aboutsummaryrefslogtreecommitdiffstats
path: root/src/Trace.v
blob: d3699584ddbf159792a36047c9b3efc83a2f852d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
(**************************************************************************)
(*                                                                        *)
(*     SMTCoq                                                             *)
(*     Copyright (C) 2011 - 2015                                          *)
(*                                                                        *)
(*     Michaël Armand                                                     *)
(*     Benjamin Grégoire                                                  *)
(*     Chantal Keller                                                     *)
(*                                                                        *)
(*     Inria - École Polytechnique - MSR-Inria Joint Lab                  *)
(*                                                                        *)
(*   This file is distributed under the terms of the CeCILL-C licence     *)
(*                                                                        *)
(**************************************************************************)

Add LoadPath "." as SMTCoq.
Add LoadPath "cnf" as SMTCoq.cnf.
Add LoadPath "euf" as SMTCoq.euf.
Add LoadPath "lia" as SMTCoq.lia.
Add LoadPath "spl" as SMTCoq.spl.

Require Import Bool Int63 PArray.
Require Import Misc State SMT_terms Cnf Euf Lia Syntactic Arithmetic Operators.

Local Open Scope array_scope.
Local Open Scope int63_scope.

Set Implicit Arguments.
Unset Strict Implicit.
Set Vm Optimize.
Section trace.

  (* We are given a certificate, a checker for it (that modifies a
     state), and a proof that the checker is correct: the state it
     returns must be valid and well-formed. *)

  Variable step : Type.

  Variable check_step : S.t -> step -> S.t.

  Variable rho : Valuation.t.

  (* We use [array array step] to allow bigger trace *)
  Definition _trace_ := array (array step).

  (* A checker for such a trace *)

  Variable is_false : C.t -> bool.
  Hypothesis is_false_correct : forall c, is_false c -> ~ C.interp rho c.

  Definition _checker_ (s: S.t) (t: _trace_) (confl:clause_id) : bool :=
    let s' := PArray.fold_left (fun s a => PArray.fold_left check_step s a) s t in
    is_false (S.get s' confl).
  Register _checker_ as PrimInline.

  (* For debugging *)
  (*

  Variable check_step_debug : S.t -> step -> option S.t.

  Definition _checker_debug_ (s: S.t) (t: _trace_) : sum S.t ((int*int)*S.t) :=
    let s' := PArray.foldi_left (fun i s a => PArray.foldi_left (fun j s' a' =>
      match s' with
        | inl s'' =>
          match check_step_debug s'' a' with
            | Some s''' => inl s'''
            | None => inr ((i,j),s'')
          end
        | u => u
      end) s a) (inl s) t in
    s'.

  Definition _checker_partial_ (s: S.t) (t: _trace_) (max:int) : S.t :=
    PArray.fold_left (fun s a => PArray.foldi_left (fun i s' a' => if i < max then check_step s' a' else s') s a) s t.
  *)

  (* Proof of its partial correction: if it returns true, then the
     initial state is not valid *)

  Hypothesis valid_check_step :
    forall s, S.valid rho s -> forall c, S.valid rho (check_step s c).

  Lemma _checker__correct :
    forall s, forall t confl, _checker_ s t confl-> ~ (S.valid rho s).
  Proof.
    unfold _checker_.
    intros s t' cid Hf Hv.
    apply (is_false_correct Hf).
    apply S.valid_get.
    apply PArray.fold_left_ind; auto.
    intros a i _ Ha;apply PArray.fold_left_ind;trivial.
    intros a0 i0 _ H1;auto.
  Qed.
 
End trace.


(* Application to resolution *)

Module Sat_Checker.

 Inductive step :=
   | Res (_:int) (_:resolution).

 Definition resolution_checker s t :=
    _checker_ (fun s (st:step) => let (pos, r) := st in S.set_resolve s pos r) s t.

 Lemma resolution_checker_correct :
    forall rho, Valuation.wf rho ->
    forall s t cid, resolution_checker C.is_false s t cid->
     ~S.valid rho s.
 Proof.
   intros rho Hwr;apply _checker__correct.
   intros; apply C.is_false_correct; trivial.
   intros s Hv (pos, r);apply S.valid_set_resolve;trivial. 
 Qed.
   
 (** Application to Zchaff *)
 Definition dimacs := PArray.array (PArray.array _lit).

 Definition C_interp_or rho c := 
   afold_left _ _ false orb (Lit.interp rho) c.

 Lemma C_interp_or_spec : forall rho c,
   C_interp_or rho c = C.interp rho (to_list c).
 Proof.
   intros rho c; unfold C_interp_or; case_eq (C.interp rho (to_list c)).
   unfold C.interp; rewrite List.existsb_exists; intros [x [H1 H2]]; destruct (In_to_list _ _ H1) as [i [H3 H4]]; subst x; apply (afold_left_orb_true _ i); auto.
   unfold C.interp; intro H; apply afold_left_orb_false; intros i H1; case_eq (Lit.interp rho (c .[ i])); auto; intro Heq; assert (H2: exists x, List.In x (to_list c) /\ Lit.interp rho x = true).
   exists (c.[i]); split; auto; apply to_list_In; auto.
   rewrite <- List.existsb_exists in H2; rewrite H2 in H; auto.
Qed.

 Definition valid rho (d:dimacs) :=
   afold_left _ _ true andb (C_interp_or rho) d.

 Lemma valid_spec : forall rho d,
   valid rho d <->
   (forall i : int, i < length d -> C.interp rho (PArray.to_list (d.[i]))).
 Proof.
   unfold valid; intros rho d; split; intro H.
   intros i Hi; case_eq (C.interp rho (to_list (d .[ i]))); try reflexivity.
   intro Heq; erewrite afold_left_andb_false in H; try eassumption.
   rewrite C_interp_or_spec; auto.
   apply afold_left_andb_true; try assumption; intros i Hi; rewrite C_interp_or_spec; apply H; auto.
 Qed.

 Inductive certif :=
   | Certif : int -> _trace_ step -> clause_id -> certif.

 Definition add_roots s (d:dimacs) := 
   PArray.foldi_right (fun i c s => S.set_clause s i (PArray.to_list c)) d s.

 Definition checker (d:dimacs) (c:certif) :=
   let (nclauses, t, confl_id) := c in
   resolution_checker C.is_false (add_roots (S.make nclauses) d) t confl_id.

 Lemma valid_add_roots : forall rho, Valuation.wf rho ->
    forall d s, valid rho d -> S.valid rho s ->
    S.valid rho (add_roots s d).
 Proof.
   intros rho Hwr d s Hd Hs; unfold add_roots; apply (PArray.foldi_right_Ind _ _ (fun _ a => S.valid rho a)); auto; intros a i Hlt Hv; apply S.valid_set_clause; auto; rewrite valid_spec in Hd; apply Hd; auto.
 Qed.

 Lemma checker_correct : forall d c,
    checker d c = true ->
    forall rho, Valuation.wf rho -> ~valid rho d.
 Proof.
   unfold checker; intros d (nclauses, t, confl_id) Hc rho Hwf Hv.
   apply (resolution_checker_correct Hwf Hc).
   apply valid_add_roots; auto.
   apply S.valid_make; auto.
 Qed.

 Definition interp_var rho x := 
   match compare x 1 with
   | Lt => true
   | Eq => false
   | Gt => rho (x - 1) 
     (* This allows to have variable starting at 1 in the interpretation as in dimacs files *)
   end.

 Lemma theorem_checker : 
   forall d c,
     checker d c = true ->
     forall rho, ~valid (interp_var rho) d.
 Proof.
  intros d c H rho;apply checker_correct with c;trivial.
  split;compute;trivial;discriminate.
 Qed.

End Sat_Checker.

Module Cnf_Checker.
  
  Inductive step :=
  | Res (pos:int) (res:resolution)
  | ImmFlatten (pos:int) (cid:clause_id) (lf:_lit) 
  | CTrue (pos:int)       
  | CFalse (pos:int)
  | BuildDef (pos:int) (l:_lit)
  | BuildDef2 (pos:int) (l:_lit)
  | BuildProj (pos:int) (l:_lit) (i:int)
  | ImmBuildDef (pos:int) (cid:clause_id)
  | ImmBuildDef2 (pos:int) (cid:clause_id)
  | ImmBuildProj (pos:int) (cid:clause_id) (i:int).

  Local Open Scope list_scope.

  Local Notation check_flatten t_form := (check_flatten t_form (fun i1 i2 => i1 == i2) (fun _ _ => false)) (only parsing).

  Definition step_checker t_form s (st:step) :=
    match st with
    | Res pos res => S.set_resolve s pos res
    | ImmFlatten pos cid lf => S.set_clause s pos (check_flatten t_form s cid lf) 
    | CTrue pos => S.set_clause s pos Cnf.check_True
    | CFalse pos => S.set_clause s pos Cnf.check_False
    | BuildDef pos l => S.set_clause s pos (check_BuildDef t_form l)
    | BuildDef2 pos l => S.set_clause s pos (check_BuildDef2 t_form l)
    | BuildProj pos l i => S.set_clause s pos (check_BuildProj t_form l i)
    | ImmBuildDef pos cid => S.set_clause s pos (check_ImmBuildDef t_form s cid) 
    | ImmBuildDef2 pos cid => S.set_clause s pos (check_ImmBuildDef2 t_form s cid)
    | ImmBuildProj pos cid i => S.set_clause s pos (check_ImmBuildProj t_form s cid i) 
    end.

  Lemma step_checker_correct : forall rho t_form,
    Form.check_form t_form ->
    forall s, S.valid (Form.interp_state_var rho t_form) s ->
      forall st : step, S.valid (Form.interp_state_var rho t_form)
        (step_checker t_form s st).
  Proof.
    intros rho t_form Ht s H; destruct (Form.check_form_correct rho _ Ht) as [[Ht1 Ht2] Ht3]; intros [pos res|pos cid lf|pos|pos|pos l|pos l|pos l i|pos cid|pos cid|pos cid i]; simpl; try apply S.valid_set_clause; auto.
    apply S.valid_set_resolve; auto.
    apply valid_check_flatten; auto; try discriminate; intros a1 a2; unfold is_true; rewrite Int63Properties.eqb_spec; intro; subst a1; auto.
    apply valid_check_True; auto.
    apply valid_check_False; auto.
    apply valid_check_BuildDef; auto.
    apply valid_check_BuildDef2; auto.
    apply valid_check_BuildProj; auto.
    apply valid_check_ImmBuildDef; auto.
    apply valid_check_ImmBuildDef2; auto.
    apply valid_check_ImmBuildProj; auto.
  Qed.

  Definition cnf_checker t_form s t :=
    _checker_ (step_checker t_form) s t.

  Lemma cnf_checker_correct : forall rho t_form,
    Form.check_form t_form -> forall s t confl,
      cnf_checker t_form C.is_false s t confl ->
      ~ (S.valid (Form.interp_state_var rho t_form) s).
  Proof.
    unfold cnf_checker; intros rho t_form Ht; apply _checker__correct.
    intros c H; apply C.is_false_correct; auto.
    apply step_checker_correct; auto.
  Qed.


 Inductive certif :=
   | Certif : int -> _trace_ step -> int -> certif.

 Definition checker t_form l (c:certif) :=
   let (nclauses, t, confl) := c in   
   Form.check_form t_form &&
   cnf_checker t_form C.is_false (S.set_clause (S.make nclauses) 0 (l::nil)) t confl.

 Lemma checker_correct : forall t_form l c,
    checker t_form l c = true ->
    forall rho, ~ (Lit.interp (Form.interp_state_var rho t_form) l).
 Proof.
   unfold checker; intros t_form l (nclauses, t, confl); unfold is_true; rewrite andb_true_iff; intros [H1 H2] rho H; apply (cnf_checker_correct (rho:=rho) H1 H2); destruct (Form.check_form_correct rho _ H1) as [[Ht1 Ht2] Ht3]; apply S.valid_set_clause; auto.
   apply S.valid_make; auto.
   unfold C.valid; simpl; rewrite H; auto.
 Qed.

 Definition checker_b t_form l (b:bool) (c:certif) :=
   let l := if b then Lit.neg l else l in
   checker t_form l c.

 Lemma checker_b_correct : forall t_var t_form l b c,
    checker_b t_form l b c = true ->
    Lit.interp (Form.interp_state_var (PArray.get t_var) t_form) l = b.
 Proof.
   unfold checker_b; intros t_var t_form l b c; case b; case_eq (Lit.interp (Form.interp_state_var (get t_var) t_form) l); auto; intros H1 H2; elim (checker_correct H2 (rho:=get t_var)); auto; rewrite Lit.interp_neg, H1; auto.
 Qed.

 Definition checker_eq t_form l1 l2 l (c:certif) :=
   negb (Lit.is_pos l) && 
   match t_form.[Lit.blit l] with
   | Form.Fiff l1' l2' => (l1 == l1') && (l2 == l2')
   | _ => false
   end && 
   checker t_form l c.

 Lemma checker_eq_correct : forall t_var t_form l1 l2 l c,
   checker_eq t_form l1 l2 l c = true ->
    Lit.interp (Form.interp_state_var (PArray.get t_var) t_form) l1 =
    Lit.interp (Form.interp_state_var (PArray.get t_var) t_form) l2.
 Proof.
   unfold checker_eq; intros t_var t_form l1 l2 l c; rewrite !andb_true_iff; case_eq (t_form .[ Lit.blit l]); [intros _ _|intros _|intros _|intros _ _ _|intros _ _|intros _ _|intros _ _|intros _ _ _|intros l1' l2' Heq|intros _ _ _ _]; intros [[H1 H2] H3]; try discriminate; rewrite andb_true_iff in H2; rewrite !Int63Properties.eqb_spec in H2; destruct H2 as [H2 H4]; subst l1' l2'; case_eq (Lit.is_pos l); intro Heq'; rewrite Heq' in H1; try discriminate; clear H1; assert (H:PArray.default t_form = Form.Ftrue /\ Form.wf t_form).
   unfold checker in H3; destruct c as (nclauses, t, confl); rewrite andb_true_iff in H3; destruct H3 as [H3 _]; destruct (Form.check_form_correct (get t_var) _ H3) as [[Ht1 Ht2] Ht3]; split; auto.
   destruct H as [H1 H2]; case_eq (Lit.interp (Form.interp_state_var (get t_var) t_form) l1); intro Heq1; case_eq (Lit.interp (Form.interp_state_var (get t_var) t_form) l2); intro Heq2; auto; elim (checker_correct H3 (rho:=get t_var)); unfold Lit.interp; rewrite Heq'; unfold Var.interp; rewrite Form.wf_interp_form; auto; rewrite Heq; simpl; rewrite Heq1, Heq2; auto.
 Qed.

End Cnf_Checker.


(* Application to resolution + cnf justification + euf + lia *)

(* Require Cnf.Cnf. *)
(* Require Euf.Euf. *)
(* Require Lia.Lia. *)

Module Euf_Checker.

  Inductive step :=
  | Res (pos:int) (res:resolution)
  | ImmFlatten (pos:int) (cid:clause_id) (lf:_lit)
  | CTrue (pos:int)
  | CFalse (pos:int)
  | BuildDef (pos:int) (l:_lit)
  | BuildDef2 (pos:int) (l:_lit)
  | BuildProj (pos:int) (l:_lit) (i:int)
  | ImmBuildDef (pos:int) (cid:clause_id)
  | ImmBuildDef2 (pos:int) (cid:clause_id)
  | ImmBuildProj (pos:int) (cid:clause_id) (i:int)
  | EqTr (pos:int) (l:_lit) (fl: list _lit)
  | EqCgr (pos:int) (l:_lit) (fl: list (option _lit))
  | EqCgrP (pos:int) (l1:_lit) (l2:_lit) (fl: list (option _lit))
  | LiaMicromega (pos:int) (cl:list _lit) (c:list ZMicromega.ZArithProof)
  | LiaDiseq (pos:int) (l:_lit)
  | SplArith (pos:int) (orig:clause_id) (res:_lit) (l:list ZMicromega.ZArithProof)
  | SplDistinctElim (pos:int) (orig:clause_id) (res:_lit).

  Local Open Scope list_scope.

  Local Notation check_flatten t_atom t_form := (check_flatten t_form (check_hatom t_atom) (check_neg_hatom t_atom)) (only parsing).

  Definition step_checker t_atom t_form s (st:step) :=
    match st with
      | Res pos res => S.set_resolve s pos res
      | ImmFlatten pos cid lf => S.set_clause s pos (check_flatten t_atom t_form s cid lf)
      | CTrue pos => S.set_clause s pos Cnf.check_True
      | CFalse pos => S.set_clause s pos Cnf.check_False
      | BuildDef pos l => S.set_clause s pos (check_BuildDef t_form l)
      | BuildDef2 pos l => S.set_clause s pos (check_BuildDef2 t_form l)
      | BuildProj pos l i => S.set_clause s pos (check_BuildProj t_form l i)
      | ImmBuildDef pos cid => S.set_clause s pos (check_ImmBuildDef t_form s cid)
      | ImmBuildDef2 pos cid => S.set_clause s pos (check_ImmBuildDef2 t_form s cid)
      | ImmBuildProj pos cid i => S.set_clause s pos (check_ImmBuildProj t_form s cid i)
      | EqTr pos l fl => S.set_clause s pos (check_trans t_form t_atom l fl)
      | EqCgr pos l fl => S.set_clause s pos (check_congr t_form t_atom l fl)
      | EqCgrP pos l1 l2 fl => S.set_clause s pos (check_congr_pred t_form t_atom l1 l2 fl)
      | LiaMicromega pos cl c => S.set_clause s pos (check_micromega t_form t_atom cl c)
      | LiaDiseq pos l => S.set_clause s pos (check_diseq t_form t_atom l)
      | SplArith pos orig res l => S.set_clause s pos (check_spl_arith t_form t_atom (S.get s orig) res l)
      | SplDistinctElim pos orig res => S.set_clause s pos (check_distinct_elim t_form t_atom (S.get s orig) res)
    end.

  Lemma step_checker_correct : forall t_i t_func t_atom t_form,
    let rho := Form.interp_state_var (Atom.interp_form_hatom t_i t_func t_atom) t_form in
      Form.check_form t_form -> Atom.check_atom t_atom ->
      Atom.wt t_i t_func t_atom ->
      forall s, S.valid rho s ->
        forall st : step, S.valid rho (step_checker t_atom t_form s st).
  Proof.
    intros t_i t_func t_atom t_form rho H1 H2 H10 s Hs. destruct (Form.check_form_correct (Atom.interp_form_hatom t_i t_func t_atom) _ H1) as [[Ht1 Ht2] Ht3]. destruct (Atom.check_atom_correct _ H2) as [Ha1 Ha2]. intros [pos res|pos cid lf|pos|pos|pos l|pos l|pos l i|pos cid|pos cid|pos cid i|pos l fl|pos l fl|pos l1 l2 fl|pos cl c|pos l|pos orig res l|pos orig res]; simpl; try apply S.valid_set_clause; auto.
    apply S.valid_set_resolve; auto.
    apply valid_check_flatten; auto; intros h1 h2 H.
    rewrite (Syntactic.check_hatom_correct_bool _ _ _ Ha1 Ha2 _ _ H); auto.
    rewrite (Syntactic.check_neg_hatom_correct_bool _ _ _ H10 Ha1 Ha2 _ _ H); auto.
    apply valid_check_True; auto.
    apply valid_check_False; auto.
    apply valid_check_BuildDef; auto.
    apply valid_check_BuildDef2; auto.
    apply valid_check_BuildProj; auto.
    apply valid_check_ImmBuildDef; auto.
    apply valid_check_ImmBuildDef2; auto.
    apply valid_check_ImmBuildProj; auto.
    apply valid_check_trans; auto.
    apply valid_check_congr; auto.
    apply valid_check_congr_pred; auto.
    apply valid_check_micromega; auto.
    apply valid_check_diseq; auto.
    apply valid_check_spl_arith; auto.
    apply valid_check_distinct_elim; auto.
  Qed.

  Definition euf_checker t_atom t_form s t :=
    _checker_ (step_checker t_atom t_form) s t.

  Lemma euf_checker_correct : forall t_i t_func t_atom t_form,
    let rho := Form.interp_state_var (Atom.interp_form_hatom t_i t_func t_atom) t_form in
      Form.check_form t_form -> Atom.check_atom t_atom ->
      Atom.wt t_i t_func t_atom ->
      forall s t confl,
        euf_checker t_atom t_form C.is_false s t confl ->
        ~ (S.valid rho s).
  Proof.
    unfold euf_checker; intros t_i t_func t_atom t_form rho H1 H2 H10; apply _checker__correct.
    intros c H; apply C.is_false_correct; auto.
    apply step_checker_correct; auto.
  Qed.

  Inductive certif :=
  | Certif : int -> _trace_ step -> int -> certif.

  Definition add_roots s d used_roots :=
    match used_roots with
      | Some ur => PArray.foldi_right (fun i c_index s =>
        let c := if c_index < length d then (d.[c_index])::nil else C._true in
          S.set_clause s i c) ur s
      | None => PArray.foldi_right (fun i c s => S.set_clause s i (c::nil)) d s
    end.

  Definition valid t_i t_func t_atom t_form d :=
    let rho := Form.interp_state_var (Atom.interp_form_hatom t_i t_func t_atom) t_form in
    afold_left _ _ true andb (Lit.interp rho) d.

  Lemma add_roots_correct : forall t_i t_func t_atom t_form,
    let rho := Form.interp_state_var (Atom.interp_form_hatom t_i t_func t_atom) t_form in
      Form.check_form t_form -> Atom.check_atom t_atom ->
      Atom.wt t_i t_func t_atom ->
      forall s d used_roots, S.valid rho s -> valid t_func t_atom t_form d ->
        S.valid rho (add_roots s d used_roots).
  Proof.
    intros t_i t_func t_atom t_form rho H1 H2 H10 s d used_roots H3; unfold valid; intro H4; pose (H5 := (afold_left_andb_true_inv _ _ _ H4)); unfold add_roots; assert (Valuation.wf rho) by (destruct (Form.check_form_correct (Atom.interp_form_hatom t_i t_func t_atom) _ H1) as [_ H]; auto); case used_roots.
    intro ur; apply (foldi_right_Ind _ _ (fun _ a => S.valid rho a)); auto; intros a i H6 Ha; apply S.valid_set_clause; auto; case_eq (ur .[ i] < length d).
    intro; unfold C.valid; simpl; rewrite H5; auto.
    intros; apply C.interp_true; auto.
    apply (foldi_right_Ind _ _ (fun _ a => S.valid rho a)); auto; intros a i H6 Ha; apply S.valid_set_clause; auto; unfold C.valid; simpl; rewrite H5; auto.
  Qed.

  Definition checker t_i t_func t_atom t_form d used_roots (c:certif) :=
    let (nclauses, t, confl) := c in
    Form.check_form t_form && Atom.check_atom t_atom &&
    Atom.wt t_i t_func t_atom &&
    euf_checker t_atom t_form C.is_false (add_roots (S.make nclauses) d used_roots) t confl.
  Implicit Arguments checker [].

  Lemma checker_correct : forall t_i t_func t_atom t_form d used_roots c,
    checker t_i t_func t_atom t_form d used_roots c = true ->
    ~ valid t_func t_atom t_form d.
  Proof.
    unfold checker; intros t_i t_func t_atom t_form d used_roots (nclauses, t, confl); rewrite !andb_true_iff; intros [[[H1 H2] H10] H3] H; eelim euf_checker_correct; try eassumption; apply add_roots_correct; try eassumption; apply S.valid_make; destruct (Form.check_form_correct (Atom.interp_form_hatom t_i t_func t_atom) _ H1) as [_ H4]; auto.
  Qed.

  Definition checker_b t_i t_func t_atom t_form l (b:bool) (c:certif) :=
    let l := if b then Lit.neg l else l in
    let (nclauses,_,_) := c in
    checker t_i t_func t_atom t_form (PArray.make nclauses l) None c.

  Lemma checker_b_correct : forall t_i t_func t_atom t_form l b c,
    checker_b t_func t_atom t_form l b c = true ->
    Lit.interp (Form.interp_state_var (Atom.interp_form_hatom t_i t_func t_atom) t_form) l = b.
  Proof.
   unfold checker_b; intros t_i t_func t_atom t_form l b (nclauses, t, confl); case b; intros H2; case_eq (Lit.interp (Form.interp_state_var (Atom.interp_form_hatom t_i t_func t_atom) t_form) l); auto; intros H1; elim (checker_correct H2 (t_func:=t_func)); auto; unfold valid; apply afold_left_andb_true; intros i Hi; rewrite get_make; auto; rewrite Lit.interp_neg, H1; auto.
 Qed.

  Definition checker_eq t_i t_func t_atom t_form l1 l2 l (c:certif) :=
    negb (Lit.is_pos l) &&
    match t_form.[Lit.blit l] with
      | Form.Fiff l1' l2' => (l1 == l1') && (l2 == l2')
      | _ => false
    end &&
    let (nclauses,_,_) := c in
    checker t_i t_func t_atom t_form (PArray.make nclauses l) None c.

  Lemma checker_eq_correct : forall t_i t_func t_atom t_form l1 l2 l c,
    checker_eq t_func t_atom t_form l1 l2 l c = true ->
    Lit.interp (Form.interp_state_var (Atom.interp_form_hatom t_i t_func t_atom) t_form) l1 =
    Lit.interp (Form.interp_state_var (Atom.interp_form_hatom t_i t_func t_atom) t_form) l2.
  Proof.
   unfold checker_eq; intros t_i t_func t_atom t_form l1 l2 l (nclauses, t, confl); rewrite !andb_true_iff; case_eq (t_form .[ Lit.blit l]); [intros _ _|intros _|intros _|intros _ _ _|intros _ _|intros _ _|intros _ _|intros _ _ _|intros l1' l2' Heq|intros _ _ _ _]; intros [[H1 H2] H3]; try discriminate; rewrite andb_true_iff in H2; rewrite !Int63Properties.eqb_spec in H2; destruct H2 as [H2 H4]; subst l1' l2'; case_eq (Lit.is_pos l); intro Heq'; rewrite Heq' in H1; try discriminate; clear H1; assert (H:PArray.default t_form = Form.Ftrue /\ Form.wf t_form).
   unfold checker in H3; rewrite !andb_true_iff in H3; destruct H3 as [[[H3 _] _] _]; destruct (Form.check_form_correct (Atom.interp_form_hatom t_i t_func t_atom) _ H3) as [[Ht1 Ht2] Ht3]; split; auto.
   destruct H as [H1 H2]; case_eq (Lit.interp (Form.interp_state_var (Atom.interp_form_hatom t_i t_func t_atom) t_form) l1); intro Heq1; case_eq (Lit.interp (Form.interp_state_var (Atom.interp_form_hatom t_i t_func t_atom) t_form) l2); intro Heq2; auto; elim (checker_correct H3 (t_func:=t_func)); unfold valid; apply afold_left_andb_true; intros i Hi; rewrite get_make; unfold Lit.interp; rewrite Heq'; unfold Var.interp; rewrite Form.wf_interp_form; auto; rewrite Heq; simpl; rewrite Heq1, Heq2; auto.
 Qed.


  (* Checker for extraction, that does not know the evaluation contexts.
     TODO: show that there always exists a well-typed evaluation
     context. *)

  Definition checker_ext t_atom t_form d used_roots (c:certif) :=
    let (nclauses, t, confl) := c in
    Form.check_form t_form && Atom.check_atom t_atom &&
    euf_checker t_atom t_form C.is_false (add_roots (S.make nclauses) d used_roots) t confl.
  Implicit Arguments checker_ext [].

  Lemma checker_ext_correct : forall t_atom t_form d used_roots c,
    checker_ext t_atom t_form d used_roots c = true ->
    forall t_i t_func, Atom.wt t_i t_func t_atom ->
                       ~ valid t_func t_atom t_form d.
  Proof.
    unfold checker_ext; intros t_atom t_form d used_roots (nclauses, t, confl); rewrite !andb_true_iff; intros [[H1 H2] H3]; intros t_i t_func H10 H; eelim euf_checker_correct; try eassumption; apply add_roots_correct; try eassumption; apply S.valid_make; destruct (Form.check_form_correct (Atom.interp_form_hatom t_i t_func t_atom) _ H1) as [_ H4]; auto.
  Qed.

  (* For debugging *)
  (*
  Fixpoint is__true (c:C.t) :=
    match c with
      | cons l q => if (l == 0) then true else is__true q
      | _ => false
    end.

  Definition step_checker_debug t_atom t_form s (st:step) :=
    match st with
      | Res pos res =>
        let s' := S.set_resolve s pos res in
          if is__true (s'.[pos]) then None else Some s'
      | ImmFlatten pos cid lf =>
        let c := check_flatten t_atom t_form s cid lf in
          if is__true c then None else Some (S.set_clause s pos c)
      | CTrue pos => Some (S.set_clause s pos Cnf.check_True)
      | CFalse pos => Some (S.set_clause s pos Cnf.check_False)
      | BuildDef pos l =>
        let c := check_BuildDef t_form l in
          if is__true c then None else Some (S.set_clause s pos c)
      | BuildDef2 pos l =>
        let c := check_BuildDef2 t_form l in
          if is__true c then None else Some (S.set_clause s pos c)
      | BuildProj pos l i =>
        let c := check_BuildProj t_form l i in
          if is__true c then None else Some (S.set_clause s pos c)
      | ImmBuildDef pos cid =>
        let c := check_ImmBuildDef t_form s cid in
          if is__true c then None else Some (S.set_clause s pos c)
      | ImmBuildDef2 pos cid =>
        let c := check_ImmBuildDef2 t_form s cid in
          if is__true c then None else Some (S.set_clause s pos c)
      | ImmBuildProj pos cid i =>
        let c := check_ImmBuildProj t_form s cid i in
          if is__true c then None else Some (S.set_clause s pos c)
      | EqTr pos l fl =>
        let c := check_trans t_form t_atom l fl in
          if is__true c then None else Some (S.set_clause s pos c)
      | EqCgr pos l fl =>
        let c := check_congr t_form t_atom l fl in
          if is__true c then None else Some (S.set_clause s pos c)
      | EqCgrP pos l1 l2 fl =>
        let c := check_congr_pred t_form t_atom l1 l2 fl in
          if is__true c then None else Some (S.set_clause s pos c)
      | LiaMicromega pos cl c =>
        let c := check_micromega t_form t_atom cl c in
          if is__true c then None else Some (S.set_clause s pos c)
      | LiaDiseq pos l =>
        let c := check_diseq t_form t_atom l in
          if is__true c then None else Some (S.set_clause s pos c)
      | SplArith pos orig res l =>
        let c := check_spl_arith t_form t_atom (S.get s orig) res l in
          if is__true c then None else Some (S.set_clause s pos c)
      | SplDistinctElim pos input res =>
        let c := check_distinct_elim t_form t_atom (S.get s input) res in
          if is__true c then None else Some (S.set_clause s pos c)
    end.

  Definition euf_checker_debug t_atom t_form s t :=
    _checker_debug_ (step_checker_debug t_atom t_form) s t.

  Definition euf_checker_partial t_atom t_form s t :=
    _checker_partial_ (step_checker t_atom t_form) s t.
  *)

End Euf_Checker.


Unset Implicit Arguments.