rewrite !Typ.eqb_spec; intros [H1 H2]; destruct (check_aux_interp_hatom h1) as [x1 Hx1]; rewrite Hx1; destruct (check_aux_interp_hatom h2) as [x2 Hx2]; rewrite Hx2; simpl; generalize x1 Hx1 x2 Hx2; rewrite H1, H2; intros y1 Hy1 y2 Hy2; rewrite !Typ.cast_refl; exists (Typ.i_eqb t_i A y1 y2); auto.
        (* N-ary operators *)
        destruct op as [A]; simpl; intros [ | | | ]; try discriminate; simpl; intros _; case (compute_interp A nil ha).
        intro l; exists (distinct (Typ.i_eqb t_i A) (rev l)); auto.
        exists true; auto.
        (* Application *)
        intro t; apply check_args_interp_aux.
      Qed.


      (* If an atom is not well-typed, its interpretation is bvtrue *)

      Lemma check_args_interp_aux_contr : forall l f,
        (forall T : Typ.type,
          (let (targs, tr) := v_type Typ.ftype interp_ft f in
            check_args get_type l targs && Typ.eqb tr T) = false) ->
        (let (tf, f0) := f in
          apply_func (fst tf) (snd tf) f0 (List.map interp_hatom l)) = bvtrue.
        induction l as [ |h l IHl]; simpl; intros [tf f]; simpl.
        (* Base case *)
        destruct tf as [[ | ] tr]; simpl; auto; intro H; generalize (H tr); rewrite Typ.eqb_refl; discriminate.
        (* Inductive case *)
        destruct tf as [[ |B targs] tr]; simpl; auto. intro H. destruct (check_aux_interp_hatom h) as [v Hv]. rewrite Hv. simpl. assert (H2: (Typ.eqb (get_type h) B = false) \/ (forall T : Typ.type, check_args get_type l targs && Typ.eqb tr T = false)) by (case_eq (Typ.eqb (get_type h) B); try (intros; left; reflexivity); intro Heq; right; intro T; generalize (H T); rewrite Heq; auto). destruct H2 as [H2|H2]; rewrite Typ.neq_cast.
        rewrite H2. auto.
        case_eq (Typ.eqb (get_type h) B); auto. change (Typ.eqb (get_type h) B = true) with (is_true (Typ.eqb (get_type h) B)). rewrite Typ.eqb_spec. intro; subst B. rewrite Typ.cast_refl. apply (IHl (Tval (targs,tr) (f v))). auto.
      Qed.

      Lemma check_aux_interp_aux_contr_aux : forall a,
        (forall T, check_aux get_type a T = false) ->
        interp_aux a = bvtrue.
      Proof.
        intros [op|op h|op h1 h2|op ha|f l]; simpl.
        (* Constants *)
        destruct op; simpl; intro H.
        discriminate (H Typ.Tpositive).
        discriminate (H Typ.TZ).
        (* Unary operators *)
        destruct op; simpl; intro H; destruct (check_aux_interp_hatom h) as [v Hv]; rewrite Hv; simpl; rewrite Typ.neq_cast; try (pose (H2 := H Typ.Tpositive); simpl in H2; rewrite H2; auto); pose (H2 := H Typ.TZ); simpl in H2; rewrite H2; auto.
        (* Binary operators *)
        destruct op; simpl; intro H; destruct (check_aux_interp_hatom h1) as [v1 Hv1]; destruct (check_aux_interp_hatom h2) as [v2 Hv2]; rewrite Hv1, Hv2; simpl; try (pose (H2 := H Typ.TZ); simpl in H2; rewrite andb_false_iff in H2; destruct H2 as [H2|H2]; [rewrite (Typ.neq_cast (get_type h1)), H2|rewrite (Typ.neq_cast (get_type h2)), H2; case (Typ.cast (get_type h1) Typ.TZ)]; auto); try (pose (H2 := H Typ.Tbool); simpl in H2; rewrite andb_false_iff in H2; destruct H2 as [H2|H2]; [rewrite (Typ.neq_cast (get_type h1)), H2|rewrite (Typ.neq_cast (get_type h2)), H2; case (Typ.cast (get_type h1) Typ.TZ)]; auto); case (Typ.cast (get_type h1) t); auto.
        (* N-ary operators *)
        destruct op as [A]; simpl; intro H; generalize (H Typ.Tbool); simpl; clear H; assert (H: forall l1, List.forallb (fun t1 : int => Typ.eqb (get_type t1) A) ha = false -> match compute_interp A l1 ha with | Some l => Bval Typ.Tbool (distinct (Typ.i_eqb t_i A) (rev l)) | None => bvtrue end = bvtrue).
        induction ha as [ |h ha Iha]; simpl.
        intros; discriminate.
        intro l1; destruct (check_aux_interp_hatom h) as [vh Hh]; case_eq (Typ.eqb (get_type h) A); simpl.
        change (Typ.eqb (get_type h) A = true) with (is_true (Typ.eqb (get_type h) A)); rewrite Typ.eqb_spec; intro; subst A; intro H; rewrite Hh; simpl; rewrite Typ.cast_refl; apply Iha; auto.
        intros H _; rewrite Hh; simpl; rewrite (Typ.cast_diff _ _ H); auto.
        apply H.
        (* Application *)
        apply check_args_interp_aux_contr.
      Qed.

    End Interp_Aux.

    Section Interp_get.

      Variable t_atom : PArray.array atom.

      Definition t_interp : PArray.array bval :=
        PArray.foldi_left (fun i t_a a => t_a.[i <- interp_aux (PArray.get t_a) a])
          (PArray.make (PArray.length t_atom) (interp_cop CO_xH)) t_atom.

      Definition lt_atom i a :=
        match a with
        | Acop _ => true
        | Auop _ h => h < i
        | Abop _ h1 h2 => (h1 < i) && (h2 < i)
        | Anop _ ha => List.forallb (fun h => h < i) ha
        | Aapp f args => List.forallb (fun h => h < i) args
        end.

      Lemma lt_interp_aux :
         forall f1 f2 i, (forall j, j < i -> f1 j = f2 j) ->
         forall a, lt_atom i a ->
             interp_aux f1 a = interp_aux f2 a.
      Proof.
        intros f1 f2 i Hf; destruct a;simpl;intros;auto.
        (* Unary operators *)
        rewrite Hf;trivial.
        (* Binary operators *)
        unfold is_true in H;rewrite andb_true_iff in H;destruct H;rewrite !Hf;trivial.
        (* N-ary operators *)
        destruct n as [A]; replace (compute_interp f1 A nil l) with (compute_interp f2 A nil l); trivial; assert (H1: forall acc, compute_interp f2 A acc l = compute_interp f1 A acc l); auto; induction l as [ |k l IHl]; simpl; auto; intro acc; simpl in H; unfold is_true in H; rewrite andb_true_iff in H; destruct H as [H1 H2]; rewrite (Hf _ H1); destruct (f2 k) as [ta va]; destruct (Typ.cast ta A) as [ka| ]; auto.
        (* Application *)
        replace (List.map f1 l) with (List.map f2 l); trivial.
        induction l;simpl in H |- *;trivial.
        unfold is_true in H;rewrite andb_true_iff in H;destruct H;rewrite Hf, IHl;trivial.
      Qed.

      Definition wf := PArray.forallbi lt_atom t_atom.

      Hypothesis wf_t_i : wf.

      Lemma length_t_interp : length t_interp = length t_atom.
      Proof.
        unfold t_interp;apply PArray.foldi_left_Ind with
          (P := fun i a => length a = length t_atom).
        intros;rewrite length_set;trivial.
        rewrite length_make, ltb_length;trivial.
      Qed.

      Lemma default_t_interp : default t_interp = interp_cop CO_xH.
      Proof.
        unfold t_interp;apply PArray.foldi_left_Ind with
          (P := fun i a => default a = interp_cop CO_xH).
        intros;rewrite default_set;trivial.
        apply default_make.
      Qed.

      Lemma t_interp_wf_lt : forall i, i < PArray.length t_atom ->
         t_interp.[i] = interp_aux (PArray.get t_interp) (t_atom.[i]).
      Proof.
        set (P' i t := length t = length t_atom ->
               forall j, j < i ->
               t.[j] = interp_aux (PArray.get t) (t_atom.[j])).
        assert (P' (length t_atom) t_interp).
         unfold is_true, wf in wf_t_i;rewrite PArray.forallbi_spec in wf_t_i.
         unfold t_interp;apply foldi_left_Ind;unfold P';intros.
         rewrite length_set in H1.
         destruct (Int63Properties.reflect_eqb j i).
          rewrite e, PArray.get_set_same.
          apply lt_interp_aux with (2:= wf_t_i i H).
          intros;rewrite get_set_other;trivial.
          intros Heq;elim (not_ltb_refl i);rewrite Heq at 1;trivial.
          rewrite H1;trivial.
         assert (j < i).
          assert ([|j|] <> [|i|]) by(intros Heq1;elim n;apply to_Z_inj;trivial).
          generalize H2;unfold is_true;rewrite !ltb_spec,
            (to_Z_add_1 _ _ H);auto with zarith.
         rewrite get_set_other, H0;auto.
         apply lt_interp_aux with (2:= wf_t_i j (ltb_trans _ _ _ H3 H)).
         intros;rewrite get_set_other;trivial.
         intros Heq;elim (not_ltb_refl i);apply ltb_trans with j;
           [ rewrite Heq| ];trivial.
         elim (ltb_0 _ H0).
        apply H;apply length_t_interp.
      Qed.

      Hypothesis default_t_atom : default t_atom = Acop CO_xH.

      Lemma t_interp_wf : forall i,
         t_interp.[i] = interp_aux (PArray.get t_interp) (t_atom.[i]).
      Proof.
        intros i;case_eq (i< PArray.length t_atom);intros.
        apply t_interp_wf_lt;trivial.
        rewrite !PArray.get_outofbound;trivial.
        rewrite default_t_atom, default_t_interp;trivial.
        rewrite length_t_interp;trivial.
      Qed.

      Definition get_type' (t_interp':array bval) i := v_type _ _ (t_interp'.[i]).

      Local Notation get_type := (get_type' t_interp).

      (* If an atom is well-typed, it has an interpretation *)

      Lemma check_aux_interp_aux_lt_aux : forall a h,
        (forall j : int,
          j < h ->
          exists v : interp_t (v_type Typ.type interp_t (a .[ j])),
            a .[ j] = Bval (v_type Typ.type interp_t (a .[ j])) v) ->
        forall l, List.forallb (fun h0 : int => h0 < h) l = true ->
          forall (f0: tval),
            exists
              v : interp_t
              (v_type Typ.type interp_t
                (let (tf, f) := f0 in
                  apply_func (fst tf) (snd tf) f (List.map (get a) l))),
              (let (tf, f) := f0 in
                apply_func (fst tf) (snd tf) f (List.map (get a) l)) =
              Bval
              (v_type Typ.type interp_t
                (let (tf, f) := f0 in
                  apply_func (fst tf) (snd tf) f (List.map (get a) l))) v.
      Proof.
        intros a h IH; induction l as [ |j l IHl]; simpl.
        intros _ [[[ | ] tr] f]; simpl.
        exists f; auto.
        exists true; auto.
        rewrite andb_true_iff; intros [H1 H2] [[[ |A targs] tr] f]; simpl.
        exists true; auto.
        destruct (IH j H1) as [x Hx]; rewrite Hx; simpl; case (Typ.cast (v_type Typ.type interp_t (a .[ j])) A); simpl.
        intro k; destruct (IHl H2 (Tval (targs,tr) (f (k interp_t x)))) as [y Hy]; simpl in Hy; rewrite Hy; simpl; exists y; auto.
        exists true; auto.
      Qed.

      Lemma check_aux_interp_aux_lt : forall h, h < length t_atom ->
        forall a,
          (forall j, j < h ->
            exists v, a.[j] = Bval (v_type _ _ (a.[j])) v) ->
          exists v, interp_aux (get a) (t_atom.[h]) =
            Bval (v_type _ _ (interp_aux (get a) (t_atom.[h]))) v.
      Proof.
        unfold wf, is_true in wf_t_i; rewrite forallbi_spec in wf_t_i.
        intros h Hh a IH; generalize (wf_t_i h Hh).
        case (t_atom.[h]); simpl.
        (* Constants *)
        intros [ | ] _; simpl.
        exists 1%positive; auto.
        exists 0%Z; auto.
        (* Unary operators *)
        intros [ | | | | ] i H; simpl; destruct (IH i H) as [x Hx]; rewrite Hx; simpl.
        case (Typ.cast (v_type Typ.type interp_t (a .[ i])) Typ.Tpositive); simpl; try (exists true; auto); intro k; exists ((k interp_t x)~0)%positive; auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ i])) Typ.Tpositive); simpl; try (exists true; auto); intro k; exists ((k interp_t x)~1)%positive; auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ i])) Typ.Tpositive); simpl; try (exists true; auto); intro k; exists (Zpos (k interp_t x)); auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ i])) Typ.Tpositive); simpl; try (exists true; auto); intro k; exists (Zneg (k interp_t x)); auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ i])) Typ.TZ); simpl; try (exists true; auto); intro k; exists (- k interp_t x)%Z; auto.
        (* Binary operators *)
        intros [ | | | | | | |A] h1 h2; simpl; rewrite andb_true_iff; intros [H1 H2]; destruct (IH h1 H1) as [x Hx]; destruct (IH h2 H2) as [y Hy]; rewrite Hx, Hy; simpl.
        case (Typ.cast (v_type Typ.type interp_t (a .[ h1])) Typ.TZ); simpl; try (exists true; auto); intro k1; case (Typ.cast (v_type Typ.type interp_t (a .[ h2])) Typ.TZ); simpl; try (exists true; auto); intro k2; exists (k1 interp_t x + k2 interp_t y)%Z; auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ h1])) Typ.TZ); simpl; try (exists true; auto); intro k1; case (Typ.cast (v_type Typ.type interp_t (a .[ h2])) Typ.TZ); simpl; try (exists true; auto); intro k2; exists (k1 interp_t x - k2 interp_t y)%Z; auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ h1])) Typ.TZ); simpl; try (exists true; auto); intro k1; case (Typ.cast (v_type Typ.type interp_t (a .[ h2])) Typ.TZ); simpl; try (exists true; auto); intro k2; exists (k1 interp_t x * k2 interp_t y)%Z; auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ h1])) Typ.TZ); simpl; try (exists true; auto); intro k1; case (Typ.cast (v_type Typ.type interp_t (a .[ h2])) Typ.TZ) as [k2| ]; simpl; try (exists true; reflexivity); exists (k1 interp_t x <? k2 interp_t y); auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ h1])) Typ.TZ); simpl; try (exists true; auto); intro k1; case (Typ.cast (v_type Typ.type interp_t (a .[ h2])) Typ.TZ) as [k2| ]; simpl; try (exists true; reflexivity); exists (k1 interp_t x <=? k2 interp_t y); auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ h1])) Typ.TZ); simpl; try (exists true; auto); intro k1; case (Typ.cast (v_type Typ.type interp_t (a .[ h2])) Typ.TZ) as [k2| ]; simpl; try (exists true; reflexivity); exists (k1 interp_t x >=? k2 interp_t y); auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ h1])) Typ.TZ); simpl; try (exists true; auto); intro k1; case (Typ.cast (v_type Typ.type interp_t (a .[ h2])) Typ.TZ) as [k2| ]; simpl; try (exists true; reflexivity); exists (k1 interp_t x >? k2 interp_t y); auto.
        case (Typ.cast (v_type Typ.type interp_t (a .[ h1])) A); simpl; try (exists true; auto); intro k1; case (Typ.cast (v_type Typ.type interp_t (a .[ h2])) A) as [k2| ]; simpl; try (exists true; reflexivity); exists (Typ.i_eqb t_i A (k1 interp_t x) (k2 interp_t y)); auto.
        (* N-ary operators *)
        intros [A] l; assert (forall acc, List.forallb (fun h0 : int => h0 < h) l = true -> exists v, match compute_interp (get a) A acc l with | Some l0 => Bval Typ.Tbool (distinct (Typ.i_eqb t_i A) (rev l0)) | None => bvtrue end = Bval (v_type Typ.type interp_t match compute_interp (get a) A acc l with | Some l0 => Bval Typ.Tbool (distinct (Typ.i_eqb t_i A) (rev l0)) | None => bvtrue end) v); auto; induction l as [ |i l IHl]; simpl.
        intros acc _; exists (distinct (Typ.i_eqb t_i A) (rev acc)); auto.
        intro acc; rewrite andb_true_iff; intros [H1 H2]; destruct (IH _ H1) as [va Hva]; rewrite Hva; simpl; case (Typ.cast (v_type Typ.type interp_t (a .[ i])) A); simpl; try (exists true; auto); intro k; destruct (IHl (k interp_t va :: acc) H2) as [vb Hvb]; exists vb; auto.
        (* Application *)
        intros i l H; apply (check_aux_interp_aux_lt_aux a h IH l H (t_func.[i])).
      Qed.

      Lemma check_aux_interp_hatom_lt : forall h, h < length t_atom ->
        exists v, t_interp.[h] = Bval (get_type h) v.
      Proof.
        set (P' i t := length t = length t_atom ->
          forall j, j < i ->
            exists v, t.[j] = Bval (v_type Typ.type interp_t (t.[j])) v).
        assert (P' (length t_atom) t_interp).
        unfold t_interp;apply foldi_left_Ind;unfold P';intros.
        rewrite length_set in H1.
        destruct (Int63Properties.reflect_eqb j i).
        rewrite e, PArray.get_set_same.
        apply check_aux_interp_aux_lt; auto.
        rewrite H1; auto.
        assert (j < i).
        assert ([|j|] <> [|i|]) by(intros Heq1;elim n;apply to_Z_inj;trivial).
        generalize H2;unfold is_true;rewrite !ltb_spec,
          (to_Z_add_1 _ _ H);auto with zarith.
        rewrite get_set_other;auto.
        elim (ltb_0 _ H0).
        apply H;apply length_t_interp.
      Qed.

      Lemma check_aux_interp_hatom : forall h,
        exists v, t_interp.[h] = Bval (get_type h) v.
      Proof.
        intros i;case_eq (i< PArray.length t_atom);intros.
        apply check_aux_interp_hatom_lt;trivial.
        unfold get_type'; rewrite !PArray.get_outofbound;trivial.
        rewrite default_t_interp; simpl; exists (1%positive); auto.
        rewrite length_t_interp;trivial.
      Qed.

      Lemma check_aux_interp_aux : forall a t,
         check_aux get_type a t ->
         exists v, interp_aux (get t_interp) a = (Bval t v).
      Proof.
        intros a t; apply check_aux_interp_aux_aux; apply check_aux_interp_hatom.
      Qed.

      (* If an atom is not well-typed, its interpretation if bvtrue *)

      Lemma check_aux_interp_aux_contr : forall a,
        (forall T, check_aux get_type a T = false) ->
        interp_aux (get t_interp) a = bvtrue.
      Proof.
        intros; eapply check_aux_interp_aux_contr_aux; eauto; apply check_aux_interp_hatom.
      Qed.

    End Interp_get.


    Definition get_type t_atom :=
      get_type' (t_interp t_atom).

    Definition wt t_atom :=
      let t_interp := t_interp t_atom in
      let get_type := get_type' t_interp in
        PArray.forallbi (fun i h => check_aux get_type h (get_type i)) t_atom.


    Definition interp_hatom (t_atom : PArray.array atom) :=
      let t_a := t_interp t_atom in
      PArray.get t_a.

    Definition interp t_atom := interp_aux (interp_hatom t_atom).

    Definition interp_form_hatom t_atom : hatom -> bool :=
      let interp := interp_hatom t_atom in
      fun a => interp_bool (interp a).

  End Typing_Interp.

  Definition check_atom t_atom :=
    match default t_atom with
      | Acop CO_xH => wf t_atom
      | _ => false
    end.

  Lemma check_atom_correct : forall t_atom, check_atom t_atom ->
    wf t_atom /\ default t_atom = Acop CO_xH.
  Proof.
    intro t_atom; unfold check_atom; case (default t_atom); try discriminate; intro c; case c; auto; discriminate.
  Qed.

End Atom.