aboutsummaryrefslogtreecommitdiffstats
path: root/src/array/Array_checker.v
blob: 78f71019333e3e3f956c1c3358436afbd595f302 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
(**************************************************************************)
(*                                                                        *)
(*     SMTCoq                                                             *)
(*     Copyright (C) 2011 - 2022                                          *)
(*                                                                        *)
(*     See file "AUTHORS" for the list of authors                         *)
(*                                                                        *)
(*   This file is distributed under the terms of the CeCILL-C licence     *)
(*                                                                        *)
(**************************************************************************)


Require Import Bool List Int63 PArray Psatz ZArith.
Require Import Misc State SMT_terms FArray SMT_classes.

Import Form.
Import Atom.

Local Open Scope array_scope.
Local Open Scope int63_scope.

Section certif.

  Variable t_form : PArray.array Form.form.
  Variable t_atom : PArray.array Atom.atom.

  Local Notation get_atom := (PArray.get t_atom) (only parsing).
  Local Notation get_form := (PArray.get t_form) (only parsing).


  Definition check_roweq lres :=
    if Lit.is_pos lres then
      match get_form (Lit.blit lres) with
      | Fatom a =>
        match get_atom a with
        | Abop (BO_eq te) xa v =>
          match get_atom xa with
          | Abop (BO_select ti1 te1) sa i =>
            match get_atom sa with
            | Atop (TO_store ti2 te2) fa j v2 =>
              if Typ.eqb ti1 ti2 &&
                 Typ.eqb te te1 && Typ.eqb te te2 &&
                 (i =? j) && (v =? v2)
              then lres::nil
              else C._true
            | _ => C._true
            end
          | _ => C._true
          end
        | _ => C._true
        end
      | _ => C._true
      end
    else C._true.


  Definition store_of_me a b :=
    match get_atom b with
    | Atop (TO_store ti te) a' i _ =>
      if (a' =? a) then Some (ti, te, i) else None
    | _ => None
    end.
 
  
  Definition check_rowneq cl :=
    match cl with
    | leqij :: leqrow :: nil =>
      if Lit.is_pos leqij && Lit.is_pos leqrow then
        match get_form (Lit.blit leqij), get_form (Lit.blit leqrow) with
        | Fatom eqij, Fatom eqrow =>
          match get_atom eqij, get_atom eqrow with
          | Abop (BO_eq ti) i j, Abop (BO_eq te) xa x =>
            match get_atom xa, get_atom x with
            | Abop (BO_select ti1 te1) sa j1, Abop (BO_select ti2 te2) sa2 j2 =>
              if Typ.eqb ti ti1 && Typ.eqb ti ti2 &&
                 Typ.eqb te te1 && Typ.eqb te te2 then
                match store_of_me sa sa2, store_of_me sa2 sa with
                | Some (ti3, te3, i1), None | None, Some (ti3, te3, i1) => 
                  if Typ.eqb ti ti3 && Typ.eqb te te3 &&
                     (((i1 =? i) && (j1 =? j) && (j2 =? j)) ||
                      ((i1 =? j) && (j1 =? i) && (j2 =? i))) then
                    cl
                  else C._true
                | _, _ => C._true
                end
              else C._true
            | _, _ => C._true
            end
          | _, _ => C._true
          end
        | _, _ => C._true
        end
      else C._true
    | _ => C._true
    end.



  Definition eq_sel_sym ti te a b sela selb :=
    match get_atom sela, get_atom selb with
    | Abop (BO_select ti1 te1) a' d1, Abop (BO_select ti2 te2) b' d2 =>
      Typ.eqb ti ti1 && Typ.eqb ti ti2 &&
      Typ.eqb te te1 && Typ.eqb te te2 &&
      (a =? a') && (b =? b') && (d1 =? d2) &&
      match get_atom d1 with
      | Abop (BO_diffarray ti3 te3) a3 b3 =>
        Typ.eqb ti ti3 && Typ.eqb te te3 &&
        (a3 =? a) && (b3 =? b)
      | _ => false
      end
    | _, _ => false
    end.
  
  
  Definition check_ext lres :=
    if Lit.is_pos lres then
      match get_form (Lit.blit lres) with
      | For args =>
        if PArray.length args =? 2 then
          let l1 := args.[0] in
          let l2 := args.[1] in
          if Lit.is_pos l1 && negb (Lit.is_pos l2) then
            match get_form (Lit.blit l1), get_form (Lit.blit l2) with
            | Fatom eqa, Fatom eqsel =>
              match get_atom eqa, get_atom eqsel with
              | Abop (BO_eq (Typ.TFArray ti te)) a b, Abop (BO_eq te') sela selb => 
                if Typ.eqb te te' && (eq_sel_sym ti te a b sela selb ||
                                      eq_sel_sym ti te b a sela selb) then
                  lres :: nil
                else C._true
              | _, _ => C._true
              end
            | _, _ => C._true
            end
          else C._true
        else C._true
      | _ => C._true
      end
    else C._true.


  Section Correct.

    Variables (t_i : array typ_compdec)
              (t_func : array (Atom.tval t_i))
              (ch_atom : Atom.check_atom t_atom)
              (ch_form : Form.check_form t_form)
              (wt_t_atom : Atom.wt t_i t_func t_atom).

    Local Notation check_atom :=
      (check_aux t_i t_func (get_type t_i t_func t_atom)).

    Local Notation interp_form_hatom :=
      (Atom.interp_form_hatom t_i t_func t_atom).

    Local Notation interp_form_hatom_bv :=
      (Atom.interp_form_hatom_bv t_i t_func t_atom).

    Local Notation rho :=
      (Form.interp_state_var interp_form_hatom interp_form_hatom_bv t_form).

    Local Notation t_interp := (t_interp t_i t_func t_atom).

    Local Notation interp_atom := (interp_aux t_i t_func (get t_interp)).

    Let wf_t_atom : Atom.wf t_atom.
    Proof. destruct (Atom.check_atom_correct _ ch_atom); auto. Qed.

    Let def_t_atom : default t_atom = Atom.Acop Atom.CO_xH.
    Proof. destruct (Atom.check_atom_correct _ ch_atom); auto. Qed.

    Let def_t_form : default t_form = Form.Ftrue.
    Proof.
      destruct (Form.check_form_correct
                  interp_form_hatom interp_form_hatom_bv _ ch_form) as [H _];
        destruct H; auto.
    Qed.

    Let wf_t_form : Form.wf t_form.
    Proof.
      destruct (Form.check_form_correct
                  interp_form_hatom interp_form_hatom_bv _ ch_form) as [H _];
        destruct H; auto.
    Qed.

    Let wf_rho : Valuation.wf rho.
    Proof.
      destruct (Form.check_form_correct
                  interp_form_hatom interp_form_hatom_bv _ ch_form); auto.
    Qed.

    Let rho_interp : forall x : int,
        rho x = Form.interp interp_form_hatom interp_form_hatom_bv t_form (t_form.[ x]).
    Proof. intros x;apply wf_interp_form;trivial. Qed.

    Definition wf := aforallbi lt_form t_form.

    Hypothesis wf_t_i : wf.
    Notation atom := int (only parsing).

    
    Lemma valid_check_roweq lres : C.valid rho (check_roweq lres).
    Proof.
      unfold check_roweq.
      case_eq (Lit.is_pos lres); intro Heq; simpl; try now apply C.interp_true.
      case_eq (t_form .[ Lit.blit lres]); try (intros; now apply C.interp_true).
      intros a Heq2.
      case_eq (t_atom .[ a]); try (intros; now apply C.interp_true).
      intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] a1 a2 Heq3; try (intros; now apply C.interp_true).
      case_eq (t_atom .[ a1]); try (intros; now apply C.interp_true).
      intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] b1 b2 Heq4; try (intros; now apply C.interp_true).
      case_eq (t_atom .[ b1]); try (intros; now apply C.interp_true).
      intros [ ] c1 c2 c3 Heq5.
      (* roweq *)
      - case_eq (Typ.eqb t0 t2 && Typ.eqb t t1 && 
             Typ.eqb t t3 && (b2 =? c2) && (a2 =? c3)); simpl; intros Heq6; try (now apply C.interp_true).

        unfold C.valid. simpl. rewrite orb_false_r.
        unfold Lit.interp. rewrite Heq.
        unfold Var.interp.
        rewrite wf_interp_form; trivial. rewrite Heq2. simpl.

        rewrite !andb_true_iff in Heq6.
        destruct Heq6 as ((((Heq6a, Heq6b), Heq6c), Heq6d), Heq6e).

        apply Typ.eqb_spec in Heq6a.
        apply Typ.eqb_spec in Heq6b.
        apply Typ.eqb_spec in Heq6c.
        apply Int63.eqb_spec in Heq6d.
        apply Int63.eqb_spec in Heq6e.

        pose proof (rho_interp (Lit.blit lres)) as Hrho.
        rewrite Heq2 in Hrho. simpl in Hrho.

        generalize wt_t_atom. unfold Atom.wt. unfold is_true.
        rewrite aforallbi_spec;intros.

        pose proof (H a). assert (a <? PArray.length t_atom).
        apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq3. easy.
        specialize (H0 H1). simpl in H0.
        rewrite Heq3 in H0. simpl in H0.
        rewrite !andb_true_iff in H0. destruct H0. destruct H0.
        unfold get_type' in H2, H3, H0. unfold v_type in H2, H3, H0.

        case_eq (t_interp .[ a]).
          intros v_typea v_vala Htia. rewrite Htia in H0.
          case_eq v_typea; intros; rewrite H4 in H0; try now contradict H0.

        case_eq (t_interp .[ a1]).
          intros v_typea1 v_vala1 Htia1. rewrite Htia1 in H3.
        case_eq (t_interp .[ a2]).
          intros v_typea2 v_vala2 Htia2. rewrite Htia2 in H2.
        rewrite Atom.t_interp_wf in Htia; trivial.
        rewrite Atom.t_interp_wf in Htia1; trivial.
        rewrite Atom.t_interp_wf in Htia2; trivial.
        rewrite Heq3 in Htia. simpl in Htia.
        rewrite !Atom.t_interp_wf in Htia; trivial.
        rewrite Htia1, Htia2 in Htia. simpl in Htia.

        apply Typ.eqb_spec in H2. apply Typ.eqb_spec in H3.

        generalize dependent v_vala1. generalize dependent v_vala2.
        generalize dependent v_vala.

        rewrite H2, H3, H4.
        rewrite !Typ.cast_refl. intros. simpl in Htia.
        unfold Bval in Htia.

        specialize (Atom.Bval_inj2 t_i (Typ.Tbool) (Typ.i_eqb t_i t v_vala1 v_vala2) (v_vala)).
        intros. specialize (H5 Htia).

        pose proof (H a1). assert (a1 <? PArray.length t_atom).
        apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq4. easy.
        specialize (H6 H7). simpl in H6.
        rewrite Heq4 in H6. simpl in H6.
        rewrite !andb_true_iff in H6.
        destruct H6 as ((H6a, H6b), H6c).
        apply Typ.eqb_spec in H6a.
        apply Typ.eqb_spec in H6b.
        apply Typ.eqb_spec in H6c.

        pose proof (H b1). assert (b1 <? PArray.length t_atom).
        apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq5. easy.
        specialize (H6 H8). simpl in H6.
        rewrite Heq5 in H6. simpl in H6.

        rewrite !andb_true_iff in H6.
        destruct H6 as (((H6d, H6e), H6f), H6h).
        apply Typ.eqb_spec in H6e.
        apply Typ.eqb_spec in H6f.
        apply Typ.eqb_spec in H6h.

        unfold get_type' in H6b, H6c, H6d.
        unfold v_type in H6b, H6c, H6d.
        case_eq (t_interp .[ b2]). 
          intros v_typeb2 v_valb2 Htib2. rewrite Htib2 in H6c.
        rewrite Atom.t_interp_wf in Htib2; trivial.
        case_eq (t_interp .[ b1]). 
          intros v_typeb1 v_valb1 Htib1. rewrite Htib1 in H6d.
        rewrite Atom.t_interp_wf in Htib1; trivial.
        rewrite <- Heq6d, <- Heq6e in *.

        rewrite Heq5 in Htib1. simpl in Htib1.

        generalize dependent v_valb2.

        rewrite H6c. intros.
        unfold Atom.interp_form_hatom, interp_hatom.
        rewrite !Atom.t_interp_wf; trivial.
        rewrite Heq3. simpl.
        rewrite !Atom.t_interp_wf; trivial.
        rewrite Heq4, Htia2. simpl.
        rewrite !Atom.t_interp_wf; trivial.
        rewrite Heq5, Htib2. simpl. 
        rewrite Htib1. simpl.

        rewrite Typ.cast_refl.
        unfold apply_binop.
        rewrite Typ.cast_refl.

        case_eq (t_interp .[ b1]); intros.
        pose proof H6.
        rewrite H6 in H6b.
        rewrite !Atom.t_interp_wf in H6; trivial.
        rewrite Heq5 in H6.
        simpl in H6. rewrite H6 in Htib1.
        inversion Htib1.

        generalize dependent v_val0.

        rewrite H6b.
        intros. rewrite Typ.cast_refl.
        simpl.
        unfold get_type' in H6a.
        unfold v_type in H6a.
        case_eq (t_interp .[ a1]).
        intros.
        rewrite H10 in H6a.
        rewrite !Atom.t_interp_wf in H10; trivial.
        rewrite H10 in Htia1.
        inversion Htia1.
        rewrite <- H6a in H14.

        generalize dependent v_val0.

        rewrite H14.
        intros.
        rewrite Typ.cast_refl.
        simpl.

        unfold apply_terop in H6.
        unfold get_type', v_type in H6e, H6f, H6h.
        case_eq ( t_interp .[ c1]); intros.
        rewrite H13 in H6e.
        rewrite H13 in H6.
        case_eq (t_interp .[ b2]); intros.
        rewrite H16 in H6f.
        rewrite H16 in H6.
        case_eq (t_interp .[ a2]); intros.
        rewrite H17 in H6h.
        rewrite H17 in H6.

        generalize dependent v_val2. generalize dependent v_val3.
        generalize dependent v_val4.

        rewrite H6e, H6f, H6h.
        rewrite !Typ.cast_refl.
        intros.
        unfold Bval in H6.

        rewrite <- H11 in H6d.
        rewrite H6b in H6d.
        rewrite andb_true_iff in H6d.
        destruct H6d as (H6d1, H6d2).
        apply Typ.eqb_spec in H6d1.
        apply Typ.eqb_spec in H6d2.

        generalize dependent v_val2. generalize dependent v_val3.
        generalize dependent v_val4.

        rewrite H6d1, H6d2, H14.
        intros.
        specialize (Atom.Bval_inj2 t_i (Typ.TFArray t0 t)
          (@store _ _
                  (Typ.dec_interp t_i t0)
               _ _ _ (Typ.comp_interp t_i t) _
               v_val2 v_val3 v_val4) v_val0).
        intros. specialize (H18 H6).
        rewrite <- H18.

        rewrite !Atom.t_interp_wf in H16; trivial.
        rewrite H16 in Htib2.
        specialize (Atom.Bval_inj2 t_i t0 v_val3 v_valb2).
        intros. specialize (H19 Htib2).
        rewrite <- H19.

        rewrite !Atom.t_interp_wf in H17; trivial.
        rewrite H17 in Htia2.
        specialize (Atom.Bval_inj2 t_i t v_val4 v_vala2).
        intros. specialize (H20 Htia2).
        rewrite <- H20.
        apply Typ.i_eqb_spec.
        apply (read_over_write (elt_dec:=(@EqbToDecType _ (@Eqb _
                   (projT2 (Typ.interp_compdec_aux t_i _)))))).
    Qed.


    
    Lemma valid_check_rowneq cl : C.valid rho (check_rowneq cl).
    Proof.
        unfold check_rowneq.
        case_eq (cl); [ intros | intros i l ]; simpl; try now apply C.interp_true.
        case_eq (l); [ intros | intros j xsl ]; simpl; try now apply C.interp_true.
        case_eq (xsl); intros; simpl; try now apply C.interp_true.
        case_eq (Lit.is_pos i); intro Heq; simpl; try now apply C.interp_true.
        case_eq (Lit.is_pos j); intro Heq2; simpl; try now apply C.interp_true.
        case_eq (t_form .[ Lit.blit i]); try (intros; now apply C.interp_true).
        intros a Heq3.
        case_eq (t_form .[ Lit.blit j]); try (intros; now apply C.interp_true).
        intros b Heq4.
        case_eq (t_atom .[ a]); try (intros; now apply C.interp_true).
        intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] a1 a2 Heq5; try (intros; now apply C.interp_true).
        case_eq (t_atom .[ b]); try (intros; now apply C.interp_true).
        intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] b1 b2 Heq6; try (intros; now apply C.interp_true).
        case_eq (t_atom .[ b1]); try (intros; now apply C.interp_true).
        intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] c1 c2 Heq7; try (intros; now apply C.interp_true).
        case_eq (t_atom .[ b2]); try (intros; now apply C.interp_true).
        intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] d1 d2 Heq8; try (intros; now apply C.interp_true).
        case_eq (Typ.eqb t t1 && Typ.eqb t t3 && Typ.eqb t0 t2 && Typ.eqb t0 t4); 
          try (intros; now apply C.interp_true). intros Heq9.


        rewrite !andb_true_iff in Heq9.
        destruct Heq9 as (((Heq9a, Heq9b), Heq9c), Heq9d).

        apply Typ.eqb_spec in Heq9a.
        apply Typ.eqb_spec in Heq9b.
        apply Typ.eqb_spec in Heq9c.
        apply Typ.eqb_spec in Heq9d.
        subst t1 t2 t3 t4.

        generalize wt_t_atom. unfold Atom.wt. unfold is_true.
        rewrite aforallbi_spec;intros.

        assert (H15: b1 <? PArray.length t_atom).
        apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq7. discriminate.
        assert (H20: b2 <? PArray.length t_atom).
        apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq8. discriminate.
        assert (H9: b <? PArray.length t_atom).
        apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq6. discriminate.
        assert (H3: a <? PArray.length t_atom).
        apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq5. discriminate.


        apply H2 in H15.
        apply H2 in H20.
        apply H2 in H3.
        apply H2 in H9.

        rewrite Heq7 in H15.
        rewrite Heq8 in H20.
        rewrite Heq6 in H9.
        rewrite Heq5 in H3.

        simpl in H15, H20, H3, H9.
        
        rewrite !andb_true_iff in H15, H20, H3, H9.

        destruct H3 as ((H3, H6), H5).
        destruct H9 as ((H9, H12), H11).
        destruct H15 as ((H15, H18), H17).
        destruct H20 as ((H20, H23), H22).
        unfold get_type', v_type in H3, H5, H6, H9, H11, H12, H15, H17, H18, H20, H22, H23.

        
        case_eq (t_interp .[ a]).
          intros v_typea v_vala Htia. rewrite Htia in H3.
          case_eq v_typea; intros; rewrite H4 in H3; try now contradict H3.

        case_eq (t_interp .[ a1]).
          intros v_typea1 v_vala1 Htia1. rewrite Htia1 in H6.
        case_eq (t_interp .[ a2]).
            intros v_typea2 v_vala2 Htia2. rewrite Htia2 in H5.
        rewrite Atom.t_interp_wf in Htia, Htia1, Htia2; trivial.
        rewrite Heq5 in Htia. simpl in Htia.
        rewrite !Atom.t_interp_wf in Htia; trivial.
        rewrite Htia1, Htia2 in Htia. simpl in Htia.

        apply Typ.eqb_spec in H5. apply Typ.eqb_spec in H6.

        generalize dependent v_vala1. generalize dependent v_vala2.
        generalize dependent v_vala.
        rewrite H5, H6, H4.
        rewrite !Typ.cast_refl. intros. simpl in Htia.
        unfold Bval in Htia.

        specialize (Atom.Bval_inj2 t_i (Typ.Tbool) (Typ.i_eqb t_i t v_vala1 v_vala2) (v_vala)).
        intros H8. specialize (H8 Htia).

        case_eq (t_interp .[ b]).
          intros v_typeb v_valb Htib. rewrite Htib in H9;
          case_eq v_typeb; intros; rewrite H7 in H9; try now contradict H9.

        case_eq (t_interp .[ b1]).
          intros v_typeb1 v_valb1 Htib1. rewrite Htib1 in H12.
        case_eq (t_interp .[ b2]).
            intros v_typeb2 v_valb2 Htib2. rewrite Htib2 in H11.
        rewrite Atom.t_interp_wf in Htib, Htib1, Htib2; trivial.
        rewrite Heq6 in Htib. simpl in Htib.
        rewrite !Atom.t_interp_wf in Htib; trivial.
        rewrite Htib1, Htib2 in Htib. simpl in Htib.

        apply Typ.eqb_spec in H11. apply Typ.eqb_spec in H12.


        generalize dependent v_valb1. generalize dependent v_valb2.
        generalize dependent v_valb.
        rewrite H11, H12, H7.
        rewrite !Typ.cast_refl. intros. simpl in Htib.
        unfold Bval in Htib.

        specialize (Atom.Bval_inj2 t_i (Typ.Tbool) (Typ.i_eqb t_i t0 v_valb1 v_valb2) (v_valb)).
        intros H14. specialize (H14 Htib).

       case_eq (t_interp .[ b1]).
          intros v_typeb1' v_valb1' Htib1'. rewrite Htib1' in H15.

        case_eq (t_interp .[ c1]).
          intros v_typec1 v_valc1 Htic1. rewrite Htic1 in H18.
        case_eq (t_interp .[ c2]).
            pose proof Htib1' as Htib1''.
            intros v_typec2 v_valc2 Htic2. rewrite Htic2 in H17.
            pose proof Htic2 as Htic2''.
        rewrite Atom.t_interp_wf in Htib1', Htic1, Htic2; trivial.
        rewrite Heq7 in Htib1'. simpl in Htib1'.
        rewrite !Atom.t_interp_wf in Htib1'; trivial.
        rewrite Htic1, Htic2 in Htib1'. simpl in Htib1'.

        apply Typ.eqb_spec in H17. apply Typ.eqb_spec in H18.
        apply Typ.eqb_spec in H15. 

        generalize dependent v_valc1. generalize dependent v_valc2.
        generalize dependent v_valb1'.
        rewrite H17, H18.
        rewrite !Typ.cast_refl. intros. simpl in Htib1'.
        unfold Bval in Htib1'.


        generalize dependent v_valc1. generalize dependent v_valc2.
        generalize dependent v_valb1'.

        rewrite H15. intros.
        specialize (Atom.Bval_inj2 t_i (v_typeb1') (select v_valc1 v_valc2) (v_valb1')).
        intro H19. specialize (H19 Htib1').

        (* b2 *)
       case_eq (t_interp .[ b2]).
          intros v_typeb2' v_valb2' Htib2'. rewrite Htib2' in H20.

        case_eq (t_interp .[ d1]).
          intros v_typed1 v_vald1 Htid1. rewrite Htid1 in H23.
        case_eq (t_interp .[ d2]).
            pose proof Htib2' as Htib2''.
            intros v_typed2 v_vald2 Htid2. rewrite Htid2 in H22.
        rewrite Atom.t_interp_wf in Htib2', Htid1, Htid2; trivial.
        rewrite Heq8 in Htib2'. simpl in Htib2'.
        rewrite !Atom.t_interp_wf in Htib2'; trivial.
        rewrite Htid1, Htid2 in Htib2'. simpl in Htib2'.

        apply Typ.eqb_spec in H22. apply Typ.eqb_spec in H23.
        apply Typ.eqb_spec in H20. 

        generalize dependent v_vald1. generalize dependent v_vald2.
        generalize dependent v_valb2'.
        rewrite H22, H23.
        rewrite !Typ.cast_refl. intros. simpl in Htib2'.
        unfold Bval in Htib2'.


        generalize dependent v_vald1. generalize dependent v_vald2.
        generalize dependent v_valb2'.

        rewrite H20. intros.
        specialize (Atom.Bval_inj2 t_i (v_typeb2') (select v_vald1 v_vald2) (v_valb2')).
        intro H24. specialize (H24 Htib2').

        
        
        case_eq (store_of_me c1 d1);
          case_eq (store_of_me d1 c1);
          try (intros; try(destruct p0, p0); now apply C.interp_true).
        
        - unfold store_of_me.
          intro HT1. clear HT1.
          case_eq (t_atom .[ d1]); try discriminate.
          intros [ t5 t6 ] e1 e2 e3 Heq10 [[ti3 te3] i1].
          case_eq (e1 =? c1); try discriminate. intros Heq11c.
          intro HT.
          injection HT. intros. subst i1 te3 ti3. clear HT.

          case_eq (
              Typ.eqb t t5 && Typ.eqb v_typeb1' t6 &&
                      ((e2 =? a1) && (c2 =? a2) && (d2 =? a2) || (e2 =? a2) && (c2 =? a1) && (d2 =? a1)));
            simpl; intros Heq11; try (now apply C.interp_true).

          unfold C.valid. simpl. rewrite orb_false_r.

          case_eq (Lit.interp rho i). intros isit.
          easy. intros isif. rewrite orb_false_l.
          specialize (rho_interp ( Lit.blit i)).
          rewrite Heq3 in rho_interp.
          simpl in rho_interp.
          unfold Lit.interp in isif.
          rewrite Heq in isif. unfold Var.interp in isif.
          rewrite rho_interp in isif.
          unfold Atom.interp_form_hatom, interp_hatom in isif.
          rewrite Atom.t_interp_wf in isif; trivial.
          rewrite Heq5 in isif.
          simpl in isif.
          unfold interp_bool in isif.

          unfold Lit.interp. rewrite Heq2.
          unfold Var.interp.
          rewrite !wf_interp_form; trivial. rewrite Heq4. simpl.

          rewrite !andb_true_iff in Heq11.
          destruct Heq11 as ((Heq11a, Heq11b), Heq11d).
          rewrite !orb_true_iff in Heq11d.

          apply Typ.eqb_spec in Heq11a.
          apply Typ.eqb_spec in Heq11b.
          apply Int63.eqb_spec in Heq11c.
          rewrite !andb_true_iff in Heq11d.
          rewrite !Int63.eqb_spec in Heq11d.


          rewrite !Atom.t_interp_wf in isif; trivial.
          rewrite Htia1, Htia2 in isif. simpl in isif.
          unfold Bval in isif.


          assert (H25: d1 <? PArray.length t_atom).
          apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq10. discriminate.
          apply H2 in H25.
          rewrite Heq10 in H25.
          simpl in H25.
          rewrite !andb_true_iff in H25.
          destruct H25 as (((H25, H29), H28), H27).
          unfold get_type', v_type in H25, H27, H28, H29.

          case_eq (t_interp .[ d1]).
          intros v_typed1' v_vald1' Htid1'. rewrite Htid1' in H25.
          case_eq v_typed1'; intros; rewrite H10 in H25; try now contradict H25.
          rewrite andb_true_iff in H25; destruct H25 as (H25a, H25b).

          case_eq (t_interp .[ e1]).
          intros v_typee1 v_vale1 Htie1. rewrite Htie1 in H29.
          case_eq (t_interp .[ e2]).
          intros v_typee2 v_vale2 Htie2. rewrite Htie2 in H28.
          case_eq (t_interp .[ e3]).
          intros v_typee3 v_vale3 Htie3. rewrite Htie3 in H27.
          pose proof Htid1' as Htid1''.
          rewrite Atom.t_interp_wf in Htid1', Htie1, Htie2, Htie3; trivial.
          rewrite Heq10 in Htid1'. simpl in Htid1'.
          rewrite !Atom.t_interp_wf in Htid1'; trivial.
          rewrite Htie1, Htie2, Htie3 in Htid1'. simpl in Htid1'.

          apply Typ.eqb_spec in H25a. apply Typ.eqb_spec in H25b.
          apply Typ.eqb_spec in H27.  apply Typ.eqb_spec in H28.
          apply Typ.eqb_spec in H29.

          generalize dependent v_vale1. generalize dependent v_vale2.
          generalize dependent v_vale3. generalize dependent v_vald1'.
          rewrite H27, H28, H29.
          rewrite !Typ.cast_refl. intros. simpl in Htid1'.
          unfold Bval in Htid1'.


          generalize dependent v_vale1. generalize dependent v_vale2.
          generalize dependent v_vale3. generalize dependent v_vald1'.

          rewrite H25a, H25b, H10. intros.
          specialize (Atom.Bval_inj2 t_i (Typ.TFArray t1 t2)
            (@store _ _
                    (Typ.dec_interp t_i t1)
                   _ _ _ (Typ.comp_interp t_i t2) _
                   v_vale1 v_vale2 v_vale3) (v_vald1')).
          intro H25. specialize (H25 Htid1').

          unfold Atom.interp_form_hatom, interp_hatom.
          rewrite !Atom.t_interp_wf; trivial.
          rewrite Heq6. simpl.
          rewrite !Atom.t_interp_wf; trivial.
          rewrite Heq7, Heq8. simpl.
          rewrite !Atom.t_interp_wf; trivial.

          rewrite Htic1, Htic2, Htid1, Htid2.
          subst. intros. simpl.
          rewrite !Typ.cast_refl.
          unfold apply_binop.
          unfold Bval.
          rewrite !Atom.t_interp_wf in Htib1''; trivial.
          rewrite Htib1 in Htib1''.
          inversion Htib1''.
          rewrite !Atom.t_interp_wf in Htib2''; trivial.
          rewrite Htib2 in Htib2''.
          inversion Htib2''.

          rewrite !Typ.cast_refl.

          unfold interp_bool. rewrite Typ.cast_refl.
          apply Typ.i_eqb_spec.

          rewrite !Atom.t_interp_wf in Htid1''; trivial.
          rewrite Htid1 in Htid1''.
          inversion Htid1''.

          subst.
          rewrite (Atom.Bval_inj2 _ _ (v_vald1) (store v_vale1 v_vale2 v_vale3) Htid1'').
          
          rewrite Htie1 in Htic1.


          rewrite (Atom.Bval_inj2 t_i (Typ.TFArray t1 t2) (v_vale1) (v_valc1) Htic1).

          simpl in isif. rewrite !Typ.cast_refl in isif.
          apply Typ.i_eqb_spec_false in isif.

          rewrite !Atom.t_interp_wf in Htic2''; trivial.

          destruct Heq11d as [((Heq11d1,Heq11d2),Heq11d3) | ((Heq11d1,Heq11d2),Heq11d3) ];
            subst; intros;

              rewrite Htid2 in Htic2;
              rewrite <- (Atom.Bval_inj2 _ _  (v_vald2) (v_valc2) Htic2) in *.
          
          + rewrite Htie2 in Htia1.
            rewrite Htia2 in Htic2''.
            rewrite <- (Atom.Bval_inj2 _ _ _ _ Htia1) in *.
            rewrite (Atom.Bval_inj2 _ _ _ _ Htic2'') in *.
            symmetry; now apply read_over_other_write.

          + rewrite Htie2 in Htia2.
            rewrite Htia1 in Htic2''.
            rewrite <- (Atom.Bval_inj2 _ _ _ _ Htia2) in *.
            rewrite (Atom.Bval_inj2 _ _ _ _ Htic2'') in *.
            symmetry; apply read_over_other_write; now auto.


        - unfold store_of_me.
          case_eq (t_atom .[ c1]); try discriminate.
          intros [ t5 t6 ] e1 e2 e3 Heq10 [[ti3 te3] i1].
          case_eq (e1 =? d1); try discriminate. intros Heq11d.
          intro HT.
          injection HT. intros E2 T6 T5 [ ]. subst i1 te3 ti3. clear HT.

          case_eq (
              Typ.eqb t t5 && Typ.eqb v_typeb1' t6 &&
                      ((e2 =? a1) && (c2 =? a2) && (d2 =? a2) || (e2 =? a2) && (c2 =? a1) && (d2 =? a1)));
            simpl; intros Heq11; try (now apply C.interp_true).

          unfold C.valid. simpl. rewrite orb_false_r.

          case_eq (Lit.interp rho i). intros isit.
          easy. intros isif. rewrite orb_false_l.
          specialize (rho_interp ( Lit.blit i)).
          rewrite Heq3 in rho_interp.
          simpl in rho_interp.
          unfold Lit.interp in isif.
          rewrite Heq in isif. unfold Var.interp in isif.
          rewrite rho_interp in isif.
          unfold Atom.interp_form_hatom, interp_hatom in isif.
          rewrite Atom.t_interp_wf in isif; trivial.
          rewrite Heq5 in isif.
          simpl in isif.
          unfold interp_bool in isif.

          unfold Lit.interp. rewrite Heq2.
          unfold Var.interp.
          rewrite !wf_interp_form; trivial. rewrite Heq4. simpl.

          rewrite !andb_true_iff in Heq11.
          destruct Heq11 as ((Heq11a, Heq11b), Heq11c).
          rewrite !orb_true_iff in Heq11c.

          apply Typ.eqb_spec in Heq11a.
          apply Typ.eqb_spec in Heq11b.
          apply Int63.eqb_spec in Heq11d.
          rewrite !andb_true_iff in Heq11c.
          rewrite !Int63.eqb_spec in Heq11c.


          rewrite !Atom.t_interp_wf in isif; trivial.
          rewrite Htia1, Htia2 in isif. simpl in isif.
          unfold Bval in isif.
          rewrite !Typ.cast_refl in isif.
          

          assert (H25: c1 <? PArray.length t_atom).
          apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq10. discriminate.
          apply H2 in H25.
          rewrite Heq10 in H25.
          simpl in H25.
          rewrite !andb_true_iff in H25.
          destruct H25 as (((H25, H29), H28), H27).
          unfold get_type', v_type in H25, H27, H28, H29.

          case_eq (t_interp .[ c1]).
          intros v_typec1' v_valc1' Htic1'. rewrite Htic1' in H25.
          case_eq v_typec1'; intros; rewrite H10 in H25; try now contradict H25.
          rewrite andb_true_iff in H25; destruct H25 as (H25a, H25b).

          case_eq (t_interp .[ e1]).
          intros v_typee1 v_vale1 Htie1. rewrite Htie1 in H29.
          case_eq (t_interp .[ e2]).
          intros v_typee2 v_vale2 Htie2. rewrite Htie2 in H28.
          case_eq (t_interp .[ e3]).
          intros v_typee3 v_vale3 Htie3. rewrite Htie3 in H27.
          pose proof Htic1' as Htic1''.
          rewrite Atom.t_interp_wf in Htic1', Htie1, Htie2, Htie3; trivial.
          rewrite Heq10 in Htic1'. simpl in Htic1'.
          rewrite !Atom.t_interp_wf in Htic1'; trivial.
          rewrite Htie1, Htie2, Htie3 in Htic1'. simpl in Htic1'.

          apply Typ.eqb_spec in H25a. apply Typ.eqb_spec in H25b.
          apply Typ.eqb_spec in H27.  apply Typ.eqb_spec in H28.
          apply Typ.eqb_spec in H29.

          generalize dependent v_vale1. generalize dependent v_vale2.
          generalize dependent v_vale3. generalize dependent v_valc1'.
          rewrite H27, H28, H29.
          rewrite !Typ.cast_refl. intros. simpl in Htic1'.
          unfold Bval in Htic1'.


          generalize dependent v_vale1. generalize dependent v_vale2.
          generalize dependent v_vale3. generalize dependent v_valc1'.

          rewrite H25a, H25b, H10. intros.
          specialize (Atom.Bval_inj2 t_i (Typ.TFArray t1 t2)
            (@store _ _
                   (Typ.dec_interp t_i t1)
                   _ _ _ (Typ.comp_interp t_i t2) _
                   v_vale1 v_vale2 v_vale3) (v_valc1')).
          intro H25. specialize (H25 Htic1').
          
          unfold Atom.interp_form_hatom, interp_hatom.
          rewrite !Atom.t_interp_wf; trivial.
          rewrite Heq6. simpl.
          rewrite !Atom.t_interp_wf; trivial.
          rewrite Heq7, Heq8. simpl.
          rewrite !Atom.t_interp_wf; trivial.

          rewrite Htid1, Htic2, Htic1, Htid2.
          subst. intros. simpl.
          rewrite !Typ.cast_refl.
          unfold apply_binop.
          unfold Bval.
          rewrite !Atom.t_interp_wf in Htib1''; trivial.
          rewrite Htib1 in Htib1''.
          inversion Htib1''.
          rewrite !Atom.t_interp_wf in Htib2''; trivial.
          rewrite Htib2 in Htib2''.
          inversion Htib2''.

          rewrite !Typ.cast_refl.

          unfold interp_bool. rewrite Typ.cast_refl.
          apply Typ.i_eqb_spec.

          rewrite !Atom.t_interp_wf in Htic1''; trivial.
          rewrite Htic1 in Htic1''.
          inversion Htic1''.

          subst.
          rewrite (Atom.Bval_inj2 _ _ (v_valc1) (store v_vale1 v_vale2 v_vale3) Htic1'').
          
          rewrite Htie1 in Htid1.


          rewrite (Atom.Bval_inj2 t_i (Typ.TFArray t1 t2) (v_vale1) (v_vald1) Htid1).

          apply Typ.i_eqb_spec_false in isif.

          rewrite !Atom.t_interp_wf in Htic2''; trivial.

          destruct Heq11c as [((Heq11c1,Heq11c2),Heq11c3) | ((Heq11c1,Heq11c2),Heq11c3) ];
            subst; intros;

              rewrite Htid2 in Htic2;
              rewrite <- (Atom.Bval_inj2 _ _  (v_vald2) (v_valc2) Htic2) in *.
          
          + rewrite Htie2 in Htia1.
            rewrite Htia2 in Htic2''.
            rewrite <- (Atom.Bval_inj2 _ _ _ _ Htia1) in *.
            rewrite (Atom.Bval_inj2 _ _ _ _ Htic2'') in *.
            now apply read_over_other_write.

          + rewrite Htie2 in Htia2.
            rewrite Htia1 in Htic2''.
            rewrite <- (Atom.Bval_inj2 _ _ _ _ Htia2) in *.
            rewrite (Atom.Bval_inj2 _ _ _ _ Htic2'') in *.
            apply read_over_other_write; now auto.
    Qed.

  Lemma valid_check_ext lres : C.valid rho (check_ext lres).
    unfold check_ext, eq_sel_sym.
    case_eq (Lit.is_pos lres); intro Heq; simpl; try now apply C.interp_true.
    case_eq (t_form .[ Lit.blit lres]); try (intros; now apply C.interp_true).
    intros a Heq2.
    case_eq (length a =? 2); [ intros Heq3 | intros Heq3; now apply C.interp_true].
    case_eq (Lit.is_pos (a .[ 0]) && negb (Lit.is_pos (a .[ 1])));
      [ intros Heq4 | intros Heq4; now apply C.interp_true].
    case_eq (t_form .[ Lit.blit (a .[0])]); try (intros; now apply C.interp_true).
    intros b Heq5.
    case_eq (t_form .[ Lit.blit (a .[1])]); try (intros; now apply C.interp_true).
    intros c Heq6.
    case_eq (t_atom .[ b]); try (intros; now apply C.interp_true).
    intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] b1 b2 Heq7; try (intros; now apply C.interp_true).
    case_eq t; try (intros; now apply C.interp_true). intros t0 t1 Heq8.
    case_eq (t_atom .[ c]); try (intros; now apply C.interp_true).
    intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] c1 c2 Heq9; try (intros; now apply C.interp_true).
    case_eq (Typ.eqb t1 t2); [ intros Heq10 | intros Heq10; now apply C.interp_true].
    case_eq (t_atom .[ c1]); try (intros; now apply C.interp_true).
    intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] d1 d2 Heq11; try (intros; now apply C.interp_true).
    case_eq (t_atom .[ c2]); try (intros; now apply C.interp_true).
    intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] e1 e2 Heq12; try (intros; now apply C.interp_true).
    case_eq (t_atom .[ d2]);
      try (intros; rewrite !andb_false_r; simpl; now apply C.interp_true).
    intros [ | | | | | | | |N|N|N|N|N|N|N|N| | | | ] f1 f2 Heq14;
      try (intros; rewrite !andb_false_r; simpl; now apply C.interp_true).
    case_eq (Typ.eqb t0 t3 && Typ.eqb t0 t5 && Typ.eqb t1 t4 && Typ.eqb t1 t6);
      [ intros Heq13'| intro; now apply C.interp_true].
    simpl.
    case_eq (Typ.eqb t0 t7 && Typ.eqb t1 t8);
      [ intros Heq14'| intro; rewrite !andb_false_r; simpl; now apply C.interp_true].
    simpl.
    case_eq ((b1 =? d1) && (b2 =? e1) && (d2 =? e2) && ((f1 =? b1) && (f2 =? b2))
             || (b2 =? d1) && (b1 =? e1) && (d2 =? e2) && ((f1 =? b2) && (f2 =? b1)));
        [ intros Heq1314 | intro; now apply C.interp_true].

    unfold C.valid. simpl. rewrite orb_false_r.

    rewrite orb_true_iff in Heq1314.
    rewrite !andb_true_iff in Heq13'.
    rewrite !andb_true_iff in Heq14'.
    rewrite !andb_true_iff in Heq1314.
    destruct Heq13' as (((Heq13, Heq13f), Heq13a), Heq13d).
    destruct Heq14' as (Heq15, Heq15a).

    apply Typ.eqb_spec in Heq13.
    apply Typ.eqb_spec in Heq13f.
    apply Typ.eqb_spec in Heq13a.
    apply Typ.eqb_spec in Heq13d.
    apply Typ.eqb_spec in Heq15.
    apply Typ.eqb_spec in Heq15a.
    subst t3 t5 t4 t6 t7 t8.
    rewrite !Int63.eqb_spec in Heq1314.

    unfold Lit.interp. rewrite Heq.
    unfold Var.interp.
    rewrite !wf_interp_form; trivial. rewrite Heq2. simpl.
    rewrite afold_left_or.
    unfold to_list.
    rewrite Int63.eqb_spec in Heq3.
    rewrite Heq3.

    (* simpl. *)
    rewrite foldi_lt_r by reflexivity.
    rewrite foldi_lt_r by reflexivity.
    rewrite foldi_ge by reflexivity.
    change (2 - 1) with 1; change (2 - 1 - 1) with 0.

    simpl. rewrite orb_false_r.
    assert (1 - 1 = 0) as Has2. { auto. }
                                rewrite Has2.

    case_eq (Lit.interp rho (a .[ 0])). intro Hisa0.
    rewrite orb_true_l. easy. intro Hisa. rewrite orb_false_l.

    pose proof (rho_interp (Lit.blit (a .[ 0]))).
    pose proof (rho_interp (Lit.blit (a .[ 1]))).

    rewrite Heq5 in H. rewrite Heq6 in H0.
    simpl in H, H0.
    unfold Lit.interp.
    rewrite andb_true_iff in Heq4.
    destruct Heq4 as (Heq4, Heq4a).
    apply negb_true_iff in Heq4a.

    unfold Lit.interp in Hisa.
    rewrite Heq4 in Hisa. unfold Var.interp in Hisa.
    rewrite Hisa in H. symmetry in H.
    rewrite Heq4a.
    unfold Var.interp.
    rewrite H0.

    generalize wt_t_atom. unfold Atom.wt. unfold is_true.
    rewrite aforallbi_spec;intros.

    (* b *)
    pose proof (H1 b). assert (b <? PArray.length t_atom).
    apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq7. easy.
    specialize (H2 H3). simpl in H2.
    rewrite Heq7 in H2. simpl in H2.
    rewrite !andb_true_iff in H2. destruct H2. destruct H2.
    unfold get_type' in H2, H4, H5. unfold v_type in H2, H4, H5.

    case_eq (t_interp .[ b]).
    intros v_typeb v_valb Htib. rewrite Htib in H2.
    pose proof Htib as Htib''.
    case_eq v_typeb; intros; rewrite H6 in H2; try now contradict H2.

    case_eq (t_interp .[ b1]).
    intros v_typeb1 v_valb1 Htib1. rewrite Htib1 in H5.
    pose proof Htib1 as Htib1''.
    case_eq (t_interp .[ b2]).
    intros v_typeb2 v_valb2 Htib2. rewrite Htib2 in H4.
    pose proof Htib2 as Htib2''.
    rewrite Atom.t_interp_wf in Htib; trivial.
    rewrite Atom.t_interp_wf in Htib1; trivial.
    rewrite Atom.t_interp_wf in Htib2; trivial.
    rewrite Heq7 in Htib. simpl in Htib.
    rewrite !Atom.t_interp_wf in Htib; trivial.
    rewrite Htib1, Htib2 in Htib.
    unfold apply_binop in Htib.
    apply Typ.eqb_spec in H4.
    apply Typ.eqb_spec in H5.

    generalize dependent v_valb1. generalize dependent v_valb2.
    generalize dependent v_valb.
    rewrite H4, H5, H6. rewrite !Typ.cast_refl. intros.

    specialize (Atom.Bval_inj2 t_i (Typ.Tbool) (Typ.i_eqb t_i t v_valb1 v_valb2) (v_valb)).
    intros. specialize (H7 Htib).

    (* c *)
    pose proof (H1 c). assert (c <? PArray.length t_atom).
    apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq9. easy.
    specialize (H8 H9). simpl in H8.
    rewrite Heq9 in H8. simpl in H8.
    rewrite !andb_true_iff in H8. destruct H8. destruct H8.
    unfold get_type' in H8, H10, H11. unfold v_type in H8, H10, H11.

    case_eq (t_interp .[ c]).
    intros v_typec v_valc Htic. rewrite Htic in H8.
    pose proof Htic as Htic''.
    case_eq v_typec; intros; rewrite H12 in H8; try now contradict H8.

    case_eq (t_interp .[ c1]).
    intros v_typec1 v_valc1 Htic1. rewrite Htic1 in H11.
    case_eq (t_interp .[ c2]).
    intros v_typec2 v_valc2 Htic2. rewrite Htic2 in H10.
    rewrite Atom.t_interp_wf in Htic; trivial.
    rewrite Atom.t_interp_wf in Htic1; trivial.
    rewrite Atom.t_interp_wf in Htic2; trivial.
    rewrite Heq9 in Htic. simpl in Htic.
    rewrite !Atom.t_interp_wf in Htic; trivial.
    rewrite Htic1, Htic2 in Htic. simpl in Htic.

    apply Typ.eqb_spec in H10. apply Typ.eqb_spec in H11.

    generalize dependent v_valc1. generalize dependent v_valc2.
    generalize dependent v_valc.
    rewrite H10, H11, H12.
    rewrite !Typ.cast_refl. intros. simpl in Htic.
    unfold Bval in Htic.

    specialize (Atom.Bval_inj2 t_i (Typ.Tbool) (Typ.i_eqb t_i t2 v_valc1 v_valc2) (v_valc)).
    intros. specialize (H13 Htic).

    (* c1 *)
    pose proof (H1 c1). assert (c1 <? PArray.length t_atom).
    apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq11. easy.
    specialize (H14 H15). simpl in H14.
    rewrite Heq11 in H14. simpl in H14.
    rewrite !andb_true_iff in H14. destruct H14. destruct H14.
    unfold get_type' in H14, H16, H17. unfold v_type in H14, H16, H17.

    case_eq (t_interp .[ c1]).
    intros v_typec1' v_valc1' Htic1'. rewrite Htic1' in H14.
    pose proof Htic1' as Htic1'''.

    case_eq (t_interp .[ d1]).
    intros v_typed1 v_vald1 Htid1. rewrite Htid1 in H17.
    case_eq (t_interp .[ d2]).
    intros v_typed2 v_vald2 Htid2. rewrite Htid2 in H16.
    rewrite Atom.t_interp_wf in Htic1'; trivial.
    rewrite Atom.t_interp_wf in Htid1; trivial.
    rewrite Atom.t_interp_wf in Htid2; trivial.
    rewrite Heq11 in Htic1'. simpl in Htic1'.
    rewrite !Atom.t_interp_wf in Htic1'; trivial.
    rewrite Htid1, Htid2 in Htic1'. simpl in Htic1'.

    apply Typ.eqb_spec in H14. apply Typ.eqb_spec in H16.
    apply Typ.eqb_spec in H17.

    generalize dependent v_vald1. generalize dependent v_vald2.
    generalize dependent v_valc1'.

    rewrite H14, H16, H17.
    unfold Bval. rewrite <- H14.
    rewrite !Typ.cast_refl. intros.

    specialize (Atom.Bval_inj2 t_i t1 (select v_vald1 v_vald2) (v_valc1')).
    intros. specialize (H18 Htic1').

    (* c2 *)
    pose proof (H1 c2). assert (c2 <? PArray.length t_atom).
    apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq12. easy.
    specialize (H19 H20). simpl in H19.
    rewrite Heq12 in H19. simpl in H19.
    rewrite !andb_true_iff in H19. destruct H19. destruct H19.
    unfold get_type' in H19, H21, H22. unfold v_type in H19, H21, H22.

    case_eq (t_interp .[ c2]).
    intros v_typec2' v_valc2' Htic2'. rewrite Htic2' in H19.
    pose proof Htic2' as Htic2'''.

    case_eq (t_interp .[ e1]).
    intros v_typee1 v_vale1 Htie1. rewrite Htie1 in H22.
    case_eq (t_interp .[ e2]).
    intros v_typee2 v_vale2 Htie2. rewrite Htie2 in H21.
    pose proof Htie2 as Htie2''.
    rewrite Atom.t_interp_wf in Htic2'; trivial.
    rewrite Atom.t_interp_wf in Htie1; trivial.
    rewrite Atom.t_interp_wf in Htie2; trivial.
    rewrite Heq12 in Htic2'. simpl in Htic2'.
    rewrite !Atom.t_interp_wf in Htic2'; trivial.
    rewrite Htie1, Htie2 in Htic2'. simpl in Htic2'.

    apply Typ.eqb_spec in H19. apply Typ.eqb_spec in H21.
    apply Typ.eqb_spec in H22.

    generalize dependent v_valc1'. generalize dependent v_valc2'.
    generalize dependent v_vale1. generalize dependent v_vale2.

    rewrite H21. rewrite H19 in *. rewrite H22.
    unfold Bval. rewrite <- H19.
    rewrite !Typ.cast_refl. intros.

    specialize (Atom.Bval_inj2 t_i t1 (select v_vale1 v_vale2) (v_valc2')).
    intros. specialize (H23 Htic2').

    (* d2 *)
    pose proof (H1 d2). assert (d2 <? PArray.length t_atom).
    apply PArray.get_not_default_lt. rewrite def_t_atom. rewrite Heq14. easy.
    specialize (H24 H25). simpl in H24.
    rewrite Heq14 in H24. simpl in H24.
    rewrite !andb_true_iff in H24. destruct H24. destruct H24.
    unfold get_type' in H24, H26, H27. unfold v_type in H24, H26, H27.

    case_eq (t_interp .[ d2]).
    intros v_typed2' v_vald2' Htid2'. rewrite Htid2' in H24.
    pose proof Htid2' as Htid2'''.

    case_eq (t_interp .[ f1]).
    intros v_typef1 v_valf1 Htif1. rewrite Htif1 in H27.
    case_eq (t_interp .[ f2]).
    intros v_typef2 v_valf2 Htif2. rewrite Htif2 in H26.
    rewrite Atom.t_interp_wf in Htid2'; trivial.
    rewrite Atom.t_interp_wf in Htif1; trivial.
    rewrite Atom.t_interp_wf in Htif2; trivial.
    rewrite Heq14 in Htid2'. simpl in Htid2'.
    rewrite !Atom.t_interp_wf in Htid2'; trivial.
    rewrite Htif1, Htif2 in Htid2'. simpl in Htid2'.

    apply Typ.eqb_spec in H24. apply Typ.eqb_spec in H26.
    apply Typ.eqb_spec in H27.

    generalize dependent v_valf1. generalize dependent v_valf2.
    generalize dependent v_vald2'.

    rewrite H24, H26, H27.
    unfold Bval. rewrite <- H24.
    rewrite !Typ.cast_refl. intros.

    specialize (Atom.Bval_inj2 t_i t0 (@diff _ _
       (Typ.dec_interp t_i t0)
       _ _ (Typ.dec_interp t_i v_typec2') _ (Typ.comp_interp t_i v_typec2') (Typ.inh_interp t_i t0) _
       v_valf1 v_valf2) (v_vald2')).
    intros. specialize (H28 Htid2').

    (* semantics *)

    unfold Atom.interp_form_hatom, interp_hatom.
    rewrite !Atom.t_interp_wf; trivial.
    rewrite Heq9. simpl.
    rewrite !Atom.t_interp_wf; trivial.
    rewrite  Heq11, Heq12. simpl.

    unfold apply_binop.
    rewrite !Atom.t_interp_wf; trivial.
    rewrite Htid1, Heq14, Htie1, Htie2.
    rewrite !Typ.cast_refl.
    simpl. (* (* native-coq compatibility *) unfold interp_atom. *)
    rewrite !Atom.t_interp_wf; trivial.
    rewrite Htif1, Htif2. simpl.
    rewrite !Typ.cast_refl. simpl.

    rewrite !Atom.t_interp_wf in Htid2'''; trivial.
    rewrite Htid2 in Htid2'''.
    inversion Htid2'''.

    rewrite !Atom.t_interp_wf in Htic1'''; trivial.
    rewrite Htic1 in Htic1'''.
    inversion Htic1'''.

    rewrite !Atom.t_interp_wf in Htic2'''; trivial.
    rewrite Htic2 in Htic2'''.
    inversion Htic2'''.

    generalize dependent v_valc1. generalize dependent v_valc2.
    generalize dependent v_valc1'. generalize dependent v_valc2'.
    generalize dependent v_vald1. generalize dependent v_vald2.

    subst.
    rewrite !Typ.cast_refl. simpl.
    rewrite !Typ.cast_refl. intros. simpl.

    apply negb_true_iff.
    apply Typ.i_eqb_spec_false.
    subst.

    specialize (Atom.Bval_inj2 t_i v_typed2' v_vald2 (@diff
             _
             _
             (@EqbToDecType
                (@type_compdec
                   (@projT1 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typed2'))
                   (@projT2 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typed2')))
                (@eqbtype_of_compdec
                   (@type_compdec
                      (@projT1 Type (fun ty : Type => CompDec ty)
                         (Typ.interp_compdec_aux t_i v_typed2'))
                      (@projT2 Type (fun ty : Type => CompDec ty)
                         (Typ.interp_compdec_aux t_i v_typed2')))
                   (@projT2 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typed2'))))
             (@ord_of_compdec
                (@type_compdec
                   (@projT1 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typed2'))
                   (@projT2 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typed2')))
                (@projT2 Type (fun ty : Type => CompDec ty)
                   (Typ.interp_compdec_aux t_i v_typed2')))
             (@comp_of_compdec
                (@type_compdec
                   (@projT1 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typed2'))
                   (@projT2 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typed2')))
                (@projT2 Type (fun ty : Type => CompDec ty)
                   (Typ.interp_compdec_aux t_i v_typed2')))
             (@EqbToDecType
                (@type_compdec
                   (@projT1 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typec1'))
                   (@projT2 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typec1')))
                (@eqbtype_of_compdec
                   (@type_compdec
                      (@projT1 Type (fun ty : Type => CompDec ty)
                         (Typ.interp_compdec_aux t_i v_typec1'))
                      (@projT2 Type (fun ty : Type => CompDec ty)
                         (Typ.interp_compdec_aux t_i v_typec1')))
                   (@projT2 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typec1'))))
             (@ord_of_compdec
                (@type_compdec
                   (@projT1 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typec1'))
                   (@projT2 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typec1')))
                (@projT2 Type (fun ty : Type => CompDec ty)
                   (Typ.interp_compdec_aux t_i v_typec1')))
             (@comp_of_compdec
                (@type_compdec
                   (@projT1 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typec1'))
                   (@projT2 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typec1')))
                (@projT2 Type (fun ty : Type => CompDec ty)
                   (Typ.interp_compdec_aux t_i v_typec1')))
             (@inh_of_compdec
                (@type_compdec
                   (@projT1 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typed2'))
                   (@projT2 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typed2')))
                (@projT2 Type (fun ty : Type => CompDec ty)
                   (Typ.interp_compdec_aux t_i v_typed2')))
             (@inh_of_compdec
                (@type_compdec
                   (@projT1 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typec1'))
                   (@projT2 Type (fun ty : Type => CompDec ty)
                      (Typ.interp_compdec_aux t_i v_typec1')))
                (@projT2 Type (fun ty : Type => CompDec ty)
                   (Typ.interp_compdec_aux t_i v_typec1'))) v_valf1 v_valf2)).
    intros H5. specialize (H5 Htid2''').
    rewrite <- H5.
    specialize (Atom.Bval_inj2 t_i v_typed2' (v_vale2) (v_vald2)).
    intros.

    unfold Atom.interp_form_hatom, interp_hatom in H.
    rewrite !Atom.t_interp_wf in H; trivial.
    rewrite Heq7 in H. simpl in H.
    rewrite !Atom.t_interp_wf in H; trivial.
    rewrite Htib1, Htib2 in H. simpl in H.
    rewrite !Typ.cast_refl in H. simpl in H.
    apply Typ.i_eqb_spec_false in H.


    destruct Heq1314 as [Heq1314 | Heq1314];
      destruct Heq1314 as (((Heq13a, Heq13b), Heq13c), (Heq13d, Heq13e));
      subst.

    - rewrite Htie2 in Htid2.
      rewrite Htid1 in Htib1.
      rewrite Htie1 in Htib2.
      rewrite Htid1 in Htif1.
      rewrite Htie1 in Htif2.

      rewrite (Atom.Bval_inj2 t_i _ _ _ Htib1) in *.
      rewrite (Atom.Bval_inj2 t_i _ _ _ Htib2) in *.
      rewrite (Atom.Bval_inj2 t_i _ _ _ Htif1) in *.
      rewrite (Atom.Bval_inj2 t_i _ _ _ Htif2) in *.
      rewrite (Atom.Bval_inj2 t_i _ _ _ Htid2) in *.

      now apply select_at_diff.

    - rewrite Htie2 in Htid2.
      rewrite Htid1 in Htib2.
      rewrite Htie1 in Htib1.
      rewrite Htid1 in Htif1.
      rewrite Htie1 in Htif2.

      rewrite (Atom.Bval_inj2 t_i _ _ _ Htib1) in *.
      rewrite (Atom.Bval_inj2 t_i _ _ _ Htib2) in *.
      rewrite (Atom.Bval_inj2 t_i _ _ _ Htif1) in *.
      rewrite (Atom.Bval_inj2 t_i _ _ _ Htif2) in *.
      rewrite (Atom.Bval_inj2 t_i _ _ _ Htid2) in *.

      apply select_at_diff.
      red in H. red. intro. apply H. auto.
  Qed.
  
  End Correct.

End certif.