aboutsummaryrefslogtreecommitdiffstats
path: root/src/array/FArray_ord.v
blob: ffe2eaa86b7863da1e9ff609cb08d3467e05aa88 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
(**************************************************************************)
(*                                                                        *)
(*     SMTCoq                                                             *)
(*     Copyright (C) 2011 - 2021                                          *)
(*                                                                        *)
(*     See file "AUTHORS" for the list of authors                         *)
(*                                                                        *)
(*   This file is distributed under the terms of the CeCILL-C licence     *)
(*                                                                        *)
(**************************************************************************)


Require Import SetoidList Bool OrderedType OrdersLists RelationPairs Orders.
(* Require Import List Bool NArith Psatz Int63. *)
Require Import RelationClasses.


Class DecType T := {
 eq_refl : forall x : T, x = x;
 eq_sym : forall x y : T, x = y -> y = x;
 eq_trans : forall x y z : T, x = y -> y = z -> x = z;
 eq_dec : forall x y : T, { x = y } + { x <> y }
}.

Hint Immediate eq_sym.
Hint Resolve eq_refl eq_trans.

Class OrdType T := {
  lt: T -> T -> Prop;
  lt_trans : forall x y z : T, lt x y -> lt y z -> lt x z;
  lt_not_eq : forall x y : T, lt x y -> ~ eq x y
  (* compare : forall x y : T, Compare lt eq x y *)
}.

Hint Resolve lt_not_eq lt_trans.

(* Global Instance Comparable T `(OrdType T) : *)

Class Comparable T {ot:OrdType T} := {
  compare : forall x y : T, Compare lt eq x y
}.


Set Implicit Arguments.



Module Raw.
  
  Section Array.

  
  Variable key : Type.
  Variable elt : Type.
  Variable key_dec : DecType key.
  Variable key_ord : OrdType key.
  Variable key_comp : Comparable key.
  Variable elt_dec : DecType elt.
  Variable elt_ord : OrdType elt.

  Definition eqb_key (x y : key) : bool := if eq_dec x y then true else false.
  Definition eqb_elt (x y : elt) : bool := if eq_dec x y then true else false.

  Lemma eqb_key_eq x y : eqb_key x y = true <-> x = y.
  Proof. unfold eqb_key. case (eq_dec x y); split; easy. Qed.

  Lemma eqb_elt_eq x y : eqb_elt x y = true <-> x = y.
  Proof. unfold eqb_elt. case (eq_dec x y); split; easy. Qed.

  Hint Immediate eqb_key_eq eqb_elt_eq.
  
  Definition farray := list (key * elt).

  Definition eqk (a b : (key * elt)) := fst a = fst b.
  Definition eqe (a b : (key * elt)) := snd a = snd b.
  Definition eqke (a b : (key * elt)) := fst a = fst b /\ snd a = snd b.

  Definition ltk (a b : (key * elt)) := lt (fst a) (fst b).

  (* Definition ltke (a b : (key * elt)) := *)
  (*   lt (fst a) (fst b) \/ ( (fst a) = (fst b) /\ lt (snd a) (snd b)). *)
  
  Hint Unfold ltk (* ltke *) eqk eqke.
  Hint Extern 2 (eqke ?a ?b) => split.


  Global Instance StrictOrder_OrdType T `(OrdType T) :
    StrictOrder (lt : T -> T -> Prop).
  Proof.
    split.
    unfold Irreflexive, Reflexive, complement.
    intros. apply lt_not_eq in H0; auto.
    unfold Transitive. intros x y z. apply lt_trans.
  Qed.
  
  Check (lt : key -> key -> Prop).
  
  Global Instance lt_key_strorder : StrictOrder (lt : key -> key -> Prop).
  Proof. apply StrictOrder_OrdType. Qed.

  Global Instance lt_elt_strorder : StrictOrder (lt : elt -> elt -> Prop).
  Proof. apply StrictOrder_OrdType. Qed.

  
  Global Instance ke_dec : DecType (key * elt).
  Proof.
    split; auto.
    intros; destruct x, y, z.
    inversion H. inversion H0. trivial.
    intros; destruct x, y.
    destruct (eq_dec k k0).
    destruct (eq_dec e e0).
    left; rewrite e1, e2; auto.
    right; unfold not in *. intro; inversion H. exact (n H2).
    right; unfold not in *. intro; inversion H. exact (n H1).
  Qed.

  Global Instance ke_ord: OrdType (key * elt).
  Proof.
    exists ltk; unfold ltk; intros.
    apply (lt_trans _ (fst y)); auto.
    destruct x, y. simpl in H.
    unfold not. intro. inversion H0.
    apply (lt_not_eq k k0); auto.
  Qed.


  (* ltk ignore the second components *)

   Lemma ltk_right_r : forall x k e e', ltk x (k,e) -> ltk x (k,e').
   Proof. auto. Qed.

   Lemma ltk_right_l : forall x k e e', ltk (k,e) x -> ltk (k,e') x.
   Proof. auto. Qed.
   Hint Immediate ltk_right_r ltk_right_l.


  
  
  Notation Sort := (sort ltk).
  Notation Inf := (lelistA (ltk)).
  
  Definition MapsTo (k:key)(e:elt):= InA eqke (k,e).
  Definition In k m := exists e:elt, MapsTo k e m.

  Notation NoDupA := (NoDupA eqk).

  Hint Unfold MapsTo In.

  
  (* Instance ke_ord: OrdType (key * elt). *)
  (* Proof. *)
  (*   exists ltke. *)
  (*   unfold ltke. intros. *)
  (*   destruct H, H0. *)
  (*   left; apply (lt_trans _ (fst y)); auto. *)
  (*   destruct H0. left. rewrite <- H0. assumption. *)
  (*   destruct H. left. rewrite H. assumption. *)
  (*   destruct H, H0. *)
  (*   right. split. *)
  (*   apply (eq_trans _ (fst y)); trivial. *)
  (*   apply (lt_trans _ (snd y)); trivial. *)
  (*   unfold ltke. intros. *)
  (*   destruct x, y. simpl in H. *)
  (*   destruct H. *)
  (*   apply lt_not_eq in H. *)
  (*   unfold not in *. intro. inversion H0. apply H. trivial. *)
  (*   destruct H. apply lt_not_eq in H0. unfold not in *. intro.  *)
  (*   inversion H1. apply H0; trivial. *)
  (*   intros. *)
  (*   unfold ltke. *)
  (*   destruct (compare (fst x) (fst y)). *)
  (*   apply LT. left; assumption. *)
  (*   destruct (compare (snd x) (snd y)). *)
  (*   apply LT. right; split; assumption. *)
  (*   apply EQ. destruct x, y. simpl in *. rewrite e, e0; trivial. *)
  (*   apply GT. right; symmetry in e; split; assumption. *)
  (*   apply GT. left; assumption. *)
  (* Qed. *)

  
  (* Hint Immediate ke_ord. *)
  (* Let ke_ord := ke_ord. *)

  (* Instance keyelt_ord: OrdType (key * elt). *)


  (* Variable keyelt_ord : OrdType (key * elt). *)
   (* eqke is stricter than eqk *)

   Lemma eqke_eqk : forall x x', eqke x x' -> eqk x x'.
   Proof.
     unfold eqk, eqke; intuition.
   Qed.

  (* eqk, eqke are equalities *)

  Lemma eqk_refl : forall e, eqk e e.
  Proof. auto. Qed.

  Lemma eqke_refl : forall e, eqke e e.
  Proof. auto. Qed.

  Lemma eqk_sym : forall e e', eqk e e' -> eqk e' e.
  Proof. auto. Qed.

  Lemma eqke_sym : forall e e', eqke e e' -> eqke e' e.
  Proof. unfold eqke; intuition. Qed.

  Lemma eqk_trans : forall e e' e'', eqk e e' -> eqk e' e'' -> eqk e e''.
  Proof. eauto. Qed.

  Lemma eqke_trans : forall e e' e'', eqke e e' -> eqke e' e'' -> eqke e e''.
  Proof.
    unfold eqke; intuition; [ eauto | congruence ].
  Qed.
   
  Lemma ltk_trans : forall e e' e'', ltk e e' -> ltk e' e'' -> ltk e e''.
  Proof. eauto. Qed.

  Lemma ltk_not_eqk : forall e e', ltk e e' -> ~ eqk e e'.
  Proof. unfold ltk, eqk. intros. apply lt_not_eq; auto. Qed.

  Lemma ltk_not_eqke : forall e e', ltk e e' -> ~eqke e e'.
  Proof.
    unfold eqke, ltk; intuition; simpl in *; subst.
    apply lt_not_eq in H. auto.
  Qed.
  

  Hint Resolve eqk_trans eqke_trans eqk_refl eqke_refl.
  Hint Resolve ltk_trans ltk_not_eqk ltk_not_eqke.
  Hint Immediate eqk_sym eqke_sym.


  
  Global Instance eqk_equiv : Equivalence eqk.
  Proof. split; eauto. Qed.

  Global Instance eqke_equiv : Equivalence eqke.
  Proof. split; eauto. Qed.



  Global Instance ltk_strorder : StrictOrder ltk.
  Proof.
    split.
    unfold Irreflexive, Reflexive, complement.
    intros. apply lt_not_eq in H; auto.
    unfold Transitive. intros x y z. apply lt_trans.
  Qed.


  (* Instance ltke_strorder : StrictOrder ltke. *)
  (* Proof. *)
  (*   split. *)
  (*   unfold Irreflexive, Reflexive, complement. *)
  (*   intros. apply lt_not_eq in H; auto. *)
  (*   unfold Transitive. apply lt_trans. *)
  (* Qed. *)

  Global Instance eq_equiv : @Equivalence (key * elt) eq.
  Proof.
    split; auto.
    unfold Transitive. apply eq_trans.
  Qed.
    
  (* Instance ltke_compat : Proper (eq ==> eq ==> iff) ltke. *)
  (* Proof. *)
  (*   split; rewrite H, H0; trivial. *)
  (* Qed. *)
    
  Global Instance ltk_compat : Proper (eq ==> eq ==> iff) ltk.
  Proof.
    split; rewrite H, H0; trivial.
  Qed.

  
  Global Instance ltk_compatk : Proper (eqk==>eqk==>iff) ltk.
  Proof.
  intros (x,e) (x',e') Hxx' (y,f) (y',f') Hyy'; compute.
   compute in Hxx'; compute in Hyy'. rewrite Hxx', Hyy'; auto.
  Qed.

  Global Instance ltk_compat' : Proper (eqke==>eqke==>iff) ltk.
  Proof.
  intros (x,e) (x',e') (Hxx',_) (y,f) (y',f') (Hyy',_); compute.
   compute in Hxx'; compute in Hyy'. rewrite Hxx', Hyy'; auto.
  Qed.


  Global Instance ltk_asym : Asymmetric ltk.
  Proof. apply (StrictOrder_Asymmetric ltk_strorder). Qed.
    

  (* Additional facts *)

  Lemma eqk_not_ltk : forall x x', eqk x x' -> ~ltk x x'.
  Proof.
    unfold eqk, ltk.
    unfold not. intros x x' H.
    destruct x, x'. simpl in *.
    intro.
    symmetry in H.
    apply lt_not_eq in H. auto.
    subst. auto.
  Qed.

  
  Lemma ltk_eqk : forall e e' e'', ltk e e' -> eqk e' e'' -> ltk e e''.
  Proof. unfold ltk, eqk. destruct e, e', e''. simpl.
    intros; subst; trivial.
  Qed.

  Lemma eqk_ltk : forall e e' e'', eqk e e' -> ltk e' e'' -> ltk e e''.
  Proof.
    intros (k,e) (k',e') (k'',e'').
    unfold ltk, eqk; simpl; intros; subst; trivial.
  Qed.
  Hint Resolve eqk_not_ltk.
  Hint Immediate ltk_eqk eqk_ltk.
  
  Lemma InA_eqke_eqk :
     forall x m, InA eqke x m -> InA eqk x m.
  Proof.
    unfold eqke; induction 1; intuition.
  Qed.

  Hint Resolve InA_eqke_eqk.

  (* Lemma InA_eqk : forall p q m, eqk p q -> InA eqk p m -> InA eqk q m. *)
  (* Proof. *)
  (*  intros; apply InA_eqA with p; auto with *. *)
  (* Qed. *)

  (* Lemma In_eq : forall l x y, eq x y -> InA eqke x l -> InA eqke y l. *)
  (* Proof. intros. rewrite <- H; auto. Qed. *)

  (* Lemma ListIn_In : forall l x, List.In x l -> InA eqk x l. *)
  (* Proof. apply In_InA. split; auto. unfold Transitive. *)
  (*   unfold eqk; intros. rewrite H, <- H0. auto. *)
  (* Qed. *)
  
  (* Lemma Inf_lt : forall l x y, ltk x y -> Inf y l -> Inf x l. *)
  (* Proof. exact (InfA_ltA ltk_strorder). Qed. *)

  (* Lemma Inf_eq : forall l x y, x = y -> Inf y l -> Inf x l. *)
  (* Proof. exact (InfA_eqA eq_equiv ltk_compat). Qed. *)



  (* An alternative formulation for [In k l] is [exists e, InA eqk (k,e) l] *)

  Lemma In_alt : forall k l, In k l <-> exists e, InA eqk (k,e) l.
  Proof.
  firstorder.
  exists x; auto.
  induction H.
  destruct y.
  exists e; auto.
  destruct IHInA as [e H0].
  exists e; auto.
  Qed.

  Lemma MapsTo_eq : forall l x y e, eq x y -> MapsTo x e l -> MapsTo y e l.
  Proof.
  intros; unfold MapsTo in *; apply InA_eqA with (x,e); eauto with *.
  Qed.

  Lemma In_eq : forall l x y, eq x y -> In x l -> In y l.
  Proof.
  destruct 2 as (e,E); exists e; eapply MapsTo_eq; eauto.
  Qed.

  Lemma Inf_eq : forall l x x', eqk x x' -> Inf x' l -> Inf x l.
  Proof. exact (InfA_eqA eqk_equiv ltk_compatk). Qed.

  Lemma Inf_lt : forall l x x', ltk x x' -> Inf x' l -> Inf x l.
  Proof. exact (InfA_ltA ltk_strorder). Qed.

  Hint Immediate Inf_eq.
  Hint Resolve Inf_lt.

  

  Lemma Sort_Inf_In :
    forall l p q, Sort l -> Inf q l -> InA eqk p l -> ltk q p.
  Proof.
    exact (SortA_InfA_InA eqk_equiv ltk_strorder ltk_compatk).
  Qed.


  
  Lemma Sort_Inf_NotIn :
    forall l k e, Sort l -> Inf (k,e) l ->  ~In k l.
  Proof.
    intros; red; intros.
    destruct H1 as [e' H2].
    elim (@ltk_not_eqk (k,e) (k,e')).
    eapply Sort_Inf_In; eauto.
    red; simpl; auto.
  Qed.

  Hint Resolve Sort_Inf_NotIn.
  
  Lemma Sort_NoDupA: forall l, Sort l -> NoDupA l.
  Proof.
    exact (SortA_NoDupA eqk_equiv ltk_strorder ltk_compatk).
  Qed.

  Lemma Sort_In_cons_1 : forall e l e', Sort (e::l) -> InA eqk e' l -> ltk e e'.
  Proof.
    inversion 1; intros; eapply Sort_Inf_In; eauto.
  Qed.

  Lemma Sort_In_cons_2 : forall l e e', Sort (e::l) -> InA eqk e' (e::l) ->
                                   ltk e e' \/ eqk e e'.
  Proof.
    inversion_clear 2; auto.
    left; apply Sort_In_cons_1 with l; auto.
  Qed.

  Lemma Sort_In_cons_3 :
    forall x l k e, Sort ((k,e)::l) -> In x l -> ~eq x k.
  Proof.
    inversion_clear 1; red; intros.
    destruct (Sort_Inf_NotIn H0 H1 (In_eq H2 H)).
  Qed.

  Lemma In_inv : forall k k' e l, In k ((k',e) :: l) -> eq k k' \/ In k l.
  Proof.
    inversion 1.
    inversion_clear H0; eauto.
    destruct H1; simpl in *; intuition.
  Qed.

  Lemma In_inv_2 : forall k k' e e' l,
      InA eqk (k, e) ((k', e') :: l) -> ~ eq k k' -> InA eqk (k, e) l.
  Proof.
    inversion_clear 1; compute in H0; intuition.
  Qed.

  Lemma In_inv_3 : forall x x' l,
      InA eqke x (x' :: l) -> ~ eqk x x' -> InA eqke x l.
  Proof.
    inversion_clear 1; compute in H0; intuition.
  Qed.

  Hint Resolve In_inv_2 In_inv_3.




  (** * FMAPLIST interface implementaion  *)




  (** * [empty] *)

  Definition empty : farray := nil.

  Definition Empty m := forall (a : key)(e:elt) , ~ MapsTo a e m.

  Lemma empty_1 : Empty empty.
  Proof.
    unfold Empty,empty.
    intros a e.
    intro abs.
    inversion abs.
  Qed.
  Hint Resolve empty_1.

  Lemma empty_sorted : Sort empty.
  Proof.
    unfold empty; auto.
  Qed.

  (** * [is_empty] *)

  Definition is_empty (l : farray) : bool := if l then true else false.

  Lemma is_empty_1 :forall m, Empty m -> is_empty m = true.
  Proof.
    unfold Empty, MapsTo.
    intros m.
    case m;auto.
    intros (k,e) l inlist.
    absurd (InA eqke (k, e) ((k, e) :: l));auto.
  Qed.

  Lemma is_empty_2 : forall m, is_empty m = true -> Empty m.
  Proof.
    intros m.
    case m;auto.
    intros p l abs.
    inversion abs.
  Qed.

  (** * [mem] *)

  Function mem (k : key) (s : farray) {struct s} : bool :=
    match s with
    | nil => false
    | (k',_) :: l =>
      match compare k k' with
      | LT _ => false
      | EQ _ => true
      | GT _ => mem k l
      end
    end.

  Lemma mem_1 : forall m (Hm:Sort m) x, In x m -> mem x m = true.
  Proof.
    intros m Hm x; generalize Hm; clear Hm.
    functional induction (mem x m);intros sorted belong1;trivial.

    inversion belong1. inversion H.

    absurd (In x ((k', _x) :: l));try assumption.
    apply Sort_Inf_NotIn with _x;auto.

    apply IHb.
    elim (sort_inv sorted);auto.
    elim (In_inv belong1);auto.
    intro abs.
    absurd (eq x k'); auto.
    symmetry in abs.
    apply lt_not_eq in abs; auto.
  Qed.

  Lemma mem_2 : forall m (Hm:Sort m) x, mem x m = true -> In x m.
  Proof.
    intros m Hm x; generalize Hm; clear Hm; unfold In,MapsTo.
    functional induction (mem x m); intros sorted hyp;try ((inversion hyp);fail).
    exists _x; auto.
    induction IHb; auto.
    exists x0; auto.
    inversion_clear sorted; auto.
  Qed.

  (** * [find] *)

  Function find (k:key) (s: farray) {struct s} : option elt :=
    match s with
    | nil => None
    | (k',x)::s' =>
      match compare k k' with
      | LT _ => None
      | EQ _ => Some x
      | GT _ => find k s'
      end
    end.

  Lemma find_2 :  forall m x e, find x m = Some e -> MapsTo x e m.
  Proof.
    intros m x. unfold MapsTo.
    functional induction (find x m);simpl;intros e' eqfind; inversion eqfind; auto.
  Qed.

  Lemma find_1 :  forall m (Hm:Sort m) x e, MapsTo x e m -> find x m = Some e.
  Proof.
    intros m Hm x e; generalize Hm; clear Hm; unfold MapsTo.
    functional induction (find x m);simpl; subst; try clear H_eq_1.

    inversion 2.

    inversion_clear 2.
    clear e1;compute in H0; destruct H0.
    apply lt_not_eq in H; auto. now contradict H.

    clear e1;generalize (Sort_In_cons_1 Hm (InA_eqke_eqk H0)); compute.
    (* order. *)
    intros.
    apply (lt_trans k') in _x; auto.
    apply lt_not_eq in _x.
    now contradict _x.
    
    clear e1;inversion_clear 2.
    compute in H0; destruct H0; intuition congruence.
    generalize (Sort_In_cons_1 Hm (InA_eqke_eqk H0)); compute.
    (* order. *)
    intros.
    apply lt_not_eq in H. now contradict H.
    
    clear e1; do 2 inversion_clear 1; auto.
    compute in H2; destruct H2.
    (* order. *)
    subst. apply lt_not_eq in _x. now contradict _x.
  Qed.

  (** * [add] *)

  Function add (k : key) (x : elt) (s : farray) {struct s} : farray :=
    match s with
    | nil => (k,x) :: nil
    | (k',y) :: l =>
      match compare k k' with
      | LT _ => (k,x)::s
      | EQ _ => (k,x)::l
      | GT _ => (k',y) :: add k x l
      end
    end.

  Lemma add_1 : forall m x y e, eq x y -> MapsTo y e (add x e m).
  Proof.
    intros m x y e; generalize y; clear y.
    unfold MapsTo.
    functional induction (add x e m);simpl;auto.
  Qed.

  Lemma add_2 : forall m x y e e',
      ~ eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
  Proof.
    intros m x  y e e'.
    generalize y e; clear y e; unfold MapsTo.
    functional induction (add x e' m) ;simpl;auto;  clear e0.
    subst;auto.

    intros y' e'' eqky';  inversion_clear 1;  destruct H0; simpl in *.
    (* order. *)
    subst. now contradict eqky'.
    auto.
    auto.
    intros y' e'' eqky'; inversion_clear 1; intuition.
  Qed.


  Lemma add_3 : forall m x y e e',
      ~ eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
  Proof.
    intros m x y e e'. generalize y e; clear y e; unfold MapsTo.
    functional induction (add x e' m);simpl; intros.
    apply (In_inv_3 H0); compute; auto.
    apply (In_inv_3 H0); compute; auto.
    constructor 2; apply (In_inv_3 H0); compute; auto.
    inversion_clear H0; auto.
  Qed.


  Lemma add_Inf : forall (m:farray)(x x':key)(e e':elt),
      Inf (x',e') m -> ltk (x',e') (x,e) -> Inf (x',e') (add x e m).
  Proof.
    induction m.
    simpl; intuition.
    intros.
    destruct a as (x'',e'').
    inversion_clear H.
    compute in H0,H1.
    simpl; case (compare x x''); intuition.
  Qed.
  Hint Resolve add_Inf.

  Lemma add_sorted : forall m (Hm:Sort m) x e, Sort (add x e m).
  Proof.
    induction m.
    simpl; intuition.
    intros.
    destruct a as (x',e').
    simpl; case (compare x x'); intuition; inversion_clear Hm; auto.
    constructor; auto.
    apply Inf_eq with (x',e'); auto.
  Qed.

  (** * [remove] *)

  Function remove (k : key) (s : farray) {struct s} : farray :=
    match s with
    | nil => nil
    | (k',x) :: l =>
      match compare k k' with
      | LT _ => s
      | EQ _ => l
      | GT _ => (k',x) :: remove k l
      end
    end.

  Lemma remove_1 : forall m (Hm:Sort m) x y, eq x y -> ~ In y (remove x m).
  Proof.
    intros m Hm x y; generalize Hm; clear Hm.
    functional induction (remove x m);simpl;intros;subst.

    red; inversion 1; inversion H0.

    apply Sort_Inf_NotIn with x0; auto.

    clear e0. inversion Hm. subst.
    apply Sort_Inf_NotIn with x0; auto.
    

    (* clear e0;inversion_clear Hm. *)
    (* apply Sort_Inf_NotIn with x0; auto. *)
    (* apply Inf_eq with (k',x0);auto; compute; apply eq_trans with x; auto. *)

    clear e0;inversion_clear Hm.
    assert (notin:~ In y (remove y l)) by auto.
    intros (x1,abs).
    inversion_clear abs.
    compute in H1; destruct H1.
    subst. apply lt_not_eq in _x; now contradict _x.
    apply notin; exists x1; auto.
  Qed.


  Lemma remove_2 : forall m (Hm:Sort m) x y e,
      ~ eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
  Proof.
    intros m Hm x y e; generalize Hm; clear Hm; unfold MapsTo.
    functional induction (remove x m);subst;auto;
      match goal with
      | [H: compare _ _ = _ |- _ ] => clear H
      | _ => idtac
      end.

    inversion_clear 3; auto.
    compute in H1; destruct H1.
    subst; now contradict H.
    inversion_clear 1; inversion_clear 2; auto.
  Qed.

  Lemma remove_3 : forall m (Hm:Sort m) x y e,
      MapsTo y e (remove x m) -> MapsTo y e m.
  Proof.
    intros m Hm x y e; generalize Hm; clear Hm; unfold MapsTo.
    functional induction (remove x m);subst;auto.
    inversion_clear 1; inversion_clear 1; auto.
  Qed.

  Lemma remove_Inf : forall (m:farray)(Hm : Sort m)(x x':key)(e':elt),
      Inf (x',e') m -> Inf (x',e') (remove x m).
  Proof.
    induction m.
    simpl; intuition.
    intros.
    destruct a as (x'',e'').
    inversion_clear H.
    compute in H0.
    simpl; case (compare x x''); intuition.
    inversion_clear Hm.
    apply Inf_lt with (x'',e''); auto.
  Qed.
  Hint Resolve remove_Inf.

  Lemma remove_sorted : forall m (Hm:Sort m) x, Sort (remove x m).
  Proof.
    induction m.
    simpl; intuition.
    intros.
    destruct a as (x',e').
    simpl; case (compare x x'); intuition; inversion_clear Hm; auto.
  Qed.

  (** * [elements] *)

  Definition elements (m: farray) := m.

  Lemma elements_1 : forall m x e,
      MapsTo x e m -> InA eqke (x,e) (elements m).
  Proof.
    auto.
  Qed.

  Lemma elements_2 : forall m x e,
      InA eqke (x,e) (elements m) -> MapsTo x e m.
  Proof.
    auto.
  Qed.

  Lemma elements_3 : forall m (Hm:Sort m), sort ltk (elements m).
  Proof.
    auto.
  Qed.

  Lemma elements_3w : forall m (Hm:Sort m), NoDupA (elements m).
  Proof.
    intros.
    apply Sort_NoDupA.
    apply elements_3; auto.
  Qed.

  (** * [fold] *)

  Function fold (A:Type)(f:key->elt->A->A)(m:farray) (acc:A) {struct m} :  A :=
    match m with
    | nil => acc
    | (k,e)::m' => fold f m' (f k e acc)
    end.

  Lemma fold_1 : forall m (A:Type)(i:A)(f:key->elt->A->A),
      fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
  Proof.
    intros; functional induction (fold f m i); auto.
  Qed.

  (** * [equal] *)

  Function equal (cmp:elt->elt->bool)(m m' : farray) {struct m} : bool :=
    match m, m' with
    | nil, nil => true
    | (x,e)::l, (x',e')::l' =>
      match compare x x' with
      | EQ _ => cmp e e' && equal cmp l l'
      | _    => false
      end
    | _, _ => false
    end.

  Definition Equivb cmp m m' :=
    (forall k, In k m <-> In k m') /\
    (forall k e e', MapsTo k e m -> MapsTo k e' m' -> cmp e e' = true).

  Lemma equal_1 : forall m (Hm:Sort m) m' (Hm': Sort m') cmp,
      Equivb cmp m m' -> equal cmp m m' = true.
  Proof.
    intros m Hm m' Hm' cmp; generalize Hm Hm'; clear Hm Hm'.
    functional induction (equal cmp m m'); simpl; subst;auto; unfold Equivb;
      intuition; subst.
    match goal with H: compare _ _ = _ |- _ => clear H end.
    assert (cmp_e_e':cmp e e' = true).
    apply H1 with x; auto.
    rewrite cmp_e_e'; simpl.
    apply IHb; auto.
    inversion_clear Hm; auto.
    inversion_clear Hm'; auto.
    unfold Equivb; intuition.
    destruct (H0 k).
    assert (In k ((x,e) ::l)).
    destruct H as (e'', hyp); exists e''; auto.
    destruct (In_inv (H2 H4)); auto.
    inversion_clear Hm.
    elim (Sort_Inf_NotIn H6 H7).
    destruct H as (e'', hyp); exists e''; auto.
    apply MapsTo_eq with k; auto.
    destruct (H0 k).
    assert (In k ((x,e') ::l')).
    destruct H as (e'', hyp); exists e''; auto.
    destruct (In_inv (H3 H4)); auto.
    subst.
    inversion_clear Hm'.
    now elim (Sort_Inf_NotIn H5 H6).
    apply H1 with k; destruct (eq_dec x k); auto.


    destruct (compare x x') as [Hlt|Heq|Hlt]; try contradiction; clear y.
    destruct (H0 x).
    assert (In x ((x',e')::l')).
    apply H; auto.
    exists e; auto.
    destruct (In_inv H3).
    (* order. *)
    apply lt_not_eq in Hlt; now contradict Hlt.
    inversion_clear Hm'.
    assert (Inf (x,e) l').
    apply Inf_lt with (x',e'); auto.
    elim (Sort_Inf_NotIn H5 H7 H4).

    destruct (H0 x').
    assert (In x' ((x,e)::l)).
    apply H2; auto.
    exists e'; auto.
    destruct (In_inv H3).
    (* order. *)
    subst; apply lt_not_eq in Hlt; now contradict Hlt.
    inversion_clear Hm.
    assert (Inf (x',e') l).
    apply Inf_lt with (x,e); auto.
    elim (Sort_Inf_NotIn H5 H7 H4).

    destruct m;
      destruct m';try contradiction.

    clear H1;destruct p as (k,e).
    destruct (H0 k).
    destruct H1.
    exists e; auto.
    inversion H1.

    destruct p as (x,e).
    destruct (H0 x).
    destruct H.
    exists e; auto.
    inversion H.

    destruct p;destruct p0;contradiction.
  Qed.


  Lemma equal_2 : forall m (Hm:Sort m) m' (Hm:Sort m') cmp,
      equal cmp m m' = true -> Equivb cmp m m'.
  Proof.
    intros m Hm m' Hm' cmp; generalize Hm Hm'; clear Hm Hm'.
    functional induction (equal cmp m m'); simpl; subst;auto; unfold Equivb;
      intuition; try discriminate; subst;
        try match goal with H: compare _ _ = _ |- _ => clear H end.

    inversion H0.

    inversion_clear Hm;inversion_clear Hm'.
    destruct (andb_prop _ _ H); clear H.
    destruct (IHb H1 H3 H6).
    destruct (In_inv H0).
    exists e'; constructor; split; trivial; apply eq_trans with x; auto.
    destruct (H k).
    destruct (H9 H8) as (e'',hyp).
    exists e''; auto.

    inversion_clear Hm;inversion_clear Hm'.
    destruct (andb_prop _ _ H); clear H.
    destruct (IHb H1 H3 H6).
    destruct (In_inv H0).
    exists e; constructor; split; trivial; apply eq_trans with x'; auto.
    destruct (H k).
    destruct (H10 H8) as (e'',hyp).
    exists e''; auto.

    inversion_clear Hm;inversion_clear Hm'.
    destruct (andb_prop _ _ H); clear H.
    destruct (IHb H2 H4 H7).
    inversion_clear H0.
    destruct H9; simpl in *; subst.
    inversion_clear H1.
    destruct H0; simpl in *; subst; auto.
    elim (Sort_Inf_NotIn H4 H5).
    exists e'0; apply MapsTo_eq with x; auto.
      (* order. *)
    inversion_clear H1.
    destruct H0; simpl in *; subst; auto.
    elim (Sort_Inf_NotIn H2 H3).
    exists e0; apply MapsTo_eq with x; auto.
    (* order. *)
    apply H8 with k; auto.
  Qed.

  (** This lemma isn't part of the spec of [Equivb], but is used in [FMapAVL] *)

  Lemma equal_cons : forall cmp l1 l2 x y, Sort (x::l1) -> Sort (y::l2) ->
    eqk x y -> cmp (snd x) (snd y) = true ->
    (Equivb cmp l1 l2 <-> Equivb cmp (x :: l1) (y :: l2)).
  Proof.
    intros.
    inversion H; subst.
    inversion H0; subst.
    destruct x; destruct y; compute in H1, H2.
    split; intros.
    apply equal_2; auto.
    simpl.
    case (compare k k0);
    subst; intro HH; try (apply lt_not_eq in HH; now contradict HH).
    rewrite H2; simpl.
    apply equal_1; auto.
    apply equal_2; auto.
    generalize (equal_1 H H0 H3).
    simpl.
    case (compare k k0);
    subst; intro HH; try (apply lt_not_eq in HH; now contradict HH).
    rewrite H2; simpl; auto.
  Qed.

End Array.

End Raw.



Section FArray.

  Variable key : Type.
  Variable elt : Type.
  Variable key_dec : DecType key.
  Variable key_ord : OrdType key.
  Variable key_comp : Comparable key.
  Variable elt_dec : DecType elt.
  Variable elt_ord : OrdType elt.
  Variable elt_comp : Comparable elt.

  Set Implicit Arguments.

  Record slist :=
    {this :> Raw.farray key elt; sorted : sort (Raw.ltk key_ord) this}.
  Definition farray := slist.

  (* Boolean comparison over elements *)
  Definition cmp (e e':elt) :=
    match compare e e' with EQ _ => true | _ => false end.
  
  Definition empty : farray := Build_slist (Raw.empty_sorted elt key_ord).
  Definition is_empty m : bool := Raw.is_empty m.(this).
  Definition add x e m : farray :=
    Build_slist (Raw.add_sorted key_dec key_comp m.(sorted) x e).
  Definition find x m : option elt := Raw.find key_comp x m.(this).
  Definition remove x m : farray :=
    Build_slist (Raw.remove_sorted key_comp m.(sorted) x).
  Definition mem x m : bool := Raw.mem key_comp x m.(this).
  Definition elements m : list (key*elt) := Raw.elements m.(this).
  Definition cardinal m := length m.(this).
  Definition fold (A:Type)(f:key->elt->A->A) m (i:A) : A :=
    Raw.fold f m.(this) i.
  Definition equal m m' : bool := Raw.equal key_comp cmp m.(this) m'.(this).

  Definition MapsTo x e m : Prop := Raw.MapsTo x e m.(this).
  Definition In x m : Prop := Raw.In x m.(this).
  Definition Empty m : Prop := Raw.Empty m.(this).

  Definition Equal m m' := forall y, find y m = find y m'.
  Definition Equiv m m' :=
    (forall k, In k m <-> In k m') /\
    (forall k e e', MapsTo k e m -> MapsTo k e' m' -> e = e').
  Definition Equivb m m' : Prop := Raw.Equivb cmp m.(this) m'.(this).

  Definition eq_key : (key*elt) -> (key*elt) -> Prop := @Raw.eqk key elt.
  Definition eq_key_elt : (key*elt) -> (key*elt) -> Prop:= @Raw.eqke key elt.
  Definition lt_key : (key*elt) -> (key*elt) -> Prop := @Raw.ltk key elt key_ord.

  Lemma MapsTo_1 : forall m x y e, eq x y -> MapsTo x e m -> MapsTo y e m.
  Proof. intros m.
    apply (Raw.MapsTo_eq key_dec elt_dec). Qed.

  Lemma mem_1 : forall m x, In x m -> mem x m = true.
  Proof. intros m; apply (Raw.mem_1); auto. apply m.(sorted). Qed.
  Lemma mem_2 : forall m x, mem x m = true -> In x m.
  Proof. intros m; apply (Raw.mem_2); auto. apply m.(sorted). Qed.

  Lemma empty_1 : Empty empty.
  Proof. apply Raw.empty_1. Qed.

  Lemma is_empty_1 : forall m, Empty m -> is_empty m = true.
  Proof. intros m; apply Raw.is_empty_1. Qed.
  Lemma is_empty_2 :  forall m, is_empty m = true -> Empty m.
  Proof. intros m; apply Raw.is_empty_2. Qed.

  Lemma add_1 : forall m x y e, eq x y -> MapsTo y e (add x e m).
  Proof. intros m; apply Raw.add_1; auto. Qed.
  Lemma add_2 : forall m x y e e', ~ eq x y -> MapsTo y e m -> MapsTo y e (add x e' m).
  Proof. intros m; apply Raw.add_2; auto. Qed.
  Lemma add_3 : forall m x y e e', ~ eq x y -> MapsTo y e (add x e' m) -> MapsTo y e m.
  Proof. intros m; apply Raw.add_3; auto. Qed.

  Lemma remove_1 : forall m x y, eq x y -> ~ In y (remove x m).
  Proof. intros m; apply Raw.remove_1; auto. apply m.(sorted). Qed.
  Lemma remove_2 : forall m x y e, ~ eq x y -> MapsTo y e m -> MapsTo y e (remove x m).
  Proof. intros m; apply Raw.remove_2; auto. apply m.(sorted). Qed.
  Lemma remove_3 : forall m x y e, MapsTo y e (remove x m) -> MapsTo y e m.
  Proof. intros m; apply Raw.remove_3; auto. apply m.(sorted). Qed.

  Lemma find_1 : forall m x e, MapsTo x e m -> find x m = Some e.
  Proof. intros m; apply Raw.find_1; auto. apply m.(sorted). Qed.
  Lemma find_2 : forall m x e, find x m = Some e -> MapsTo x e m.
  Proof. intros m; apply Raw.find_2; auto. Qed.

  Lemma elements_1 : forall m x e, MapsTo x e m -> InA eq_key_elt (x,e) (elements m).
  Proof. intros m; apply Raw.elements_1. Qed.
  Lemma elements_2 : forall m x e, InA eq_key_elt (x,e) (elements m) -> MapsTo x e m.
  Proof. intros m; apply Raw.elements_2. Qed.
  Lemma elements_3 : forall m, sort lt_key (elements m).
  Proof. intros m; apply Raw.elements_3; auto. apply m.(sorted). Qed.
  Lemma elements_3w : forall m, NoDupA eq_key (elements m).
  Proof. intros m; apply (Raw.elements_3w key_dec m.(sorted)). Qed.

  Lemma cardinal_1 : forall m, cardinal m = length (elements m).
  Proof. intros; reflexivity. Qed.

  Lemma fold_1 : forall m (A : Type) (i : A) (f : key -> elt -> A -> A),
      fold f m i = fold_left (fun a p => f (fst p) (snd p) a) (elements m) i.
  Proof. intros m; apply Raw.fold_1. Qed.

  Lemma equal_1 : forall m m', Equivb m m' -> equal m m' = true.
  Proof. intros m m'; apply Raw.equal_1; auto. apply m.(sorted). apply  m'.(sorted). Qed.
  Lemma equal_2 : forall m m', equal m m' = true -> Equivb m m'.
  Proof. intros m m'; apply Raw.equal_2; auto. apply m.(sorted). apply  m'.(sorted). Qed.



  Fixpoint eq_list (m m' : list (key * elt)) : Prop :=
    match m, m' with
    | nil, nil => True
    | (x,e)::l, (x',e')::l' =>
      match compare x x' with
      | EQ _ => eq e e' /\ eq_list l l'
      | _       => False
      end
    | _, _ => False
    end.

  Definition eq m m' := eq_list m.(this) m'.(this).

  Lemma eq_equal : forall m m', eq m m' <-> equal m m' = true.
  Proof.
    intros (l,Hl); induction l.
    intros (l',Hl'); unfold eq; simpl.
    destruct l'; unfold equal; simpl; intuition.
    intros (l',Hl'); unfold eq.
    destruct l'.
    destruct a; unfold equal; simpl; intuition.
    destruct a as (x,e).
    destruct p as (x',e').
    unfold equal; simpl.
    destruct (compare x x') as [Hlt|Heq|Hlt]; simpl; intuition.
    unfold cmp at 1.
    case (compare e e');
    subst; intro HH; try (apply lt_not_eq in HH; now contradict HH);
    clear HH; simpl.
    inversion_clear Hl.
    inversion_clear Hl'.
    destruct (IHl H (Build_slist H2)).
    unfold equal, eq in H5; simpl in H5; auto.
    destruct (andb_prop _ _ H); clear H.
    generalize H0; unfold cmp.
    case (compare e e');
    subst; intro HH; try (apply lt_not_eq in HH; now contradict HH);
      auto; intro; discriminate.
    destruct (andb_prop _ _ H); clear H.
    inversion_clear Hl.
    inversion_clear Hl'.
    destruct (IHl H (Build_slist H3)).
    unfold equal, eq in H6; simpl in H6; auto.
  Qed.

  Lemma eq_1 : forall m m', Equivb m m' -> eq m m'.
  Proof.
    intros.
    generalize (@equal_1 m m').
    generalize (@eq_equal m m').
    intuition.
  Qed.

  Lemma eq_2 : forall m m', eq m m' -> Equivb m m'.
  Proof.
    intros.
    generalize (@equal_2 m m').
    generalize (@eq_equal m m').
    intuition.
  Qed.

  Lemma eqfarray_refl : forall m : farray, eq m m.
  Proof.
    intros (m,Hm); induction m; unfold eq; simpl; auto.
    destruct a.
    destruct (compare k k) as [Hlt|Heq|Hlt]; auto.
    apply lt_not_eq in Hlt. auto.
    split.
    apply eq_refl.
    inversion_clear Hm.
    apply (IHm H).
    apply lt_not_eq in Hlt. auto.
  Qed.

  Lemma eqfarray_sym : forall m1 m2 : farray, eq m1 m2 -> eq m2 m1.
  Proof.
    intros (m,Hm); induction m;
      intros (m', Hm'); destruct m'; unfold eq; simpl;
        try destruct a as (x,e); try destruct p as (x',e'); auto.
    destruct (compare x x')  as [Hlt|Heq|Hlt]; try easy.
    inversion_clear Hm; inversion_clear Hm'.
    intro. destruct H3.
    subst.
    case (compare x' x');
    subst; intro HH; try (apply lt_not_eq in HH; now contradict HH).
    split; auto.
    apply (IHm H (Build_slist H1)); auto.
  Qed.

  Lemma eqfarray_trans : forall m1 m2 m3 : farray, eq m1 m2 -> eq m2 m3 -> eq m1 m3.
  Proof.
    intros (m1,Hm1); induction m1;
      intros (m2, Hm2); destruct m2;
        intros (m3, Hm3); destruct m3; unfold eq; simpl;
          try destruct a as (x,e);
          try destruct p as (x',e');
          try destruct p0 as (x'',e''); try contradiction; auto.
    destruct (compare x x') as [Hlt|Heq|Hlt];
      destruct (compare x' x'') as [Hlt'|Heq'|Hlt']; try easy.
    intros; destruct H, H0;  subst.
    case (compare x'' x'');
    subst; intro HH; try (apply lt_not_eq in HH; now contradict HH).
    split; auto.
    inversion_clear Hm1; inversion_clear Hm2; inversion_clear Hm3.
    apply (IHm1 H (Build_slist H3) (Build_slist H5)); intuition.
  Qed.



  Fixpoint lt_list (m m' : list (key * elt)) : Prop :=
    match m, m' with
    | nil, nil => False
    | nil, _  => True
    | _, nil  => False
    | (x,e)::l, (x',e')::l' =>
      match compare x x' with
      | LT _ => True
      | GT _ => False
      | EQ _ => lt e e' \/ (e = e' /\ lt_list l l')
      end
    end.

  Definition lt_farray m m' := lt_list m.(this) m'.(this).

  Lemma lt_farray_trans : forall m1 m2 m3 : farray,
      lt_farray m1 m2 -> lt_farray m2 m3 -> lt_farray m1 m3.
  Proof.
    intros (m1,Hm1); induction m1;
      intros (m2, Hm2); destruct m2;
        intros (m3, Hm3); destruct m3; unfold lt_farray; simpl;
          try destruct a as (x,e);
          try destruct p as (x',e');
          try destruct p0 as (x'',e''); try contradiction; auto.
    destruct (compare x x') as [Hlt|Heq|Hlt];
      destruct (compare x' x'') as [Hlt'|Heq'|Hlt'];
      destruct (compare x x'') as [Hlt''|Heq''|Hlt'']; intros; subst; auto; try easy.
    apply (lt_trans x') in Hlt; apply lt_not_eq in Hlt.
    now contradict Hlt. auto.
    apply (lt_trans x') in Hlt; apply lt_not_eq in Hlt.
    now contradict Hlt.
    apply (lt_trans _ x'') ; auto.
    apply lt_not_eq in Hlt. now contradict Hlt.
    apply (lt_trans x'') in Hlt; apply lt_not_eq in Hlt.
    now contradict Hlt. auto.
    subst.
    apply lt_not_eq in Hlt'. now contradict Hlt'.
    apply (lt_trans x'') in Hlt'; apply lt_not_eq in Hlt'.
    now contradict Hlt'. auto.
    destruct H, H0.
    left; apply lt_trans with e'; auto.
    left. destruct H0. subst; auto.
    left. destruct H. subst; auto.
    right. destruct H, H0. subst; split; auto.
    inversion_clear Hm1; inversion_clear Hm2; inversion_clear Hm3.
    apply (IHm1 H (Build_slist H3) (Build_slist H5)); intuition.
    apply lt_not_eq in Hlt''. now contradict Hlt''.
  Qed.

  Lemma lt_farray_not_eq : forall m1 m2 : farray, lt_farray m1 m2 -> ~ eq m1 m2.
  Proof.
    intros (m1,Hm1); induction m1;
      intros (m2, Hm2); destruct m2; unfold eq, lt; simpl;
        try destruct a as (x,e);
        try destruct p as (x',e'); try contradiction; auto.
    destruct (compare x x') as [Hlt|Heq|Hlt]; auto.
    intuition.
    inversion_clear Hm1; inversion_clear Hm2.
    subst.
    apply (IHm1 H0 (Build_slist H4)); intuition.
    unfold lt_farray in *.
    simpl in H.
    case (compare x' x') in *.
    apply lt_not_eq in l. now contradict l.
    destruct H.
    apply lt_not_eq in H. now contradict H.
    destruct H.
    auto.
    apply lt_not_eq in l. now contradict l.
  Qed.

  Definition compare_farray : forall m1 m2, Compare lt_farray eq m1 m2.
  Proof.
    intros (m1,Hm1); induction m1;
      intros (m2, Hm2); destruct m2;
        [ apply EQ | apply LT | apply GT | ]; auto.
    (* cmp_solve. *)
    unfold eq. simpl; auto.
    unfold lt_farray. simpl; auto.
    unfold lt_farray. simpl; auto.
    destruct a as (x,e); destruct p as (x',e').
    destruct (compare x x');
      [ apply LT | | apply GT ].
    unfold lt_farray. simpl.
    destruct (compare x x'); auto.
    subst. apply lt_not_eq in l; now contradict l.
    apply (lt_trans x') in l; auto. subst. apply lt_not_eq in l; now contradict l.
    (* subst. *)
    destruct (compare e e');
      [ apply LT | | apply GT ].
    unfold lt_farray. simpl.
    destruct (compare x x'); auto; try (subst; apply lt_not_eq in l0; now contradict l0).
    assert (Hm11 : sort (Raw.ltk key_ord) m1).
    inversion_clear Hm1; auto.
    assert (Hm22 : sort (Raw.ltk key_ord) m2).
    inversion_clear Hm2; auto.
    destruct (IHm1 Hm11 (Build_slist Hm22));
      [ apply LT | apply EQ | apply GT ].
    unfold lt_farray in *. simpl.
    destruct (compare x x'); auto; try (subst; apply lt_not_eq in l0; now contradict l0).
    unfold eq in *. simpl.
    destruct (compare x x'); auto; try (subst; apply lt_not_eq in l; now contradict l).
    unfold lt_farray in *. simpl.
    destruct (compare x' x); auto; try (subst; apply lt_not_eq in l0; now contradict l0).
    unfold lt_farray in *. simpl.
    destruct (compare x' x); auto; try (subst; apply lt_not_eq in l0; now contradict l0).
    unfold lt_farray in *. simpl.
    destruct (compare x' x); auto; try (subst; apply lt_not_eq in l; now contradict l).
    apply (lt_trans x) in l; auto. subst. apply lt_not_eq in l; now contradict l.
  Qed.
  (* TODO *)

  
  
  Lemma eq_option_alt : forall (elt:Type)(o o':option elt),
      o=o' <-> (forall e, o=Some e <-> o'=Some e).
  Proof.
    split; intros.
    subst; split; auto.
    destruct o; destruct o'; try rewrite H; auto.
    symmetry; rewrite <- H; auto.
  Qed.

  Lemma find_mapsto_iff : forall m x e, MapsTo x e m <-> find x m = Some e.
  Proof.
    split; [apply find_1|apply find_2].
  Qed.

  Lemma add_neq_mapsto_iff : forall m x y e e',
      x <> y -> (MapsTo y e' (add x e m)  <-> MapsTo y e' m).
  Proof.
    split; [apply add_3|apply add_2]; auto.
  Qed.


  Lemma add_eq_o : forall m x y e,
      x = y -> find y (add x e m) = Some e.
  Proof. intros.
    apply find_1.
    apply add_1. auto.
  Qed.

  Lemma add_neq_o : forall m x y e,
      ~ x = y -> find y (add x e m) = find y m.
  Proof.
    intros. rewrite eq_option_alt. intro e'. rewrite <- 2 find_mapsto_iff.
    apply add_neq_mapsto_iff; auto.
  Qed.
  Hint Resolve add_neq_o.



  Lemma MapsTo_fun : forall m x (e e':elt),
      MapsTo x e m -> MapsTo x e' m -> e=e'.
  Proof.
    intros.
    generalize (find_1 H) (find_1 H0); clear H H0.
    intros; rewrite H in H0; injection H0; auto.
  Qed.


  (** Another characterisation of [Equal] *)

  Lemma Equal_mapsto_iff : forall m1 m2 : farray,
      Equal m1 m2 <-> (forall k e, MapsTo k e m1 <-> MapsTo k e m2).
  Proof.
    intros m1 m2. split; [intros Heq k e|intros Hiff].
    rewrite 2 find_mapsto_iff, Heq. split; auto.
    intro k. rewrite eq_option_alt. intro e.
    rewrite <- 2 find_mapsto_iff; auto.
  Qed.

  (** * Relations between [Equal], [Equiv] and [Equivb]. *)

  (** First, [Equal] is [Equiv] with Leibniz on elements. *)

  Lemma Equal_Equiv : forall (m m' : farray),
      Equal m m' <-> Equiv m m'.
  Proof.
    intros. rewrite Equal_mapsto_iff. split; intros.
    split.
    split; intros (e,Hin); exists e; unfold MapsTo in H; [rewrite <- H|rewrite H]; auto.
    intros; apply MapsTo_fun with m k; auto; rewrite H; auto.
    split; intros H'.
    destruct H.
    assert (Hin : In k m') by (rewrite <- H; exists e; auto).
    destruct Hin as (e',He').
    rewrite (H0 k e e'); auto.
    destruct H.
    assert (Hin : In k m) by (rewrite H; exists e; auto).
    destruct Hin as (e',He').
    rewrite <- (H0 k e' e); auto.
  Qed.

  Lemma Equiv_Equivb : forall m m', Equiv m m' <-> Equivb m m'.
  Proof.
    unfold Equiv, Equivb, Raw.Equivb, cmp; intuition; specialize (H1 k e e' H H2).
    destruct (compare e e'); auto; apply lt_not_eq in l; auto.
    destruct (compare e e'); auto; now contradict H1.
  Qed.


  (** Composition of the two last results: relation between [Equal]
    and [Equivb]. *)

  Lemma Equal_Equivb : forall (m m':farray), Equal m m' <-> Equivb m m'.
  Proof.
    intros; rewrite Equal_Equiv.
    apply Equiv_Equivb; auto.
  Qed.
  

  (** * Functional arrays *)

  
  Definition select (a: farray) (i: key) : option elt := find i a.


  Definition store (a: farray) (i: key) (v: elt) : farray := add i v a.


  Lemma read_over_same_write : forall a i j v, i = j -> select (store a i v) j = Some v.
  Proof.
    intros a i j v Heq.
    unfold select, store.
    intros. rewrite add_eq_o; auto.
  Qed.  


  Lemma read_over_other_write : forall a i j v,
      i <> j -> select (store a i v) j = select a j.
  Proof.
    intros a i j v Hneq.
    unfold select, store.
    rewrite add_neq_o; auto.
  Qed. 


  (* TODO *)
  Lemma find_ext_dec:
    (forall m1 m2: farray, Equal m1 m2 -> (equal m1 m2) = true).
  Proof. intros.
    apply Equal_Equivb in H.
    apply equal_1.
    exact H.
  Qed.


  Lemma extensionnality : forall a b,
      (forall i, select a i = select b i) -> equal a b = true.
  Proof.
    intros.
    unfold select in H.
    apply find_ext_dec in H.
    exact H.
  Qed.

  Require Import ProofIrrelevance.
  
  Lemma equal_eq : forall a b, equal a b = true -> a = b.
  Proof. 
    intros. apply eq_equal in H.
    destruct a as (a, asort), b as (b, bsort).
    unfold eq in H.
    revert b bsort H.
    induction a; intros; destruct b.
    apply f_equal. apply proof_irrelevance.
    simpl in H. now contradict H.
    simpl in H. destruct a; now contradict H.
    simpl in H. destruct a, p.
    destruct (compare k k0); auto; try (now contradict H).
    destruct H.
    subst.
    inversion_clear asort.
    inversion_clear bsort.
    specialize (IHa H b H2 H0).
    inversion IHa. subst.
    apply f_equal.  apply proof_irrelevance.
 Qed.

(** farray equal in Prop *)
  Definition equalP (m m' : farray) : Prop :=
    if equal m m' then True else False.

  Lemma eq_list_refl: forall a, eq_list a a.
  Proof.
    intro a.
    induction a; intros.
    - now simpl.
    - simpl. destruct a as (k, e).
      case_eq (compare k k); intros.
      + revert H. generalize l.
        apply lt_not_eq in l. now contradict l.
      + split; easy.
      + revert H. generalize l.
        apply lt_not_eq in l. now contradict l.
  Qed.

  Lemma equal_refl: forall a, equal a a = true.
  Proof. intros; apply eq_equal; apply eq_list_refl. Qed.

  Lemma equal_eqP : forall a b, equalP a b <-> a = b.
  Proof. 
     intros. split; intro H. unfold equalP in H.
     case_eq (equal a b); intros; rewrite H0 in H.
     now apply equal_eq. now contradict H.
     rewrite H. unfold equalP.
     now rewrite equal_refl.
  Qed.

 Lemma equal_B2P: forall (m m' : farray),
                  equal m m' = true <-> equalP m m'.
 Proof.
     intros. split; intros.
     apply equal_eq in H. rewrite H.
     unfold equalP. now rewrite equal_refl.
     apply equal_eqP in H.
     now rewrite H, equal_refl.
 Qed.

End FArray.


(* 
   Local Variables:
   coq-load-path: ((rec ".." "SMTCoq"))
   End: 
*)