aboutsummaryrefslogtreecommitdiffstats
path: root/src/cnf/Cnf.v
blob: db6e6899ab6e9904e03a3410102b25a4a23e4ff7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
(**************************************************************************)
(*                                                                        *)
(*     SMTCoq                                                             *)
(*     Copyright (C) 2011 - 2022                                          *)
(*                                                                        *)
(*     See file "AUTHORS" for the list of authors                         *)
(*                                                                        *)
(*   This file is distributed under the terms of the CeCILL-C licence     *)
(*                                                                        *)
(**************************************************************************)


Require Import PArray List Bool ZArith Psatz.
Require Import Misc State SMT_terms BVList.

Import Form.

Local Open Scope array_scope.
Local Open Scope int63_scope.

Set Implicit Arguments.
Unset Strict Implicit.

Definition or_of_imp args :=
  let last := PArray.length args - 1 in
  amapi (fun i l => if i == last then l else Lit.neg l) args.
(* Register or_of_imp as PrimInline. *)

Lemma length_or_of_imp : forall args,
  PArray.length (or_of_imp args) = PArray.length args.
Proof. intro; unfold or_of_imp; apply length_amapi. Qed.

Lemma get_or_of_imp : forall args i,
  i < (PArray.length args) - 1 -> (or_of_imp args).[i] = Lit.neg (args.[i]).
Proof.
  unfold or_of_imp; intros args i H; case_eq (0 < PArray.length args).
  intro Heq; rewrite get_amapi.
  replace (i == PArray.length args - 1) with false; auto; symmetry; rewrite eqb_false_spec; intro; subst i; unfold is_true in H; rewrite ltb_spec, (to_Z_sub_1 _ _ Heq) in H; lia.
  rewrite ltb_spec; unfold is_true in H; rewrite ltb_spec, (to_Z_sub_1 _ _ Heq) in H; lia.
  rewrite ltb_negb_geb; case_eq (PArray.length args <= 0); try discriminate; intros Heq _; assert (H1: PArray.length args = 0).
  apply to_Z_inj; rewrite leb_spec in Heq; destruct (to_Z_bounded (PArray.length args)) as [H1 _]; change [|0|] with 0%Z in *; lia.
  rewrite !get_outofbound.
  rewrite default_amapi, H1; auto.
  rewrite H1; case_eq (i < 0); auto; intro H2; eelim ltb_0; eassumption.
  rewrite length_amapi, H1; case_eq (i < 0); auto; intro H2; eelim ltb_0; eassumption.
Qed.

Lemma get_or_of_imp2 : forall args i, 0 < PArray.length args ->
  i = (PArray.length args) - 1 -> (or_of_imp args).[i] = args.[i].
Proof.
  unfold or_of_imp; intros args i Heq Hi; rewrite get_amapi; subst i.
  rewrite Int63.eqb_refl; auto.
  rewrite ltb_spec, (to_Z_sub_1 _ _ Heq); lia.
Qed.

Lemma afold_right_impb p a :
  (forall x, p (Lit.neg x) = negb (p x)) ->
  (PArray.length a == 0) = false ->
  (afold_right bool true implb (amap p a)) =
  List.existsb p (to_list (or_of_imp a)).
Proof.
  intros Hp Hl.
  case_eq (afold_right bool true implb (amap p a)); intro Heq; symmetry.
  - apply afold_right_implb_true_inv in Heq.
    rewrite length_amap in Heq.
    destruct Heq as [Heq|[[i [Hi Heq]]|Heq]].
    + rewrite Heq in Hl. discriminate.
    + rewrite get_amap in Heq. rewrite existsb_exists. exists (Lit.neg (a .[ i])). split.
      * {
          apply (to_list_In_eq _ i).
          - rewrite length_or_of_imp. apply (ltb_trans _ (PArray.length a - 1)); auto.
            now apply minus_1_lt.
          - now rewrite get_or_of_imp.
        }
      * now rewrite Hp, Heq.
      * apply (ltb_trans _ (PArray.length a - 1)); auto.
        now apply minus_1_lt.
    + rewrite existsb_exists. exists (a.[(PArray.length a) - 1]). split.
      * {
          apply (to_list_In_eq _ (PArray.length a - 1)).
          - rewrite length_or_of_imp.
            now apply minus_1_lt.
          - symmetry. apply get_or_of_imp2; auto.
            unfold is_true. rewrite ltb_spec. rewrite eqb_false_spec in Hl.
            assert (0%Z <> [|PArray.length a|])
              by (change 0%Z with [|0|]; intro H; apply to_Z_inj in H; auto).
            destruct (to_Z_bounded (PArray.length a)) as [H1 _].
            clear -H H1. change [|0|] with 0%Z. lia.
        }
      * {
          specialize (Heq (PArray.length a - 1)); rewrite get_amap in Heq by now apply minus_1_lt.
          apply Heq. now apply minus_1_lt.
        }
  - apply afold_right_implb_false_inv in Heq.
    destruct Heq as [H1 [H2 H3]].
    rewrite length_amap in H1, H3.
    case_eq (List.existsb p (to_list (or_of_imp a))); auto.
    rewrite existsb_exists. intros [x [H4 H5]].
    apply In_to_list in H4. destruct H4 as [i [H4 ->]].
    case_eq (i < PArray.length a - 1); intro Heq.
    + specialize (H2 i). rewrite length_amap in H2. assert (H6 := H2 Heq). rewrite get_amap in H6.
      now rewrite (get_or_of_imp Heq), Hp, H6 in H5. apply (ltb_trans _ (PArray.length a - 1)); auto.
      now apply minus_1_lt.
    + assert (H6:i = PArray.length a - 1).
      {
        clear -H4 Heq H1.
        rewrite length_or_of_imp in H4.
        apply to_Z_inj. rewrite (to_Z_sub_1 _ 0); auto.
        rewrite ltb_spec in H4; auto.
        rewrite ltb_negb_geb in Heq.
        case_eq (PArray.length a - 1 <= i); intro H2; rewrite H2 in Heq; try discriminate.
        clear Heq. rewrite leb_spec in H2. rewrite (to_Z_sub_1 _ 0) in H2; auto.
        lia.
      }
      rewrite get_or_of_imp2 in H5; auto.
      rewrite get_amap in H3 by now apply minus_1_lt.
      rewrite H6, H3 in H5. discriminate.
Qed.


Section CHECKER.

  Variable t_form : PArray.array form.
  Local Notation get_hash := (PArray.get t_form) (only parsing).
  Variable s : S.t.


  (*  * true             : {true}  *)

  Definition check_True := C._true.


  (* * false             : {(not false)} *)

  Definition check_False  := Lit.neg (Lit._false)::nil.


  (* * and_neg          : {(and a_1 ... a_n) (not a_1) ... (not a_n)}
     * or_pos           : {(not (or a_1 ... a_n)) a_1 ... a_n} 
     * implies_pos      : {(not (implies a b)) (not a) b}
     * xor_pos1         : {(not (xor a b)) a b}
     * xor_neg1         : {(xor a b) a (not b)}
     * equiv_pos1       : {(not (iff a b)) a (not b)}
     * equiv_neg1       : {(iff a b) (not a) (not b)}
     * ite_pos1         : {(not (if_then_else a b c)) a c}
     * ite_neg1         : {(if_then_else a b c) a (not c)} *)

  Definition check_BuildDef l :=
    match get_hash (Lit.blit l) with
    | Fand args => 
      if Lit.is_pos l then l :: List.map Lit.neg (to_list args) 
      else C._true
    | For args =>
      if Lit.is_pos l then C._true
      else l :: to_list args
    | Fimp args =>
      if Lit.is_pos l then C._true
      else if PArray.length args == 0 then C._true
      else
        let args := or_of_imp args in
        l :: to_list args
    | Fxor a b =>
      if Lit.is_pos l then l::a::Lit.neg b::nil 
      else l::a::b::nil
    | Fiff a b =>
      if Lit.is_pos l then l::Lit.neg a::Lit.neg b::nil
      else l::a::Lit.neg b::nil
    | Fite a b c =>
      if Lit.is_pos l then l::a::Lit.neg c::nil
      else l::a::c::nil
    | _ => C._true
    end.

 
  (* * not_and           : {(not (and a_1 ... a_n))} --> {(not a_1) ... (not a_n)}
     * or                : {(or a_1 ... a_n)} --> {a_1 ... a_n}
     * implies           : {(implies a b)} --> {(not a) b}
     * xor1              : {(xor a b)} --> {a b}
     * not_xor1          : {(not (xor a b))} --> {a (not b)}
     * equiv2            : {(iff a b)} --> {a (not b)}
     * not_equiv2        : {(not (iff a b))} --> {(not a) (not b)}
     * ite1              : {(if_then_else a b c)} --> {a c}
     * not_ite1          : {(not (if_then_else a b c))} --> {a (not c)} *)

  Definition check_ImmBuildDef pos :=
    match S.get s pos with
    | l::nil =>
      match get_hash (Lit.blit l) with
      | Fand args => 
        if Lit.is_pos l then C._true
        else List.map Lit.neg (to_list args) 
      | For args =>
        if Lit.is_pos l then to_list args
        else C._true
      | Fimp args =>
        if PArray.length args == 0 then C._true else
        if Lit.is_pos l then 
          let args := or_of_imp args in
          to_list args
        else C._true
      | Fxor a b =>
        if Lit.is_pos l then a::b::nil
        else a::Lit.neg b::nil 
      | Fiff a b =>
        if Lit.is_pos l then a::Lit.neg b::nil
        else Lit.neg a::Lit.neg b::nil
      | Fite a b c =>
        if Lit.is_pos l then a::c::nil
        else a::Lit.neg c::nil
      | _ => C._true
      end
    | _ => C._true
    end.


  (* * xor_pos2          : {(not (xor a b)) (not a) (not b)}
     * xor_neg2          : {(xor a b) (not a) b}
     * equiv_pos2        : {(not (iff a b)) (not a) b}
     * equiv_neg2        : {(iff a b) a b}
     * ite_pos2          : {(not (if_then_else a b c)) (not a) b}
     * ite_neg2          : {(if_then_else a b c) (not a) (not b)} *)

  Definition check_BuildDef2 l :=
    match get_hash (Lit.blit l) with
    | Fxor a b =>
      if Lit.is_pos l then l::Lit.neg a::b::nil
      else l::Lit.neg a::Lit.neg b::nil
    | Fiff a b =>
      if Lit.is_pos l then l::a::b::nil
      else l::Lit.neg a::b::nil
    | Fite a b c =>
      if Lit.is_pos l then l::Lit.neg a::Lit.neg b::nil
      else l::Lit.neg a::b::nil
    | _ => C._true
    end.


  (* * xor2              : {(xor a b)} --> {(not a) (not b)}
     * not_xor2          : {(not (xor a b))} --> {(not a) b}
     * equiv1            : {(iff a b)} --> {(not a) b}
     * not_equiv1        : {(not (iff a b))} --> {a b}
     * ite2              : {(if_then_else a b c)} --> {(not a) b}
     * not_ite2          : {(not (if_then_else a b c))} --> {(not a) (not b)}
     *)

  Definition check_ImmBuildDef2 pos :=
    match S.get s pos with
    | l::nil =>
      match get_hash (Lit.blit l) with
      | Fxor a b =>
        if Lit.is_pos l then Lit.neg a::Lit.neg b::nil
        else Lit.neg a::b::nil
      | Fiff a b =>
        if Lit.is_pos l then Lit.neg a::b::nil
        else a::b::nil
      | Fite a b c =>
        if Lit.is_pos l then Lit.neg a::b::nil
        else Lit.neg a::Lit.neg b::nil
      | _ => C._true
      end
    | _ => C._true
    end.

 
  (* * or_neg           : {(or a_1 ... a_n) (not a_i)}
     * and_pos          : {(not (and a_1 ... a_n)) a_i} 
     * implies_neg1     : {(implies a b) a}
     * implies_neg2     : {(implies a b) (not b)} *)

  Definition check_BuildProj l i :=
    let x := Lit.blit l in
    match get_hash x with
    | For args =>
      if i < PArray.length args then Lit.lit x::Lit.neg (args.[i])::nil
      else C._true
    | Fand args =>
      if i < PArray.length args then Lit.nlit x::(args.[i])::nil
      else C._true
    | Fimp args =>
      let len := PArray.length args in
      if i < len then
        if i == len - 1 then Lit.lit x::Lit.neg (args.[i])::nil
        else Lit.lit x::(args.[i])::nil
      else C._true
    | _ => C._true
    end.


  (* * and               : {(and a_1 ... a_n)} --> {a_i} 
     * not_or            : {(not (or a_1 ... a_n))} --> {(not a_i)}
     * not_implies1      : {(not (implies a b))} --> {a}
     * not_implies2      : {(not (implies a b))} --> {(not b)} *)

  Definition check_ImmBuildProj pos i := 
    match S.get s pos with
    | l::nil =>
      let x := Lit.blit l in
      match get_hash x with
      | For args =>
        if (i < PArray.length args) && negb (Lit.is_pos l) then Lit.neg (args.[i])::nil
        else C._true
      | Fand args =>
        if (i < PArray.length args) && (Lit.is_pos l) then (args.[i])::nil
        else C._true
      | Fimp args =>
        let len := PArray.length args in
        if (i < len) && negb (Lit.is_pos l) then
          if i == len - 1 then Lit.neg (args.[i])::nil
          else (args.[i])::nil
        else C._true
      | _ => C._true
      end
    | _ => C._true
    end.

  (** The correctness proofs *)

  Variable interp_atom : atom -> bool.
  Variable interp_bvatom : atom -> forall s, BITVECTOR_LIST.bitvector s.

  Hypothesis Hch_f : check_form t_form.

  Local Notation rho := (Form.interp_state_var interp_atom interp_bvatom t_form).

  Let Hwfrho : Valuation.wf rho.
  Proof.
    destruct (check_form_correct interp_atom interp_bvatom _ Hch_f) as (_, H);exact H. 
  Qed.

  Lemma valid_check_True : C.valid rho check_True.
  Proof. 
    apply C.interp_true;trivial.
  Qed.

  Lemma valid_check_False : C.valid rho check_False.
  Proof.
    unfold check_False, C.valid. change (Lit.interp rho (Lit.neg Lit._false) || false = true).
    rewrite Lit.interp_neg.
    assert (W:= Lit.interp_false _ Hwfrho).
    destruct (Lit.interp rho Lit._false);trivial;elim W;red;trivial.
  Qed.

  Let rho_interp : forall x : int,
    rho x = interp interp_atom interp_bvatom t_form (t_form.[ x]).
  Proof.
    destruct (check_form_correct interp_atom interp_bvatom _ Hch_f) as ((H,H0), _).
    intros x;apply wf_interp_form;trivial.
  Qed.

  Ltac tauto_check :=
   try (rewrite !Lit.interp_neg);
   repeat 
     match goal with |- context [Lit.interp rho ?x] => 
     destruct (Lit.interp rho x);trivial end.

  Lemma valid_check_BuildDef : forall l, C.valid rho (check_BuildDef l).
  Proof.
   unfold check_BuildDef,C.valid;intros l.
   case_eq (t_form.[Lit.blit l]);intros;auto using C.interp_true;
     case_eq (Lit.is_pos l);intros Heq;auto using C.interp_true;simpl;
       try (unfold Lit.interp at 1;rewrite Heq;unfold Var.interp; rewrite rho_interp, H;simpl;
            tauto_check).
   - rewrite afold_left_and, C.Cinterp_neg;apply orb_negb_r.
   - rewrite afold_left_or, orb_comm;apply orb_negb_r.
   - case_eq (PArray.length a == 0); auto using C.interp_true.
     intro Hl; simpl.
     unfold Lit.interp at 1;rewrite Heq;unfold Var.interp; rewrite rho_interp, H;simpl.
     rewrite (afold_right_impb (Lit.interp_neg _) Hl), orb_comm;try apply orb_negb_r.
  Qed.

  Lemma valid_check_BuildDef2 : forall l, C.valid rho (check_BuildDef2 l).
  Proof.
   unfold check_BuildDef2,C.valid;intros l.
   case_eq (t_form.[Lit.blit l]);intros;auto using C.interp_true;
   case_eq (Lit.is_pos l);intros Heq;auto using C.interp_true;simpl;
   unfold Lit.interp at 1;rewrite Heq;unfold Var.interp; rewrite rho_interp, H;simpl;
   tauto_check.
  Qed.

  Lemma valid_check_BuildProj : forall l i, C.valid rho (check_BuildProj l i).
  Proof.
   unfold check_BuildProj,C.valid;intros l i.
   case_eq (t_form.[Lit.blit l]);intros;auto using C.interp_true;
   case_eq (i < PArray.length a);intros Hlt;auto using C.interp_true;simpl.
   - rewrite Lit.interp_nlit;unfold Var.interp;rewrite rho_interp, orb_false_r, H.
     simpl;rewrite afold_left_and.
     case_eq (List.forallb (Lit.interp rho) (to_list a));trivial.
     rewrite forallb_forall;intros Heq;rewrite Heq;trivial.
     apply to_list_In; auto.
   - rewrite Lit.interp_lit;unfold Var.interp;rewrite rho_interp, orb_false_r, H.
     simpl;rewrite afold_left_or.
     unfold C.interp;case_eq (List.existsb (Lit.interp rho) (to_list a));trivial.
     rewrite <-not_true_iff_false, existsb_exists, Lit.interp_neg.
     case_eq (Lit.interp rho (a .[ i]));trivial.
     intros Heq Hex;elim Hex;exists (a.[i]);split;trivial.
     apply to_list_In; auto.
   - assert (Hl : (PArray.length a == 0) = false)
       by (rewrite eqb_false_spec; intro H1; rewrite H1 in Hlt; now elim (ltb_0 i)).
     case_eq (i == PArray.length a - 1);intros Heq;simpl;
       rewrite Lit.interp_lit;unfold Var.interp;rewrite rho_interp, H;simpl.
     + rewrite Lit.interp_neg, orb_false_r.
       rewrite (afold_right_impb (Lit.interp_neg _) Hl).
       case_eq (Lit.interp rho (a .[ i])); intro Hi.
       * rewrite orb_false_r, existsb_exists.
         exists (a .[ i]). split; auto.
         {
           apply (to_list_In_eq _ i).
           - now rewrite length_or_of_imp.
           - symmetry. apply get_or_of_imp2.
             + clear -Hl. rewrite eqb_false_spec in Hl.
               unfold is_true. rewrite ltb_spec. change [|0|] with 0%Z.
               assert (H:[|PArray.length a|] <> 0%Z)
                 by (intro H; apply Hl; now apply to_Z_inj).
               destruct (to_Z_bounded (PArray.length a)) as [H1 _].
               lia.
             + now rewrite Int63.eqb_spec in Heq.
         }
       * now rewrite orb_true_r.
     + rewrite orb_false_r.
       case_eq (Lit.interp rho (a .[ i])); intro Hi.
       * now rewrite orb_true_r.
       * rewrite (afold_right_impb (Lit.interp_neg _) Hl).
         rewrite orb_false_r, existsb_exists.
         exists (Lit.neg (a .[ i])).
         {
           split.
           - apply (to_list_In_eq _ i).
             + now rewrite length_or_of_imp.
             + symmetry. apply get_or_of_imp.
               clear -Hlt Heq.
               unfold is_true. rewrite ltb_spec. rewrite (to_Z_sub_1 _ i); auto.
               rewrite eqb_false_spec in Heq.
               assert (H:[|i|] <> ([|PArray.length a|] - 1)%Z)
                 by (intro H; apply Heq, to_Z_inj; rewrite (to_Z_sub_1 _ i); auto).
               clear Heq.
               rewrite ltb_spec in Hlt. lia.
           - now rewrite Lit.interp_neg, Hi.
         }
  Qed.

  Hypothesis Hs : S.valid rho s.

  Lemma valid_check_ImmBuildDef : forall cid,
     C.valid rho (check_ImmBuildDef cid).
  Proof.
   unfold check_ImmBuildDef,C.valid;intros cid.
   generalize (Hs cid);unfold C.valid.
   destruct (S.get s cid) as [ | l [ | _l _c]];auto using C.interp_true.
   simpl;unfold Lit.interp, Var.interp; rewrite !rho_interp;
   destruct (t_form.[Lit.blit l]);auto using C.interp_true;
   case_eq (Lit.is_pos l);intros Heq;auto using C.interp_true;simpl;
   tauto_check.
   - rewrite afold_left_and, C.Cinterp_neg, orb_false_r;trivial.
   - rewrite afold_left_or, orb_false_r;trivial.
   - case_eq (PArray.length a == 0); auto using C.interp_true.
     intro Hl. now rewrite orb_false_r, (afold_right_impb (Lit.interp_neg _) Hl).
   - case_eq (PArray.length a == 0); auto using C.interp_true.
  Qed.

  Lemma valid_check_ImmBuildDef2 : forall cid, C.valid rho (check_ImmBuildDef2 cid).
  Proof.
    unfold check_ImmBuildDef2,C.valid;intros cid.
    generalize (Hs cid);unfold C.valid.
    destruct (S.get s cid) as [ | l [ | _l _c]];auto using C.interp_true.
    simpl;unfold Lit.interp, Var.interp; rewrite !rho_interp;
    destruct (t_form.[Lit.blit l]);auto using C.interp_true;
    case_eq (Lit.is_pos l);intros Heq;auto using C.interp_true;simpl;
    tauto_check.
  Qed.

  Lemma valid_check_ImmBuildProj : forall cid i, C.valid rho (check_ImmBuildProj cid i).
  Proof.
   unfold check_ImmBuildProj,C.valid;intros cid i.
   generalize (Hs cid);unfold C.valid.
   destruct (S.get s cid) as [ | l [ | _l _c]];auto using C.interp_true.
   simpl;unfold Lit.interp, Var.interp; rewrite !rho_interp;
     destruct (t_form.[Lit.blit l]);auto using C.interp_true;
       case_eq (i < PArray.length a); intros Hlt;auto using C.interp_true;
       case_eq (Lit.is_pos l);intros Heq;auto using C.interp_true;simpl;
       rewrite !orb_false_r.  
   - rewrite afold_left_and.
     rewrite forallb_forall;intros H;apply H;auto.
     apply to_list_In; auto.
   - rewrite negb_true_iff, <-not_true_iff_false, afold_left_or.
     unfold C.interp;rewrite existsb_exists, Lit.interp_neg.
     case_eq (Lit.interp rho (a .[ i]));trivial.
     intros Heq' Hex;elim Hex;exists (a.[i]);split;trivial.
     apply to_list_In; auto.
   - rewrite negb_true_iff, <-not_true_iff_false.
     assert (Hl:(PArray.length a == 0) = false)
       by (rewrite eqb_false_spec; intro H; rewrite H in Hlt; now apply (ltb_0 i)).
     rewrite (afold_right_impb (Lit.interp_neg _) Hl).
     case_eq (i == PArray.length a - 1);intros Heq';simpl;
       unfold C.interp;simpl;try rewrite Lit.interp_neg;rewrite orb_false_r,
                                                        existsb_exists;case_eq (Lit.interp rho (a .[ i]));trivial;
         intros Heq2 Hex;elim Hex.
     exists (a.[i]);split;trivial.
     assert (H1: 0 < PArray.length a) by (apply (leb_ltb_trans _ i _); auto; apply leb_0); rewrite Int63.eqb_spec in Heq'; rewrite <- (get_or_of_imp2 H1 Heq'); apply to_list_In; rewrite length_or_of_imp; auto.
     exists (Lit.neg (a.[i]));rewrite Lit.interp_neg, Heq2;split;trivial.
     assert (H1: i < PArray.length a - 1 = true) by (rewrite ltb_spec, (to_Z_sub_1 _ _ Hlt); rewrite eqb_false_spec in Heq'; assert (H1: [|i|] <> ([|PArray.length a|] - 1)%Z) by (intro H1; apply Heq', to_Z_inj; rewrite (to_Z_sub_1 _ _ Hlt); auto); rewrite ltb_spec in Hlt; lia); rewrite <- (get_or_of_imp H1); apply to_list_In; rewrite length_or_of_imp; auto.
  Qed.

End CHECKER.
  
Unset Implicit Arguments.