aboutsummaryrefslogtreecommitdiffstats
path: root/src/extraction/smt_checker.ml
blob: deb51fc025ed55aa5f7776b4f2c07ecfacedcf62 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211
4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265
4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319
4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373
4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427
4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481
4482
4483
4484
4485
4486
4487
4488
4489
4490
4491
4492
4493
4494
4495
4496
4497
4498
4499
4500
4501
4502
4503
4504
4505
4506
4507
4508
4509
4510
4511
4512
4513
4514
4515
4516
4517
4518
4519
4520
4521
4522
4523
4524
4525
4526
4527
4528
4529
4530
4531
4532
4533
4534
4535
4536
4537
4538
4539
4540
4541
4542
4543
4544
4545
4546
4547
4548
4549
4550
4551
4552
4553
4554
4555
4556
4557
4558
4559
4560
4561
4562
4563
4564
4565
4566
4567
4568
4569
4570
4571
4572
4573
4574
4575
4576
4577
4578
4579
4580
4581
4582
4583
4584
4585
4586
4587
4588
4589
4590
4591
4592
4593
4594
4595
4596
4597
4598
4599
4600
4601
4602
4603
4604
4605
4606
4607
4608
4609
4610
4611
4612
4613
4614
4615
4616
4617
4618
4619
4620
4621
4622
4623
4624
4625
4626
4627
4628
4629
4630
4631
4632
4633
4634
4635
4636
4637
4638
4639
4640
4641
4642
4643
4644
4645
4646
4647
4648
4649
4650
4651
4652
4653
4654
4655
4656
4657
4658
4659
4660
4661
4662
4663
4664
4665
4666
4667
4668
4669
4670
4671
4672
4673
4674
4675
4676
4677
4678
4679
4680
4681
4682
4683
4684
4685
4686
4687
4688
4689
4690
4691
4692
4693
4694
4695
4696
4697
4698
4699
4700
4701
4702
4703
4704
4705
4706
4707
4708
4709
4710
4711
4712
4713
4714
4715
4716
4717
4718
4719
4720
4721
4722
4723
4724
4725
4726
4727
4728
4729
4730
4731
4732
4733
4734
4735
4736
4737
4738
4739
4740
4741
4742
4743
4744
4745
4746
4747
4748
4749
4750
4751
4752
4753
4754
4755
4756
4757
4758
4759
4760
4761
4762
4763
4764
4765
4766
4767
4768
4769
4770
4771
4772
4773
4774
4775
4776
4777
4778
4779
4780
4781
4782
4783
4784
4785
4786
4787
4788
4789
4790
4791
4792
4793
4794
4795
4796
4797
4798
4799
4800
4801
4802
4803
4804
4805
4806
4807
4808
4809
4810
4811
4812
4813
4814
4815
4816
4817
4818
4819
4820
4821
4822
4823
4824
4825
4826
4827
4828
4829
4830
4831
4832
4833
4834
4835
4836
4837
4838
4839
4840
4841
4842
4843
4844
4845
4846
4847
4848
4849
4850
4851
4852
4853
4854
4855
4856
4857
4858
4859
4860
4861
4862
4863
4864
4865
4866
4867
4868
4869
4870
4871
4872
4873
4874
4875
4876
4877
4878
4879
4880
4881
4882
4883
4884
4885
4886
4887
4888
4889
4890
4891
4892
4893
4894
4895
4896
4897
4898
4899
4900
4901
4902
4903
4904
4905
4906
4907
4908
4909
4910
4911
4912
4913
4914
4915
4916
4917
4918
4919
4920
4921
4922
4923
4924
4925
4926
4927
4928
4929
4930
4931
4932
4933
4934
4935
4936
4937
4938
4939
4940
4941
4942
4943
4944
4945
4946
4947
4948
4949
4950
4951
4952
4953
4954
4955
4956
4957
4958
4959
4960
4961
4962
4963
4964
4965
4966
4967
4968
4969
4970
4971
4972
4973
4974
4975
4976
4977
4978
4979
4980
4981
4982
4983
4984
4985
4986
4987
4988
4989
4990
4991
4992
4993
4994
4995
4996
4997
4998
4999
5000
5001
5002
5003
5004
5005
5006
5007
5008
5009
5010
5011
5012
5013
5014
5015
5016
5017
5018
5019
5020
5021
5022
5023
5024
5025
5026
5027
5028
5029
5030
5031
5032
5033
5034
5035
5036
5037
5038
5039
5040
5041
5042
5043
5044
5045
5046
5047
5048
5049
5050
5051
5052
5053
5054
5055
5056
5057
5058
5059
5060
5061
5062
5063
5064
5065
5066
5067
5068
5069
5070
5071
5072
5073
5074
5075
5076
5077
5078
5079
5080
5081
5082
5083
5084
5085
5086
5087
5088
5089
5090
5091
5092
5093
5094
5095
5096
5097
5098
5099
5100
5101
5102
5103
5104
5105
5106
5107
5108
5109
5110
5111
5112
5113
5114
5115
5116
5117
5118
5119
5120
5121
5122
5123
5124
5125
5126
5127
5128
5129
5130
5131
5132
5133
5134
5135
5136
5137
5138
5139
5140
5141
5142
5143
5144
5145
5146
5147
5148
5149
5150
5151
5152
5153
5154
5155
5156
5157
5158
5159
5160
5161
5162
5163
5164
5165
5166
5167
5168
5169
5170
5171
5172
5173
5174
5175
5176
5177
5178
5179
5180
5181
5182
5183
5184
5185
5186
5187
5188
5189
5190
5191
5192
5193
5194
5195
5196
5197
5198
5199
5200
5201
5202
5203
5204
5205
5206
5207
5208
5209
5210
5211
5212
5213
5214
5215
5216
5217
5218
5219
5220
5221
5222
5223
5224
5225
5226
5227
5228
5229
5230
5231
5232
5233
5234
5235
5236
5237
5238
5239
5240
5241
5242
5243
5244
5245
5246
5247
5248
5249
5250
5251
5252
5253
5254
5255
5256
5257
5258
5259
5260
5261
5262
5263
5264
5265
5266
5267
5268
5269
5270
5271
5272
5273
5274
5275
5276
5277
5278
5279
5280
5281
5282
5283
5284
5285
5286
5287
5288
5289
5290
5291
5292
5293
5294
5295
5296
5297
5298
5299
5300
5301
5302
5303
5304
5305
5306
5307
5308
5309
5310
5311
5312
5313
5314
5315
5316
5317
5318
5319
5320
5321
5322
5323
5324
5325
5326
5327
5328
5329
5330
5331
5332
5333
5334
5335
5336
5337
5338
5339
5340
5341
5342
5343
5344
5345
5346
5347
5348
5349
5350
5351
5352
5353
5354
5355
5356
5357
5358
5359
5360
5361
5362
5363
5364
5365
5366
5367
5368
5369
5370
5371
5372
5373
5374
5375
5376
5377
5378
5379
5380
5381
5382
5383
5384
5385
5386
5387
5388
5389
5390
5391
5392
5393
5394
5395
5396
5397
5398
5399
5400
5401
5402
5403
5404
5405
5406
5407
5408
5409
5410
5411
5412
5413
5414
5415
5416
5417
5418
5419
5420
5421
5422
5423
5424
5425
5426
5427
5428
5429
5430
5431
5432
5433
5434
5435
5436
5437
5438
5439
5440
5441
5442
5443
5444
5445
5446
5447
5448
5449
5450
5451
5452
5453
5454
5455
5456
5457
5458
5459
5460
5461
5462
5463
5464
5465
5466
5467
5468
5469
5470
5471
5472
5473
5474
5475
5476
5477
5478
5479
5480
5481
5482
5483
5484
5485
5486
5487
5488
5489
5490
5491
5492
5493
5494
5495
5496
5497
5498
5499
5500
5501
5502
5503
5504
5505
5506
5507
5508
5509
5510
5511
5512
5513
5514
5515
5516
5517
5518
5519
5520
5521
5522
5523
5524
5525
5526
5527
5528
5529
5530
5531
5532
5533
5534
5535
5536
5537
5538
5539
5540
5541
5542
5543
5544
5545
5546
5547
5548
5549
5550
5551
5552
5553
5554
5555
5556
5557
5558
5559
5560
5561
5562
5563
5564
5565
5566
5567
5568
5569
5570
5571
5572
5573
5574
5575
5576
5577
5578
5579
5580
5581
5582
5583
5584
5585
5586
5587
5588
5589
5590
5591
5592
5593
5594
5595
5596
5597
5598
5599
5600
5601
5602
5603
5604
5605
5606
5607
5608
5609
5610
5611
5612
5613
5614
5615
5616
5617
5618
5619
5620
5621
5622
5623
5624
5625
5626
5627
5628
5629
5630
5631
5632
5633
5634
5635
5636
5637
5638
5639
5640
5641
5642
5643
5644
5645
5646
5647
5648
5649
5650
5651
5652
5653
5654
5655
5656
5657
5658
5659
5660
5661
5662
5663
5664
5665
5666
5667
5668
5669
5670
5671
5672
5673
5674
5675
5676
5677
5678
5679
5680
5681
5682
5683
5684
5685
5686
5687
5688
5689
5690
5691
5692
5693
5694
5695
5696
5697
5698
5699
5700
5701
5702
5703
5704
5705
5706
5707
5708
5709
5710
5711
5712
5713
5714
5715
5716
5717
5718
5719
5720
5721
5722
5723
5724
5725
5726
5727
5728
5729
5730
5731
5732
5733
5734
5735
5736
5737
5738
5739
5740
5741
5742
5743
5744
5745
5746
5747
5748
5749
5750
5751
5752
5753
5754
5755
5756
5757
5758
5759
5760
5761
5762
5763
5764
5765
5766
5767
5768
5769
5770
5771
5772
5773
5774
5775
5776
5777
5778
5779
5780
5781
5782
5783
5784
5785
5786
5787
5788
5789
5790
5791
5792
5793
5794
5795
5796
5797
5798
5799
5800
5801
5802
5803
5804
5805
5806
5807
5808
5809
5810
5811
5812
5813
5814
5815
5816
5817
5818
5819
5820
5821
5822
5823
5824
5825
5826
5827
5828
5829
5830
5831
5832
5833
5834
5835
5836
5837
5838
5839
5840
5841
5842
5843
5844
5845
5846
5847
5848
5849
5850
5851
5852
5853
5854
5855
5856
5857
5858
5859
5860
5861
5862
5863
5864
5865
5866
5867
5868
5869
5870
5871
5872
5873
5874
5875
5876
5877
5878
5879
5880
5881
5882
5883
5884
5885
5886
5887
5888
5889
5890
5891
5892
5893
5894
5895
5896
5897
5898
5899
5900
5901
5902
5903
5904
5905
5906
5907
5908
5909
5910
5911
5912
5913
5914
5915
5916
5917
5918
5919
5920
5921
5922
5923
5924
5925
5926
5927
5928
5929
5930
5931
5932
5933
5934
5935
5936
5937
5938
5939
5940
5941
5942
5943
5944
5945
5946
5947
5948
5949
5950
5951
5952
5953
5954
5955
5956
5957
5958
5959
5960
5961
5962
5963
5964
5965
5966
5967
5968
5969
5970
5971
5972
5973
5974
5975
5976
5977
5978
5979
5980
5981
5982
5983
5984
5985
5986
5987
5988
5989
5990
5991
5992
5993
5994
5995
5996
5997
5998
5999
6000
6001
6002
6003
6004
6005
6006
6007
6008
6009
6010
6011
6012
6013
6014
6015
6016
6017
6018
6019
6020
6021
6022
6023
6024
6025
6026
6027
6028
6029
6030
6031
6032
6033
6034
6035
6036
6037
6038
6039
6040
6041
6042
6043
6044
6045
6046
6047
6048
6049
6050
6051
6052
6053
6054
6055
6056
6057
6058
6059
6060
6061
6062
6063
6064
6065
6066
6067
6068
6069
6070
6071
6072
6073
6074
6075
6076
6077
6078
6079
6080
6081
6082
6083
6084
6085
6086
6087
6088
6089
6090
6091
6092
6093
6094
6095
6096
6097
6098
6099
6100
6101
6102
6103
6104
6105
6106
6107
6108
6109
6110
6111
6112
6113
6114
6115
6116
6117
6118
6119
6120
6121
6122
6123
6124
6125
6126
6127
6128
6129
6130
6131
6132
6133
6134
6135
6136
6137
6138
6139
6140
6141
6142
6143
6144
6145
6146
6147
6148
6149
6150
6151
6152
6153
6154
6155
6156
6157
6158
6159
6160
6161
6162
6163
6164
6165
6166
6167
6168
6169
6170
6171
6172
6173
6174
6175
6176
6177
6178
6179
6180
6181
6182
6183
6184
6185
6186
6187
6188
6189
6190
6191
6192
6193
6194
6195
6196
6197
6198
6199
6200
6201
6202
6203
6204
6205
6206
6207
6208
6209
6210
6211
6212
6213
6214
6215
6216
6217
6218
6219
6220
6221
6222
6223
6224
6225
6226
6227
6228
6229
6230
6231
6232
6233
6234
6235
6236
6237
6238
6239
6240
6241
6242
6243
6244
6245
6246
6247
6248
6249
6250
6251
6252
6253
6254
6255
6256
6257
6258
6259
6260
6261
6262
6263
6264
6265
6266
6267
6268
6269
6270
6271
6272
6273
6274
6275
6276
6277
6278
6279
6280
6281
6282
6283
6284
6285
6286
6287
6288
6289
6290
6291
6292
6293
6294
6295
6296
6297
6298
6299
6300
6301
6302
6303
6304
6305
6306
6307
6308
6309
6310
6311
6312
6313
6314
6315
6316
6317
6318
6319
6320
6321
6322
6323
6324
6325
6326
6327
6328
6329
6330
6331
6332
6333
6334
6335
6336
6337
6338
6339
6340
6341
6342
6343
6344
6345
6346
6347
6348
6349
6350
6351
6352
6353
6354
6355
6356
6357
6358
6359
6360
6361
6362
6363
6364
6365
6366
6367
6368
6369
6370
6371
6372
6373
6374
6375
6376
6377
6378
6379
6380
6381
6382
6383
6384
6385
6386
6387
6388
6389
6390
6391
6392
6393
6394
6395
6396
6397
6398
6399
6400
6401
6402
6403
6404
6405
6406
6407
6408
6409
6410
6411
6412
6413
6414
6415
6416
6417
6418
6419
6420
6421
6422
6423
6424
6425
6426
6427
6428
6429
6430
6431
6432
6433
6434
6435
6436
6437
6438
6439
6440
6441
6442
6443
6444
6445
6446
6447
6448
6449
6450
6451
6452
6453
6454
6455
6456
6457
6458
6459
6460
6461
6462
6463
6464
6465
6466
6467
6468
6469
6470
6471
6472
6473
6474
6475
6476
6477
6478
6479
6480
6481
6482
6483
6484
6485
6486
6487
6488
6489
6490
6491
6492
6493
6494
6495
6496
6497
6498
6499
6500
6501
6502
6503
6504
6505
6506
6507
6508
6509
6510
6511
6512
6513
6514
6515
6516
6517
6518
6519
6520
6521
6522
6523
6524
6525
6526
6527
6528
6529
6530
6531
6532
6533
6534
6535
6536
6537
6538
6539
6540
6541
6542
6543
6544
6545
6546
6547
6548
6549
6550
6551
6552
6553
6554
6555
6556
6557
6558
6559
6560
6561
6562
6563
6564
6565
6566
6567
6568
6569
6570
6571
6572
6573
6574
6575
6576
6577
6578
6579
6580
6581
6582
6583
6584
6585
6586
6587
6588
6589
6590
6591
6592
6593
6594
6595
6596
6597
6598
6599
6600
6601
6602
6603
6604
6605
6606
6607
6608
6609
6610
6611
6612
6613
6614
6615
6616
6617
6618
6619
6620
6621
6622
6623
6624
6625
6626
6627
6628
6629
6630
6631
6632
6633
6634
6635
6636
6637
6638
6639
6640
6641
6642
6643
6644
6645
6646
6647
6648
6649
6650
6651
6652
6653
6654
6655
6656
6657
6658
6659
6660
6661
6662
6663
6664
6665
6666
6667
6668
6669
6670
6671
6672
6673
6674
6675
6676
6677
6678
6679
6680
6681
6682
6683
6684
6685
6686
6687
6688
6689
6690
6691
6692
6693
6694
6695
6696
6697
6698
6699
6700
6701
6702
6703
6704
6705
6706
6707
6708
6709
6710
6711
6712
6713
6714
6715
6716
6717
6718
6719
6720
6721
6722
6723
6724
6725
6726
6727
6728
6729
6730
6731
6732
6733
6734
6735
6736
6737
6738
6739
6740
6741
6742
6743
6744
6745
6746
6747
6748
6749
6750
6751
6752
6753
6754
6755
6756
6757
6758
6759
6760
6761
6762
6763
6764
6765
6766
6767
6768
6769
6770
6771
6772
6773
6774
6775
6776
6777
6778
6779
6780
6781
6782
6783
6784
6785
6786
6787
6788
6789
6790
6791
6792
6793
6794
6795
6796
6797
6798
6799
6800
6801
6802
6803
6804
6805
6806
6807
6808
6809
6810
6811
6812
6813
6814
6815
6816
6817
6818
6819
6820
6821
6822
6823
6824
6825
6826
6827
6828
6829
6830
6831
6832
6833
6834
6835
6836
6837
6838
6839
6840
6841
6842
6843
6844
6845
6846
6847
6848
6849
6850
6851
6852
6853
6854
6855
6856
6857
6858
6859
6860
6861
6862
6863
6864
6865
6866
6867
6868
6869
6870
6871
6872
6873
6874
6875
6876
6877
6878
6879
6880
6881
6882
6883
6884
6885
6886
6887
6888
6889
6890
6891
6892
6893
6894
6895
6896
6897
6898
6899
6900
6901
6902
6903
6904
6905
6906
6907
6908
6909
6910
6911
6912
6913
6914
6915
6916
6917
6918
6919
6920
6921
6922
6923
6924
6925
6926
6927
6928
6929
6930
6931
6932
6933
6934
6935
6936
6937
6938
6939
6940
6941
6942
6943
6944
6945
6946
6947
6948
6949
6950
6951
6952
6953
6954
6955
6956
6957
6958
6959
6960
6961
6962
6963
6964
6965
6966
6967
6968
6969
6970
6971
6972
6973
6974
6975
6976
6977
6978
6979
6980
6981
6982
6983
6984
6985
6986
6987
6988
6989
6990
6991
6992
6993
6994
6995
6996
6997
6998
6999
7000
7001
7002
7003
7004
7005
7006
7007
7008
7009
7010
7011
7012
7013
7014
7015
7016
7017
7018
7019
7020
7021
7022
7023
7024
7025
7026
7027
7028
7029
7030
7031
7032
7033
7034
7035
7036
7037
7038
7039
7040
7041
7042
7043
7044
7045
7046
7047
7048
7049
7050
7051
7052
7053
7054
7055
7056
7057
7058
7059
7060
7061
7062
7063
7064
7065
7066
7067
7068
7069
7070
7071
7072
7073
7074
7075
7076
7077
7078
7079
7080
7081
7082
7083
7084
7085
7086
7087
7088
7089
7090
7091
7092
7093
7094
7095
7096
7097
7098
7099
7100
7101
7102
7103
7104
7105
7106
7107
7108
7109
7110
7111
7112
7113
7114
7115
7116
7117
7118
7119
7120
7121
7122
7123
7124
7125
7126
7127
7128
7129
7130
7131
7132
7133
7134
7135
7136
7137
7138
7139
7140
7141
7142
7143
7144
7145
7146
7147
7148
7149
7150
7151
7152
7153
7154
7155
7156
7157
7158
7159
7160
7161
7162
7163
7164
7165
7166
7167
7168
7169
7170
7171
7172
7173
7174
7175
7176
7177
7178
7179
7180
7181
7182
7183
7184
7185
7186
7187
7188
7189
7190
7191
7192
7193
7194
7195
7196
7197
7198
7199
7200
7201
7202
7203
7204
7205
7206
7207
7208
7209
7210
7211
7212
7213
7214
7215
7216
7217
7218
7219
7220
7221
7222
7223
7224
7225
7226
7227
7228
7229
7230
7231
7232
7233
7234
7235
7236
7237
7238
7239
7240
7241
7242
7243
7244
7245
7246
7247
7248
7249
7250
7251
7252
7253
7254
7255
7256
7257
7258
7259
7260
7261
7262
7263
7264
7265
7266
7267
7268
7269
7270
7271
7272
7273
7274
7275
7276
7277
7278
7279
7280
7281
7282
7283
7284
7285
7286
7287
7288
7289
7290
7291
7292
7293
7294
7295
7296
7297
7298
7299
7300
7301
7302
7303
7304
7305
7306
7307
7308
7309
7310
7311
7312
7313
7314
7315
7316
7317
7318
7319
7320
7321
7322
7323
7324
7325
7326
7327
7328
7329
7330
7331
7332
7333
7334
7335
7336
7337
7338
7339
7340
7341
7342
7343
7344
7345
7346
7347
7348
7349
7350
7351
7352
7353
7354
7355
7356
7357
7358
7359
7360
7361
7362
7363
7364
7365
7366
7367
7368
7369
7370
7371
7372
7373
7374
7375
7376
7377
7378
7379
7380
7381
7382
7383
7384
7385
7386
7387
7388
7389
7390
7391
7392
7393
7394
7395
7396
7397
7398
7399
7400
7401
7402
7403
7404
7405
7406
7407
7408
7409
7410
7411
7412
7413
7414
7415
7416
7417
7418
7419
7420
7421
7422
7423
7424
7425
7426
7427
7428
7429
7430
7431
7432
7433
7434
7435
7436
7437
7438
7439
7440
7441
7442
7443
7444
7445
7446
7447
7448
7449
7450
7451
7452
7453
7454
7455
7456
7457
7458
7459
7460
7461
7462
7463
7464
7465
7466
7467
7468
7469
7470
7471
7472
7473
7474
7475
7476
7477
7478
7479
7480
7481
7482
7483
7484
7485
7486
7487
7488
7489
7490
7491
7492
7493
7494
7495
7496
7497
7498
7499
7500
7501
7502
7503
7504
7505
7506
7507
7508
7509
7510
7511
7512
7513
7514
7515
7516
7517
7518
7519
7520
7521
7522
7523
7524
7525
7526
7527
7528
7529
7530
7531
7532
7533
7534
7535
7536
7537
7538
7539
7540
7541
7542
7543
7544
7545
7546
7547
7548
7549
7550
7551
7552
7553
7554
7555
7556
7557
7558
7559
7560
7561
7562
7563
7564
7565
7566
7567
7568
7569
7570
7571
7572
7573
7574
7575
7576
7577
7578
7579
7580
7581
7582
7583
7584
7585
7586
7587
7588
7589
7590
7591
7592
7593
7594
7595
7596
7597
7598
7599
7600
7601
7602
7603
7604
7605
7606
7607
7608
7609
7610
7611
7612
7613
7614
7615
7616
7617
7618
7619
7620
7621
7622
7623
7624
7625
7626
7627
7628
7629
7630
7631
7632

type __ = Obj.t
let __ = let rec f _ = Obj.repr f in Obj.repr f

type unit0 =
| Tt

(** val negb : bool -> bool **)

let negb = function
| true -> false
| false -> true

type nat =
| O
| S of nat

type 'a option =
| Some of 'a
| None

(** val option_map : ('a1 -> 'a2) -> 'a1 option -> 'a2 option **)

let option_map f = function
| Some a -> Some (f a)
| None -> None

(** val fst : ('a1 * 'a2) -> 'a1 **)

let fst = function
| (x, _) -> x

(** val snd : ('a1 * 'a2) -> 'a2 **)

let snd = function
| (_, y) -> y

type 'a list =
| Nil
| Cons of 'a * 'a list

(** val length : 'a1 list -> nat **)

let rec length = function
| Nil -> O
| Cons (_, l') -> S (length l')

(** val app : 'a1 list -> 'a1 list -> 'a1 list **)

let rec app l m =
  match l with
  | Nil -> m
  | Cons (a, l1) -> Cons (a, (app l1 m))

(** val compOpp : int -> int **)

let compOpp = function
| 0 -> 0
| (-1) -> 1
| 1 -> (-1)

type sumbool =
| Left
| Right

module Coq__1 = struct
 (** val add : nat -> nat -> nat **)
 let rec add n0 m =
   match n0 with
   | O -> m
   | S p -> S (add p m)
end
include Coq__1

(** val mul : nat -> nat -> nat **)

let rec mul n0 m =
  match n0 with
  | O -> O
  | S p -> add m (mul p m)

type positive =
| XI of positive
| XO of positive
| XH

type n =
| N0
| Npos of positive

type z =
| Z0
| Zpos of positive
| Zneg of positive

(** val eqb : bool -> bool -> bool **)

let eqb b1 b2 =
  if b1 then b2 else if b2 then false else true

module type EqLtLe =
 sig
  type t
 end

module MakeOrderTac =
 functor (O:EqLtLe) ->
 functor (P:sig
 end) ->
 struct
 end

module Nat =
 struct
  (** val eqb : nat -> nat -> bool **)

  let rec eqb n0 m =
    match n0 with
    | O -> (match m with
            | O -> true
            | S _ -> false)
    | S n' -> (match m with
               | O -> false
               | S m' -> eqb n' m')
 end

module Pos =
 struct
  type mask =
  | IsNul
  | IsPos of positive
  | IsNeg
 end

module Coq_Pos =
 struct
  (** val succ : positive -> positive **)

  let rec succ = function
  | XI p -> XO (succ p)
  | XO p -> XI p
  | XH -> XO XH

  (** val add : positive -> positive -> positive **)

  let rec add x y =
    match x with
    | XI p ->
      (match y with
       | XI q -> XO (add_carry p q)
       | XO q -> XI (add p q)
       | XH -> XO (succ p))
    | XO p ->
      (match y with
       | XI q -> XI (add p q)
       | XO q -> XO (add p q)
       | XH -> XI p)
    | XH -> (match y with
             | XI q -> XO (succ q)
             | XO q -> XI q
             | XH -> XO XH)

  (** val add_carry : positive -> positive -> positive **)

  and add_carry x y =
    match x with
    | XI p ->
      (match y with
       | XI q -> XI (add_carry p q)
       | XO q -> XO (add_carry p q)
       | XH -> XI (succ p))
    | XO p ->
      (match y with
       | XI q -> XO (add_carry p q)
       | XO q -> XI (add p q)
       | XH -> XO (succ p))
    | XH ->
      (match y with
       | XI q -> XI (succ q)
       | XO q -> XO (succ q)
       | XH -> XI XH)

  (** val pred_double : positive -> positive **)

  let rec pred_double = function
  | XI p -> XI (XO p)
  | XO p -> XI (pred_double p)
  | XH -> XH

  (** val pred : positive -> positive **)

  let pred = function
  | XI p -> XO p
  | XO p -> pred_double p
  | XH -> XH

  type mask = Pos.mask =
  | IsNul
  | IsPos of positive
  | IsNeg

  (** val succ_double_mask : mask -> mask **)

  let succ_double_mask = function
  | IsNul -> IsPos XH
  | IsPos p -> IsPos (XI p)
  | IsNeg -> IsNeg

  (** val double_mask : mask -> mask **)

  let double_mask = function
  | IsPos p -> IsPos (XO p)
  | x0 -> x0

  (** val double_pred_mask : positive -> mask **)

  let double_pred_mask = function
  | XI p -> IsPos (XO (XO p))
  | XO p -> IsPos (XO (pred_double p))
  | XH -> IsNul

  (** val sub_mask : positive -> positive -> mask **)

  let rec sub_mask x y =
    match x with
    | XI p ->
      (match y with
       | XI q -> double_mask (sub_mask p q)
       | XO q -> succ_double_mask (sub_mask p q)
       | XH -> IsPos (XO p))
    | XO p ->
      (match y with
       | XI q -> succ_double_mask (sub_mask_carry p q)
       | XO q -> double_mask (sub_mask p q)
       | XH -> IsPos (pred_double p))
    | XH -> (match y with
             | XH -> IsNul
             | _ -> IsNeg)

  (** val sub_mask_carry : positive -> positive -> mask **)

  and sub_mask_carry x y =
    match x with
    | XI p ->
      (match y with
       | XI q -> succ_double_mask (sub_mask_carry p q)
       | XO q -> double_mask (sub_mask p q)
       | XH -> IsPos (pred_double p))
    | XO p ->
      (match y with
       | XI q -> double_mask (sub_mask_carry p q)
       | XO q -> succ_double_mask (sub_mask_carry p q)
       | XH -> double_pred_mask p)
    | XH -> IsNeg

  (** val sub : positive -> positive -> positive **)

  let sub x y =
    match sub_mask x y with
    | IsPos z0 -> z0
    | _ -> XH

  (** val mul : positive -> positive -> positive **)

  let rec mul x y =
    match x with
    | XI p -> add y (XO (mul p y))
    | XO p -> XO (mul p y)
    | XH -> y

  (** val size_nat : positive -> nat **)

  let rec size_nat = function
  | XI p2 -> S (size_nat p2)
  | XO p2 -> S (size_nat p2)
  | XH -> S O

  (** val compare_cont : int -> positive -> positive -> int **)

  let rec compare_cont r x y =
    match x with
    | XI p ->
      (match y with
       | XI q -> compare_cont r p q
       | XO q -> compare_cont 1 p q
       | XH -> 1)
    | XO p ->
      (match y with
       | XI q -> compare_cont (-1) p q
       | XO q -> compare_cont r p q
       | XH -> 1)
    | XH -> (match y with
             | XH -> r
             | _ -> (-1))

  (** val compare : positive -> positive -> int **)

  let compare =
    compare_cont 0

  (** val max : positive -> positive -> positive **)

  let max p p' =
    match compare p p' with
    | 1 -> p
    | _ -> p'

  (** val eqb : positive -> positive -> bool **)

  let rec eqb p q =
    match p with
    | XI p2 -> (match q with
                | XI q0 -> eqb p2 q0
                | _ -> false)
    | XO p2 -> (match q with
                | XO q0 -> eqb p2 q0
                | _ -> false)
    | XH -> (match q with
             | XH -> true
             | _ -> false)

  (** val leb : positive -> positive -> bool **)

  let leb x y =
    match compare x y with
    | 1 -> false
    | _ -> true

  (** val gcdn : nat -> positive -> positive -> positive **)

  let rec gcdn n0 a b =
    match n0 with
    | O -> XH
    | S n1 ->
      (match a with
       | XI a' ->
         (match b with
          | XI b' ->
            (match compare a' b' with
             | 0 -> a
             | (-1) -> gcdn n1 (sub b' a') a
             | 1 -> gcdn n1 (sub a' b') b)
          | XO b0 -> gcdn n1 a b0
          | XH -> XH)
       | XO a0 ->
         (match b with
          | XI _ -> gcdn n1 a0 b
          | XO b0 -> XO (gcdn n1 a0 b0)
          | XH -> XH)
       | XH -> XH)

  (** val gcd : positive -> positive -> positive **)

  let gcd a b =
    gcdn (Coq__1.add (size_nat a) (size_nat b)) a b

  (** val iter_op : ('a1 -> 'a1 -> 'a1) -> positive -> 'a1 -> 'a1 **)

  let rec iter_op op p a =
    match p with
    | XI p2 -> op a (iter_op op p2 (op a a))
    | XO p2 -> iter_op op p2 (op a a)
    | XH -> a

  (** val to_nat : positive -> nat **)

  let to_nat x =
    iter_op Coq__1.add x (S O)

  (** val of_succ_nat : nat -> positive **)

  let rec of_succ_nat = function
  | O -> XH
  | S x -> succ (of_succ_nat x)

  (** val eq_dec : positive -> positive -> sumbool **)

  let rec eq_dec p x0 =
    match p with
    | XI p2 -> (match x0 with
                | XI p3 -> eq_dec p2 p3
                | _ -> Right)
    | XO p2 -> (match x0 with
                | XO p3 -> eq_dec p2 p3
                | _ -> Right)
    | XH -> (match x0 with
             | XH -> Left
             | _ -> Right)
 end

module N =
 struct
  (** val add : n -> n -> n **)

  let add n0 m =
    match n0 with
    | N0 -> m
    | Npos p -> (match m with
                 | N0 -> n0
                 | Npos q -> Npos (Coq_Pos.add p q))

  (** val sub : n -> n -> n **)

  let sub n0 m =
    match n0 with
    | N0 -> N0
    | Npos n' ->
      (match m with
       | N0 -> n0
       | Npos m' ->
         (match Coq_Pos.sub_mask n' m' with
          | Coq_Pos.IsPos p -> Npos p
          | _ -> N0))

  (** val compare : n -> n -> int **)

  let compare n0 m =
    match n0 with
    | N0 -> (match m with
             | N0 -> 0
             | Npos _ -> (-1))
    | Npos n' -> (match m with
                  | N0 -> 1
                  | Npos m' -> Coq_Pos.compare n' m')

  (** val eqb : n -> n -> bool **)

  let eqb n0 m =
    match n0 with
    | N0 -> (match m with
             | N0 -> true
             | Npos _ -> false)
    | Npos p -> (match m with
                 | N0 -> false
                 | Npos q -> Coq_Pos.eqb p q)

  (** val leb : n -> n -> bool **)

  let leb x y =
    match compare x y with
    | 1 -> false
    | _ -> true

  (** val ltb : n -> n -> bool **)

  let ltb x y =
    match compare x y with
    | (-1) -> true
    | _ -> false

  (** val to_nat : n -> nat **)

  let to_nat = function
  | N0 -> O
  | Npos p -> Coq_Pos.to_nat p

  (** val of_nat : nat -> n **)

  let of_nat = function
  | O -> N0
  | S n' -> Npos (Coq_Pos.of_succ_nat n')
 end

module Z =
 struct
  (** val double : z -> z **)

  let double = function
  | Z0 -> Z0
  | Zpos p -> Zpos (XO p)
  | Zneg p -> Zneg (XO p)

  (** val succ_double : z -> z **)

  let succ_double = function
  | Z0 -> Zpos XH
  | Zpos p -> Zpos (XI p)
  | Zneg p -> Zneg (Coq_Pos.pred_double p)

  (** val pred_double : z -> z **)

  let pred_double = function
  | Z0 -> Zneg XH
  | Zpos p -> Zpos (Coq_Pos.pred_double p)
  | Zneg p -> Zneg (XI p)

  (** val pos_sub : positive -> positive -> z **)

  let rec pos_sub x y =
    match x with
    | XI p ->
      (match y with
       | XI q -> double (pos_sub p q)
       | XO q -> succ_double (pos_sub p q)
       | XH -> Zpos (XO p))
    | XO p ->
      (match y with
       | XI q -> pred_double (pos_sub p q)
       | XO q -> double (pos_sub p q)
       | XH -> Zpos (Coq_Pos.pred_double p))
    | XH ->
      (match y with
       | XI q -> Zneg (XO q)
       | XO q -> Zneg (Coq_Pos.pred_double q)
       | XH -> Z0)

  (** val add : z -> z -> z **)

  let add x y =
    match x with
    | Z0 -> y
    | Zpos x' ->
      (match y with
       | Z0 -> x
       | Zpos y' -> Zpos (Coq_Pos.add x' y')
       | Zneg y' -> pos_sub x' y')
    | Zneg x' ->
      (match y with
       | Z0 -> x
       | Zpos y' -> pos_sub y' x'
       | Zneg y' -> Zneg (Coq_Pos.add x' y'))

  (** val opp : z -> z **)

  let opp = function
  | Z0 -> Z0
  | Zpos x0 -> Zneg x0
  | Zneg x0 -> Zpos x0

  (** val sub : z -> z -> z **)

  let sub m n0 =
    add m (opp n0)

  (** val mul : z -> z -> z **)

  let mul x y =
    match x with
    | Z0 -> Z0
    | Zpos x' ->
      (match y with
       | Z0 -> Z0
       | Zpos y' -> Zpos (Coq_Pos.mul x' y')
       | Zneg y' -> Zneg (Coq_Pos.mul x' y'))
    | Zneg x' ->
      (match y with
       | Z0 -> Z0
       | Zpos y' -> Zneg (Coq_Pos.mul x' y')
       | Zneg y' -> Zpos (Coq_Pos.mul x' y'))

  (** val compare : z -> z -> int **)

  let compare x y =
    match x with
    | Z0 -> (match y with
             | Z0 -> 0
             | Zpos _ -> (-1)
             | Zneg _ -> 1)
    | Zpos x' -> (match y with
                  | Zpos y' -> Coq_Pos.compare x' y'
                  | _ -> 1)
    | Zneg x' ->
      (match y with
       | Zneg y' -> compOpp (Coq_Pos.compare x' y')
       | _ -> (-1))

  (** val leb : z -> z -> bool **)

  let leb x y =
    match compare x y with
    | 1 -> false
    | _ -> true

  (** val ltb : z -> z -> bool **)

  let ltb x y =
    match compare x y with
    | (-1) -> true
    | _ -> false

  (** val gtb : z -> z -> bool **)

  let gtb x y =
    match compare x y with
    | 1 -> true
    | _ -> false

  (** val eqb : z -> z -> bool **)

  let eqb x y =
    match x with
    | Z0 -> (match y with
             | Z0 -> true
             | _ -> false)
    | Zpos p -> (match y with
                 | Zpos q -> Coq_Pos.eqb p q
                 | _ -> false)
    | Zneg p -> (match y with
                 | Zneg q -> Coq_Pos.eqb p q
                 | _ -> false)

  (** val max : z -> z -> z **)

  let max n0 m =
    match compare n0 m with
    | (-1) -> m
    | _ -> n0

  (** val abs : z -> z **)

  let abs = function
  | Zneg p -> Zpos p
  | x -> x

  (** val of_nat : nat -> z **)

  let of_nat = function
  | O -> Z0
  | S n1 -> Zpos (Coq_Pos.of_succ_nat n1)

  (** val pos_div_eucl : positive -> z -> z * z **)

  let rec pos_div_eucl a b =
    match a with
    | XI a' ->
      let (q, r) = pos_div_eucl a' b in
      let r' = add (mul (Zpos (XO XH)) r) (Zpos XH) in
      if ltb r' b
      then ((mul (Zpos (XO XH)) q), r')
      else ((add (mul (Zpos (XO XH)) q) (Zpos XH)), (sub r' b))
    | XO a' ->
      let (q, r) = pos_div_eucl a' b in
      let r' = mul (Zpos (XO XH)) r in
      if ltb r' b
      then ((mul (Zpos (XO XH)) q), r')
      else ((add (mul (Zpos (XO XH)) q) (Zpos XH)), (sub r' b))
    | XH -> if leb (Zpos (XO XH)) b then (Z0, (Zpos XH)) else ((Zpos XH), Z0)

  (** val div_eucl : z -> z -> z * z **)

  let div_eucl a b =
    match a with
    | Z0 -> (Z0, Z0)
    | Zpos a' ->
      (match b with
       | Z0 -> (Z0, Z0)
       | Zpos _ -> pos_div_eucl a' b
       | Zneg b' ->
         let (q, r) = pos_div_eucl a' (Zpos b') in
         (match r with
          | Z0 -> ((opp q), Z0)
          | _ -> ((opp (add q (Zpos XH))), (add b r))))
    | Zneg a' ->
      (match b with
       | Z0 -> (Z0, Z0)
       | Zpos _ ->
         let (q, r) = pos_div_eucl a' b in
         (match r with
          | Z0 -> ((opp q), Z0)
          | _ -> ((opp (add q (Zpos XH))), (sub b r)))
       | Zneg b' -> let (q, r) = pos_div_eucl a' (Zpos b') in (q, (opp r)))

  (** val div : z -> z -> z **)

  let div a b =
    let (q, _) = div_eucl a b in q

  (** val gcd : z -> z -> z **)

  let gcd a b =
    match a with
    | Z0 -> abs b
    | Zpos a0 ->
      (match b with
       | Z0 -> abs a
       | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0)
       | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0))
    | Zneg a0 ->
      (match b with
       | Z0 -> abs a
       | Zpos b0 -> Zpos (Coq_Pos.gcd a0 b0)
       | Zneg b0 -> Zpos (Coq_Pos.gcd a0 b0))

  (** val eq_dec : z -> z -> sumbool **)

  let eq_dec x y =
    match x with
    | Z0 -> (match y with
             | Z0 -> Left
             | _ -> Right)
    | Zpos x0 -> (match y with
                  | Zpos p2 -> Coq_Pos.eq_dec x0 p2
                  | _ -> Right)
    | Zneg x0 -> (match y with
                  | Zneg p2 -> Coq_Pos.eq_dec x0 p2
                  | _ -> Right)
 end

(** val nth : nat -> 'a1 list -> 'a1 -> 'a1 **)

let rec nth n0 l default0 =
  match n0 with
  | O -> (match l with
          | Nil -> default0
          | Cons (x, _) -> x)
  | S m -> (match l with
            | Nil -> default0
            | Cons (_, t0) -> nth m t0 default0)

(** val removelast : 'a1 list -> 'a1 list **)

let rec removelast = function
| Nil -> Nil
| Cons (a, l0) ->
  (match l0 with
   | Nil -> Nil
   | Cons (_, _) -> Cons (a, (removelast l0)))

(** val rev : 'a1 list -> 'a1 list **)

let rec rev = function
| Nil -> Nil
| Cons (x, l') -> app (rev l') (Cons (x, Nil))

(** val rev_append : 'a1 list -> 'a1 list -> 'a1 list **)

let rec rev_append l l' =
  match l with
  | Nil -> l'
  | Cons (a, l0) -> rev_append l0 (Cons (a, l'))

(** val map : ('a1 -> 'a2) -> 'a1 list -> 'a2 list **)

let rec map f = function
| Nil -> Nil
| Cons (a, t0) -> Cons ((f a), (map f t0))

(** val fold_left : ('a1 -> 'a2 -> 'a1) -> 'a2 list -> 'a1 -> 'a1 **)

let rec fold_left f l a0 =
  match l with
  | Nil -> a0
  | Cons (b, t0) -> fold_left f t0 (f a0 b)

(** val fold_right : ('a2 -> 'a1 -> 'a1) -> 'a1 -> 'a2 list -> 'a1 **)

let rec fold_right f a0 = function
| Nil -> a0
| Cons (b, t0) -> f b (fold_right f a0 t0)

(** val existsb : ('a1 -> bool) -> 'a1 list -> bool **)

let rec existsb f = function
| Nil -> false
| Cons (a, l0) -> if f a then true else existsb f l0

(** val forallb : ('a1 -> bool) -> 'a1 list -> bool **)

let rec forallb f = function
| Nil -> true
| Cons (a, l0) -> if f a then forallb f l0 else false

(** val firstn : nat -> 'a1 list -> 'a1 list **)

let rec firstn n0 l =
  match n0 with
  | O -> Nil
  | S n1 ->
    (match l with
     | Nil -> Nil
     | Cons (a, l0) -> Cons (a, (firstn n1 l0)))

(** val zeq_bool : z -> z -> bool **)

let zeq_bool x y =
  match Z.compare x y with
  | 0 -> true
  | _ -> false

type 'c pExpr =
| PEc of 'c
| PEX of positive
| PEadd of 'c pExpr * 'c pExpr
| PEsub of 'c pExpr * 'c pExpr
| PEmul of 'c pExpr * 'c pExpr
| PEopp of 'c pExpr
| PEpow of 'c pExpr * n

type 'c pol =
| Pc of 'c
| Pinj of positive * 'c pol
| PX of 'c pol * positive * 'c pol

(** val p0 : 'a1 -> 'a1 pol **)

let p0 cO =
  Pc cO

(** val p1 : 'a1 -> 'a1 pol **)

let p1 cI =
  Pc cI

(** val peq : ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> bool **)

let rec peq ceqb p p' =
  match p with
  | Pc c -> (match p' with
             | Pc c' -> ceqb c c'
             | _ -> false)
  | Pinj (j, q) ->
    (match p' with
     | Pinj (j', q') ->
       (match Coq_Pos.compare j j' with
        | 0 -> peq ceqb q q'
        | _ -> false)
     | _ -> false)
  | PX (p2, i, q) ->
    (match p' with
     | PX (p'0, i', q') ->
       (match Coq_Pos.compare i i' with
        | 0 -> if peq ceqb p2 p'0 then peq ceqb q q' else false
        | _ -> false)
     | _ -> false)

(** val mkPinj : positive -> 'a1 pol -> 'a1 pol **)

let mkPinj j p = match p with
| Pc _ -> p
| Pinj (j', q) -> Pinj ((Coq_Pos.add j j'), q)
| PX (_, _, _) -> Pinj (j, p)

(** val mkPinj_pred : positive -> 'a1 pol -> 'a1 pol **)

let mkPinj_pred j p =
  match j with
  | XI j0 -> Pinj ((XO j0), p)
  | XO j0 -> Pinj ((Coq_Pos.pred_double j0), p)
  | XH -> p

(** val mkPX :
    'a1 -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)

let mkPX cO ceqb p i q =
  match p with
  | Pc c -> if ceqb c cO then mkPinj XH q else PX (p, i, q)
  | Pinj (_, _) -> PX (p, i, q)
  | PX (p', i', q') ->
    if peq ceqb q' (p0 cO)
    then PX (p', (Coq_Pos.add i' i), q)
    else PX (p, i, q)

(** val mkXi : 'a1 -> 'a1 -> positive -> 'a1 pol **)

let mkXi cO cI i =
  PX ((p1 cI), i, (p0 cO))

(** val mkX : 'a1 -> 'a1 -> 'a1 pol **)

let mkX cO cI =
  mkXi cO cI XH

(** val popp : ('a1 -> 'a1) -> 'a1 pol -> 'a1 pol **)

let rec popp copp = function
| Pc c -> Pc (copp c)
| Pinj (j, q) -> Pinj (j, (popp copp q))
| PX (p2, i, q) -> PX ((popp copp p2), i, (popp copp q))

(** val paddC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)

let rec paddC cadd p c =
  match p with
  | Pc c1 -> Pc (cadd c1 c)
  | Pinj (j, q) -> Pinj (j, (paddC cadd q c))
  | PX (p2, i, q) -> PX (p2, i, (paddC cadd q c))

(** val psubC : ('a1 -> 'a1 -> 'a1) -> 'a1 pol -> 'a1 -> 'a1 pol **)

let rec psubC csub p c =
  match p with
  | Pc c1 -> Pc (csub c1 c)
  | Pinj (j, q) -> Pinj (j, (psubC csub q c))
  | PX (p2, i, q) -> PX (p2, i, (psubC csub q c))

(** val paddI :
    ('a1 -> 'a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol ->
    positive -> 'a1 pol -> 'a1 pol **)

let rec paddI cadd pop q j = function
| Pc c -> mkPinj j (paddC cadd q c)
| Pinj (j', q') ->
  (match Z.pos_sub j' j with
   | Z0 -> mkPinj j (pop q' q)
   | Zpos k -> mkPinj j (pop (Pinj (k, q')) q)
   | Zneg k -> mkPinj j' (paddI cadd pop q k q'))
| PX (p2, i, q') ->
  (match j with
   | XI j0 -> PX (p2, i, (paddI cadd pop q (XO j0) q'))
   | XO j0 -> PX (p2, i, (paddI cadd pop q (Coq_Pos.pred_double j0) q'))
   | XH -> PX (p2, i, (pop q' q)))

(** val psubI :
    ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1 pol -> 'a1 pol -> 'a1 pol) ->
    'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)

let rec psubI cadd copp pop q j = function
| Pc c -> mkPinj j (paddC cadd (popp copp q) c)
| Pinj (j', q') ->
  (match Z.pos_sub j' j with
   | Z0 -> mkPinj j (pop q' q)
   | Zpos k -> mkPinj j (pop (Pinj (k, q')) q)
   | Zneg k -> mkPinj j' (psubI cadd copp pop q k q'))
| PX (p2, i, q') ->
  (match j with
   | XI j0 -> PX (p2, i, (psubI cadd copp pop q (XO j0) q'))
   | XO j0 -> PX (p2, i, (psubI cadd copp pop q (Coq_Pos.pred_double j0) q'))
   | XH -> PX (p2, i, (pop q' q)))

(** val paddX :
    'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1 pol) -> 'a1 pol
    -> positive -> 'a1 pol -> 'a1 pol **)

let rec paddX cO ceqb pop p' i' p = match p with
| Pc _ -> PX (p', i', p)
| Pinj (j, q') ->
  (match j with
   | XI j0 -> PX (p', i', (Pinj ((XO j0), q')))
   | XO j0 -> PX (p', i', (Pinj ((Coq_Pos.pred_double j0), q')))
   | XH -> PX (p', i', q'))
| PX (p2, i, q') ->
  (match Z.pos_sub i i' with
   | Z0 -> mkPX cO ceqb (pop p2 p') i q'
   | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
   | Zneg k -> mkPX cO ceqb (paddX cO ceqb pop p' k p2) i q')

(** val psubX :
    'a1 -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol -> 'a1 pol -> 'a1
    pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)

let rec psubX cO copp ceqb pop p' i' p = match p with
| Pc _ -> PX ((popp copp p'), i', p)
| Pinj (j, q') ->
  (match j with
   | XI j0 -> PX ((popp copp p'), i', (Pinj ((XO j0), q')))
   | XO j0 -> PX ((popp copp p'), i', (Pinj ((Coq_Pos.pred_double j0), q')))
   | XH -> PX ((popp copp p'), i', q'))
| PX (p2, i, q') ->
  (match Z.pos_sub i i' with
   | Z0 -> mkPX cO ceqb (pop p2 p') i q'
   | Zpos k -> mkPX cO ceqb (pop (PX (p2, k, (p0 cO))) p') i' q'
   | Zneg k -> mkPX cO ceqb (psubX cO copp ceqb pop p' k p2) i q')

(** val padd :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
    -> 'a1 pol **)

let rec padd cO cadd ceqb p = function
| Pc c' -> paddC cadd p c'
| Pinj (j', q') -> paddI cadd (padd cO cadd ceqb) q' j' p
| PX (p'0, i', q') ->
  (match p with
   | Pc c -> PX (p'0, i', (paddC cadd q' c))
   | Pinj (j, q) ->
     (match j with
      | XI j0 -> PX (p'0, i', (padd cO cadd ceqb (Pinj ((XO j0), q)) q'))
      | XO j0 ->
        PX (p'0, i',
          (padd cO cadd ceqb (Pinj ((Coq_Pos.pred_double j0), q)) q'))
      | XH -> PX (p'0, i', (padd cO cadd ceqb q q')))
   | PX (p2, i, q) ->
     (match Z.pos_sub i i' with
      | Z0 ->
        mkPX cO ceqb (padd cO cadd ceqb p2 p'0) i (padd cO cadd ceqb q q')
      | Zpos k ->
        mkPX cO ceqb (padd cO cadd ceqb (PX (p2, k, (p0 cO))) p'0) i'
          (padd cO cadd ceqb q q')
      | Zneg k ->
        mkPX cO ceqb (paddX cO ceqb (padd cO cadd ceqb) p'0 k p2) i
          (padd cO cadd ceqb q q')))

(** val psub :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
    -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)

let rec psub cO cadd csub copp ceqb p = function
| Pc c' -> psubC csub p c'
| Pinj (j', q') -> psubI cadd copp (psub cO cadd csub copp ceqb) q' j' p
| PX (p'0, i', q') ->
  (match p with
   | Pc c -> PX ((popp copp p'0), i', (paddC cadd (popp copp q') c))
   | Pinj (j, q) ->
     (match j with
      | XI j0 ->
        PX ((popp copp p'0), i',
          (psub cO cadd csub copp ceqb (Pinj ((XO j0), q)) q'))
      | XO j0 ->
        PX ((popp copp p'0), i',
          (psub cO cadd csub copp ceqb (Pinj ((Coq_Pos.pred_double j0), q))
            q'))
      | XH -> PX ((popp copp p'0), i', (psub cO cadd csub copp ceqb q q')))
   | PX (p2, i, q) ->
     (match Z.pos_sub i i' with
      | Z0 ->
        mkPX cO ceqb (psub cO cadd csub copp ceqb p2 p'0) i
          (psub cO cadd csub copp ceqb q q')
      | Zpos k ->
        mkPX cO ceqb (psub cO cadd csub copp ceqb (PX (p2, k, (p0 cO))) p'0)
          i' (psub cO cadd csub copp ceqb q q')
      | Zneg k ->
        mkPX cO ceqb
          (psubX cO copp ceqb (psub cO cadd csub copp ceqb) p'0 k p2) i
          (psub cO cadd csub copp ceqb q q')))

(** val pmulC_aux :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 ->
    'a1 pol **)

let rec pmulC_aux cO cmul ceqb p c =
  match p with
  | Pc c' -> Pc (cmul c' c)
  | Pinj (j, q) -> mkPinj j (pmulC_aux cO cmul ceqb q c)
  | PX (p2, i, q) ->
    mkPX cO ceqb (pmulC_aux cO cmul ceqb p2 c) i (pmulC_aux cO cmul ceqb q c)

(** val pmulC :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol ->
    'a1 -> 'a1 pol **)

let pmulC cO cI cmul ceqb p c =
  if ceqb c cO
  then p0 cO
  else if ceqb c cI then p else pmulC_aux cO cmul ceqb p c

(** val pmulI :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> ('a1 pol ->
    'a1 pol -> 'a1 pol) -> 'a1 pol -> positive -> 'a1 pol -> 'a1 pol **)

let rec pmulI cO cI cmul ceqb pmul0 q j = function
| Pc c -> mkPinj j (pmulC cO cI cmul ceqb q c)
| Pinj (j', q') ->
  (match Z.pos_sub j' j with
   | Z0 -> mkPinj j (pmul0 q' q)
   | Zpos k -> mkPinj j (pmul0 (Pinj (k, q')) q)
   | Zneg k -> mkPinj j' (pmulI cO cI cmul ceqb pmul0 q k q'))
| PX (p', i', q') ->
  (match j with
   | XI j' ->
     mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q j p') i'
       (pmulI cO cI cmul ceqb pmul0 q (XO j') q')
   | XO j' ->
     mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q j p') i'
       (pmulI cO cI cmul ceqb pmul0 q (Coq_Pos.pred_double j') q')
   | XH -> mkPX cO ceqb (pmulI cO cI cmul ceqb pmul0 q XH p') i' (pmul0 q' q))

(** val pmul :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)

let rec pmul cO cI cadd cmul ceqb p p'' = match p'' with
| Pc c -> pmulC cO cI cmul ceqb p c
| Pinj (j', q') -> pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' j' p
| PX (p', i', q') ->
  (match p with
   | Pc c -> pmulC cO cI cmul ceqb p'' c
   | Pinj (j, q) ->
     let qQ' =
       match j with
       | XI j0 -> pmul cO cI cadd cmul ceqb (Pinj ((XO j0), q)) q'
       | XO j0 ->
         pmul cO cI cadd cmul ceqb (Pinj ((Coq_Pos.pred_double j0), q)) q'
       | XH -> pmul cO cI cadd cmul ceqb q q'
     in
     mkPX cO ceqb (pmul cO cI cadd cmul ceqb p p') i' qQ'
   | PX (p2, i, q) ->
     let qQ' = pmul cO cI cadd cmul ceqb q q' in
     let pQ' = pmulI cO cI cmul ceqb (pmul cO cI cadd cmul ceqb) q' XH p2 in
     let qP' = pmul cO cI cadd cmul ceqb (mkPinj XH q) p' in
     let pP' = pmul cO cI cadd cmul ceqb p2 p' in
     padd cO cadd ceqb
       (mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb pP' i (p0 cO)) qP') i'
         (p0 cO)) (mkPX cO ceqb pQ' i qQ'))

(** val psquare :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> 'a1 pol -> 'a1 pol **)

let rec psquare cO cI cadd cmul ceqb = function
| Pc c -> Pc (cmul c c)
| Pinj (j, q) -> Pinj (j, (psquare cO cI cadd cmul ceqb q))
| PX (p2, i, q) ->
  let twoPQ =
    pmul cO cI cadd cmul ceqb p2
      (mkPinj XH (pmulC cO cI cmul ceqb q (cadd cI cI)))
  in
  let q2 = psquare cO cI cadd cmul ceqb q in
  let p3 = psquare cO cI cadd cmul ceqb p2 in
  mkPX cO ceqb (padd cO cadd ceqb (mkPX cO ceqb p3 i (p0 cO)) twoPQ) i q2

(** val mk_X : 'a1 -> 'a1 -> positive -> 'a1 pol **)

let mk_X cO cI j =
  mkPinj_pred j (mkX cO cI)

(** val ppow_pos :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> 'a1 pol -> positive -> 'a1
    pol **)

let rec ppow_pos cO cI cadd cmul ceqb subst_l res p = function
| XI p3 ->
  subst_l
    (pmul cO cI cadd cmul ceqb
      (ppow_pos cO cI cadd cmul ceqb subst_l
        (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3) p)
| XO p3 ->
  ppow_pos cO cI cadd cmul ceqb subst_l
    (ppow_pos cO cI cadd cmul ceqb subst_l res p p3) p p3
| XH -> subst_l (pmul cO cI cadd cmul ceqb res p)

(** val ppow_N :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> ('a1 pol -> 'a1 pol) -> 'a1 pol -> n -> 'a1 pol **)

let ppow_N cO cI cadd cmul ceqb subst_l p = function
| N0 -> p1 cI
| Npos p2 -> ppow_pos cO cI cadd cmul ceqb subst_l (p1 cI) p p2

(** val norm_aux :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)

let rec norm_aux cO cI cadd cmul csub copp ceqb = function
| PEc c -> Pc c
| PEX j -> mk_X cO cI j
| PEadd (pe1, pe2) ->
  (match pe1 with
   | PEopp pe3 ->
     psub cO cadd csub copp ceqb
       (norm_aux cO cI cadd cmul csub copp ceqb pe2)
       (norm_aux cO cI cadd cmul csub copp ceqb pe3)
   | _ ->
     (match pe2 with
      | PEopp pe3 ->
        psub cO cadd csub copp ceqb
          (norm_aux cO cI cadd cmul csub copp ceqb pe1)
          (norm_aux cO cI cadd cmul csub copp ceqb pe3)
      | _ ->
        padd cO cadd ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
          (norm_aux cO cI cadd cmul csub copp ceqb pe2)))
| PEsub (pe1, pe2) ->
  psub cO cadd csub copp ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
    (norm_aux cO cI cadd cmul csub copp ceqb pe2)
| PEmul (pe1, pe2) ->
  pmul cO cI cadd cmul ceqb (norm_aux cO cI cadd cmul csub copp ceqb pe1)
    (norm_aux cO cI cadd cmul csub copp ceqb pe2)
| PEopp pe1 -> popp copp (norm_aux cO cI cadd cmul csub copp ceqb pe1)
| PEpow (pe1, n0) ->
  ppow_N cO cI cadd cmul ceqb (fun p -> p)
    (norm_aux cO cI cadd cmul csub copp ceqb pe1) n0

type kind =
| IsProp
| IsBool

type ('tA, 'tX, 'aA, 'aF) gFormula =
| TT of kind
| FF of kind
| X of kind * 'tX
| A of kind * 'tA * 'aA
| AND of kind * ('tA, 'tX, 'aA, 'aF) gFormula * ('tA, 'tX, 'aA, 'aF) gFormula
| OR of kind * ('tA, 'tX, 'aA, 'aF) gFormula * ('tA, 'tX, 'aA, 'aF) gFormula
| NOT of kind * ('tA, 'tX, 'aA, 'aF) gFormula
| IMPL of kind * ('tA, 'tX, 'aA, 'aF) gFormula * 'aF option
   * ('tA, 'tX, 'aA, 'aF) gFormula
| IFF of kind * ('tA, 'tX, 'aA, 'aF) gFormula * ('tA, 'tX, 'aA, 'aF) gFormula
| EQ of ('tA, 'tX, 'aA, 'aF) gFormula * ('tA, 'tX, 'aA, 'aF) gFormula

type rtyp = __

type eKind = __

type 'a bFormula = ('a, eKind, unit0, unit0) gFormula

type ('x, 'annot) clause = ('x * 'annot) list

type ('x, 'annot) cnf = ('x, 'annot) clause list

(** val cnf_tt : ('a1, 'a2) cnf **)

let cnf_tt =
  Nil

(** val cnf_ff : ('a1, 'a2) cnf **)

let cnf_ff =
  Cons (Nil, Nil)

(** val add_term :
    ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> ('a1 * 'a2) -> ('a1, 'a2)
    clause -> ('a1, 'a2) clause option **)

let rec add_term unsat deduce t0 = function
| Nil ->
  (match deduce (fst t0) (fst t0) with
   | Some u -> if unsat u then None else Some (Cons (t0, Nil))
   | None -> Some (Cons (t0, Nil)))
| Cons (t', cl0) ->
  (match deduce (fst t0) (fst t') with
   | Some u ->
     if unsat u
     then None
     else (match add_term unsat deduce t0 cl0 with
           | Some cl' -> Some (Cons (t', cl'))
           | None -> None)
   | None ->
     (match add_term unsat deduce t0 cl0 with
      | Some cl' -> Some (Cons (t', cl'))
      | None -> None))

(** val or_clause :
    ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> ('a1, 'a2) clause -> ('a1,
    'a2) clause -> ('a1, 'a2) clause option **)

let rec or_clause unsat deduce cl1 cl2 =
  match cl1 with
  | Nil -> Some cl2
  | Cons (t0, cl) ->
    (match add_term unsat deduce t0 cl2 with
     | Some cl' -> or_clause unsat deduce cl cl'
     | None -> None)

(** val xor_clause_cnf :
    ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> ('a1, 'a2) clause -> ('a1,
    'a2) cnf -> ('a1, 'a2) cnf **)

let xor_clause_cnf unsat deduce t0 f =
  fold_left (fun acc e ->
    match or_clause unsat deduce t0 e with
    | Some cl -> Cons (cl, acc)
    | None -> acc) f Nil

(** val or_clause_cnf :
    ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> ('a1, 'a2) clause -> ('a1,
    'a2) cnf -> ('a1, 'a2) cnf **)

let or_clause_cnf unsat deduce t0 f =
  match t0 with
  | Nil -> f
  | Cons (_, _) -> xor_clause_cnf unsat deduce t0 f

(** val or_cnf :
    ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> ('a1, 'a2) cnf -> ('a1,
    'a2) cnf -> ('a1, 'a2) cnf **)

let rec or_cnf unsat deduce f f' =
  match f with
  | Nil -> cnf_tt
  | Cons (e, rst) ->
    rev_append (or_cnf unsat deduce rst f') (or_clause_cnf unsat deduce e f')

(** val and_cnf : ('a1, 'a2) cnf -> ('a1, 'a2) cnf -> ('a1, 'a2) cnf **)

let and_cnf =
  rev_append

type ('term, 'annot, 'tX, 'aF) tFormula = ('term, 'tX, 'annot, 'aF) gFormula

(** val is_cnf_tt : ('a1, 'a2) cnf -> bool **)

let is_cnf_tt = function
| Nil -> true
| Cons (_, _) -> false

(** val is_cnf_ff : ('a1, 'a2) cnf -> bool **)

let is_cnf_ff = function
| Nil -> false
| Cons (c0, l) ->
  (match c0 with
   | Nil -> (match l with
             | Nil -> true
             | Cons (_, _) -> false)
   | Cons (_, _) -> false)

(** val and_cnf_opt : ('a1, 'a2) cnf -> ('a1, 'a2) cnf -> ('a1, 'a2) cnf **)

let and_cnf_opt f1 f2 =
  if if is_cnf_ff f1 then true else is_cnf_ff f2
  then cnf_ff
  else if is_cnf_tt f2 then f1 else and_cnf f1 f2

(** val or_cnf_opt :
    ('a1 -> bool) -> ('a1 -> 'a1 -> 'a1 option) -> ('a1, 'a2) cnf -> ('a1,
    'a2) cnf -> ('a1, 'a2) cnf **)

let or_cnf_opt unsat deduce f1 f2 =
  if if is_cnf_tt f1 then true else is_cnf_tt f2
  then cnf_tt
  else if is_cnf_ff f2 then f1 else or_cnf unsat deduce f1 f2

(** val mk_and :
    ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> (bool -> kind -> ('a1,
    'a3, 'a4, 'a5) tFormula -> ('a2, 'a3) cnf) -> kind -> bool -> ('a1, 'a3,
    'a4, 'a5) tFormula -> ('a1, 'a3, 'a4, 'a5) tFormula -> ('a2, 'a3) cnf **)

let mk_and unsat deduce rEC k pol0 f1 f2 =
  if pol0
  then and_cnf_opt (rEC pol0 k f1) (rEC pol0 k f2)
  else or_cnf_opt unsat deduce (rEC pol0 k f1) (rEC pol0 k f2)

(** val mk_or :
    ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> (bool -> kind -> ('a1,
    'a3, 'a4, 'a5) tFormula -> ('a2, 'a3) cnf) -> kind -> bool -> ('a1, 'a3,
    'a4, 'a5) tFormula -> ('a1, 'a3, 'a4, 'a5) tFormula -> ('a2, 'a3) cnf **)

let mk_or unsat deduce rEC k pol0 f1 f2 =
  if pol0
  then or_cnf_opt unsat deduce (rEC pol0 k f1) (rEC pol0 k f2)
  else and_cnf_opt (rEC pol0 k f1) (rEC pol0 k f2)

(** val mk_impl :
    ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> (bool -> kind -> ('a1,
    'a3, 'a4, 'a5) tFormula -> ('a2, 'a3) cnf) -> kind -> bool -> ('a1, 'a3,
    'a4, 'a5) tFormula -> ('a1, 'a3, 'a4, 'a5) tFormula -> ('a2, 'a3) cnf **)

let mk_impl unsat deduce rEC k pol0 f1 f2 =
  if pol0
  then or_cnf_opt unsat deduce (rEC (negb pol0) k f1) (rEC pol0 k f2)
  else and_cnf_opt (rEC (negb pol0) k f1) (rEC pol0 k f2)

(** val mk_iff :
    ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> (bool -> kind -> ('a1,
    'a3, 'a4, 'a5) tFormula -> ('a2, 'a3) cnf) -> kind -> bool -> ('a1, 'a3,
    'a4, 'a5) tFormula -> ('a1, 'a3, 'a4, 'a5) tFormula -> ('a2, 'a3) cnf **)

let mk_iff unsat deduce rEC k pol0 f1 f2 =
  or_cnf_opt unsat deduce
    (and_cnf_opt (rEC (negb pol0) k f1) (rEC false k f2))
    (and_cnf_opt (rEC pol0 k f1) (rEC true k f2))

(** val is_bool : kind -> ('a1, 'a2, 'a3, 'a4) tFormula -> bool option **)

let is_bool _ = function
| TT _ -> Some true
| FF _ -> Some false
| _ -> None

(** val xcnf :
    ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a3 -> ('a2, 'a3)
    cnf) -> ('a1 -> 'a3 -> ('a2, 'a3) cnf) -> bool -> kind -> ('a1, 'a3, 'a4,
    'a5) tFormula -> ('a2, 'a3) cnf **)

let rec xcnf unsat deduce normalise0 negate0 pol0 _ = function
| TT _ -> if pol0 then cnf_tt else cnf_ff
| FF _ -> if pol0 then cnf_ff else cnf_tt
| X (_, _) -> cnf_ff
| A (_, x, t0) -> if pol0 then normalise0 x t0 else negate0 x t0
| AND (k0, e1, e2) ->
  mk_and unsat deduce (fun x x0 x1 ->
    xcnf unsat deduce normalise0 negate0 x x0 x1) k0 pol0 e1 e2
| OR (k0, e1, e2) ->
  mk_or unsat deduce (fun x x0 x1 ->
    xcnf unsat deduce normalise0 negate0 x x0 x1) k0 pol0 e1 e2
| NOT (k0, e) -> xcnf unsat deduce normalise0 negate0 (negb pol0) k0 e
| IMPL (k0, e1, _, e2) ->
  mk_impl unsat deduce (fun x x0 x1 ->
    xcnf unsat deduce normalise0 negate0 x x0 x1) k0 pol0 e1 e2
| IFF (k0, e1, e2) ->
  (match is_bool k0 e2 with
   | Some isb ->
     xcnf unsat deduce normalise0 negate0 (if isb then pol0 else negb pol0)
       k0 e1
   | None ->
     mk_iff unsat deduce (fun x x0 x1 ->
       xcnf unsat deduce normalise0 negate0 x x0 x1) k0 pol0 e1 e2)
| EQ (e1, e2) ->
  (match is_bool IsBool e2 with
   | Some isb ->
     xcnf unsat deduce normalise0 negate0 (if isb then pol0 else negb pol0)
       IsBool e1
   | None ->
     mk_iff unsat deduce (fun x x0 x1 ->
       xcnf unsat deduce normalise0 negate0 x x0 x1) IsBool pol0 e1 e2)

(** val cnf_checker :
    (('a1 * 'a2) list -> 'a3 -> bool) -> ('a1, 'a2) cnf -> 'a3 list -> bool **)

let rec cnf_checker checker0 f l =
  match f with
  | Nil -> true
  | Cons (e, f0) ->
    (match l with
     | Nil -> false
     | Cons (c, l0) ->
       if checker0 e c then cnf_checker checker0 f0 l0 else false)

(** val tauto_checker :
    ('a2 -> bool) -> ('a2 -> 'a2 -> 'a2 option) -> ('a1 -> 'a3 -> ('a2, 'a3)
    cnf) -> ('a1 -> 'a3 -> ('a2, 'a3) cnf) -> (('a2 * 'a3) list -> 'a4 ->
    bool) -> ('a1, rtyp, 'a3, unit0) gFormula -> 'a4 list -> bool **)

let tauto_checker unsat deduce normalise0 negate0 checker0 f w =
  cnf_checker checker0 (xcnf unsat deduce normalise0 negate0 true IsProp f) w

(** val cneqb : ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **)

let cneqb ceqb x y =
  negb (ceqb x y)

(** val cltb :
    ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 -> 'a1 -> bool **)

let cltb ceqb cleb x y =
  if cleb x y then cneqb ceqb x y else false

type 'c polC = 'c pol

type op1 =
| Equal
| NonEqual
| Strict
| NonStrict

type 'c nFormula = 'c polC * op1

(** val opMult : op1 -> op1 -> op1 option **)

let opMult o o' =
  match o with
  | Equal -> Some Equal
  | NonEqual ->
    (match o' with
     | Equal -> Some Equal
     | NonEqual -> Some NonEqual
     | _ -> None)
  | Strict -> (match o' with
               | NonEqual -> None
               | _ -> Some o')
  | NonStrict ->
    (match o' with
     | Equal -> Some Equal
     | NonEqual -> None
     | _ -> Some NonStrict)

(** val opAdd : op1 -> op1 -> op1 option **)

let opAdd o o' =
  match o with
  | Equal -> Some o'
  | NonEqual -> (match o' with
                 | Equal -> Some NonEqual
                 | _ -> None)
  | Strict -> (match o' with
               | NonEqual -> None
               | _ -> Some Strict)
  | NonStrict ->
    (match o' with
     | Equal -> Some NonStrict
     | NonEqual -> None
     | x -> Some x)

type 'c psatz =
| PsatzIn of nat
| PsatzSquare of 'c polC
| PsatzMulC of 'c polC * 'c psatz
| PsatzMulE of 'c psatz * 'c psatz
| PsatzAdd of 'c psatz * 'c psatz
| PsatzC of 'c
| PsatzZ

(** val map_option : ('a1 -> 'a2 option) -> 'a1 option -> 'a2 option **)

let map_option f = function
| Some x -> f x
| None -> None

(** val map_option2 :
    ('a1 -> 'a2 -> 'a3 option) -> 'a1 option -> 'a2 option -> 'a3 option **)

let map_option2 f o o' =
  match o with
  | Some x -> (match o' with
               | Some x' -> f x x'
               | None -> None)
  | None -> None

(** val pexpr_times_nformula :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> 'a1 polC -> 'a1 nFormula -> 'a1 nFormula option **)

let pexpr_times_nformula cO cI cplus ctimes ceqb e = function
| (ef, o) ->
  (match o with
   | Equal -> Some ((pmul cO cI cplus ctimes ceqb e ef), Equal)
   | _ -> None)

(** val nformula_times_nformula :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> 'a1 nFormula -> 'a1 nFormula -> 'a1 nFormula option **)

let nformula_times_nformula cO cI cplus ctimes ceqb f1 f2 =
  let (e1, o1) = f1 in
  let (e2, o2) = f2 in
  map_option (fun x -> Some ((pmul cO cI cplus ctimes ceqb e1 e2), x))
    (opMult o1 o2)

(** val nformula_plus_nformula :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula -> 'a1
    nFormula -> 'a1 nFormula option **)

let nformula_plus_nformula cO cplus ceqb f1 f2 =
  let (e1, o1) = f1 in
  let (e2, o2) = f2 in
  map_option (fun x -> Some ((padd cO cplus ceqb e1 e2), x)) (opAdd o1 o2)

(** val eval_Psatz :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula list -> 'a1 psatz -> 'a1
    nFormula option **)

let rec eval_Psatz cO cI cplus ctimes ceqb cleb l = function
| PsatzIn n0 -> Some (nth n0 l ((Pc cO), Equal))
| PsatzSquare e0 -> Some ((psquare cO cI cplus ctimes ceqb e0), NonStrict)
| PsatzMulC (re, e0) ->
  map_option (pexpr_times_nformula cO cI cplus ctimes ceqb re)
    (eval_Psatz cO cI cplus ctimes ceqb cleb l e0)
| PsatzMulE (f1, f2) ->
  map_option2 (nformula_times_nformula cO cI cplus ctimes ceqb)
    (eval_Psatz cO cI cplus ctimes ceqb cleb l f1)
    (eval_Psatz cO cI cplus ctimes ceqb cleb l f2)
| PsatzAdd (f1, f2) ->
  map_option2 (nformula_plus_nformula cO cplus ceqb)
    (eval_Psatz cO cI cplus ctimes ceqb cleb l f1)
    (eval_Psatz cO cI cplus ctimes ceqb cleb l f2)
| PsatzC c -> if cltb ceqb cleb cO c then Some ((Pc c), Strict) else None
| PsatzZ -> Some ((Pc cO), Equal)

(** val check_inconsistent :
    'a1 -> ('a1 -> 'a1 -> bool) -> ('a1 -> 'a1 -> bool) -> 'a1 nFormula ->
    bool **)

let check_inconsistent cO ceqb cleb = function
| (e, op) ->
  (match e with
   | Pc c ->
     (match op with
      | Equal -> cneqb ceqb c cO
      | NonEqual -> ceqb c cO
      | Strict -> cleb c cO
      | NonStrict -> cltb ceqb cleb c cO)
   | _ -> false)

type op2 =
| OpEq
| OpNEq
| OpLe
| OpGe
| OpLt
| OpGt

type 't formula = { flhs : 't pExpr; fop : op2; frhs : 't pExpr }

(** val norm :
    'a1 -> 'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1
    -> 'a1) -> ('a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pExpr -> 'a1 pol **)

let norm =
  norm_aux

(** val psub0 :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1) -> ('a1
    -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol -> 'a1 pol **)

let psub0 =
  psub

(** val padd0 :
    'a1 -> ('a1 -> 'a1 -> 'a1) -> ('a1 -> 'a1 -> bool) -> 'a1 pol -> 'a1 pol
    -> 'a1 pol **)

let padd0 =
  padd

type zWitness = z psatz

(** val psub1 : z pol -> z pol -> z pol **)

let psub1 =
  psub0 Z0 Z.add Z.sub Z.opp zeq_bool

(** val padd1 : z pol -> z pol -> z pol **)

let padd1 =
  padd0 Z0 Z.add zeq_bool

(** val normZ : z pExpr -> z pol **)

let normZ =
  norm Z0 (Zpos XH) Z.add Z.mul Z.sub Z.opp zeq_bool

(** val zunsat : z nFormula -> bool **)

let zunsat =
  check_inconsistent Z0 zeq_bool Z.leb

(** val zdeduce : z nFormula -> z nFormula -> z nFormula option **)

let zdeduce =
  nformula_plus_nformula Z0 Z.add zeq_bool

(** val xnnormalise : z formula -> z nFormula **)

let xnnormalise t0 =
  let { flhs = lhs; fop = o; frhs = rhs } = t0 in
  let lhs0 = normZ lhs in
  let rhs0 = normZ rhs in
  (match o with
   | OpEq -> ((psub1 rhs0 lhs0), Equal)
   | OpNEq -> ((psub1 rhs0 lhs0), NonEqual)
   | OpLe -> ((psub1 rhs0 lhs0), NonStrict)
   | OpGe -> ((psub1 lhs0 rhs0), NonStrict)
   | OpLt -> ((psub1 rhs0 lhs0), Strict)
   | OpGt -> ((psub1 lhs0 rhs0), Strict))

(** val xnormalise : z nFormula -> z nFormula list **)

let xnormalise = function
| (e, o) ->
  (match o with
   | Equal ->
     Cons (((psub1 e (Pc (Zpos XH))), NonStrict), (Cons
       (((psub1 (Pc (Zneg XH)) e), NonStrict), Nil)))
   | NonEqual -> Cons ((e, Equal), Nil)
   | Strict -> Cons (((psub1 (Pc Z0) e), NonStrict), Nil)
   | NonStrict -> Cons (((psub1 (Pc (Zneg XH)) e), NonStrict), Nil))

(** val cnf_of_list :
    'a1 -> z nFormula list -> (z nFormula * 'a1) list list **)

let cnf_of_list tg l =
  fold_right (fun x acc ->
    if zunsat x then acc else Cons ((Cons ((x, tg), Nil)), acc)) cnf_tt l

(** val normalise : z formula -> 'a1 -> (z nFormula, 'a1) cnf **)

let normalise t0 tg =
  let f = xnnormalise t0 in
  if zunsat f then cnf_ff else cnf_of_list tg (xnormalise f)

(** val xnegate : z nFormula -> z nFormula list **)

let xnegate = function
| (e, o) ->
  (match o with
   | NonEqual ->
     Cons (((psub1 e (Pc (Zpos XH))), NonStrict), (Cons
       (((psub1 (Pc (Zneg XH)) e), NonStrict), Nil)))
   | Strict -> Cons (((psub1 e (Pc (Zpos XH))), NonStrict), Nil)
   | x -> Cons ((e, x), Nil))

(** val negate : z formula -> 'a1 -> (z nFormula, 'a1) cnf **)

let negate t0 tg =
  let f = xnnormalise t0 in
  if zunsat f then cnf_tt else cnf_of_list tg (xnegate f)

(** val ceiling : z -> z -> z **)

let ceiling a b =
  let (q, r) = Z.div_eucl a b in
  (match r with
   | Z0 -> q
   | _ -> Z.add q (Zpos XH))

type zArithProof =
| DoneProof
| RatProof of zWitness * zArithProof
| CutProof of zWitness * zArithProof
| EnumProof of zWitness * zWitness * zArithProof list
| ExProof of positive * zArithProof

(** val zgcdM : z -> z -> z **)

let zgcdM x y =
  Z.max (Z.gcd x y) (Zpos XH)

(** val zgcd_pol : z polC -> z * z **)

let rec zgcd_pol = function
| Pc c -> (Z0, c)
| Pinj (_, p2) -> zgcd_pol p2
| PX (p2, _, q) ->
  let (g1, c1) = zgcd_pol p2 in
  let (g2, c2) = zgcd_pol q in ((zgcdM (zgcdM g1 c1) g2), c2)

(** val zdiv_pol : z polC -> z -> z polC **)

let rec zdiv_pol p x =
  match p with
  | Pc c -> Pc (Z.div c x)
  | Pinj (j, p2) -> Pinj (j, (zdiv_pol p2 x))
  | PX (p2, j, q) -> PX ((zdiv_pol p2 x), j, (zdiv_pol q x))

(** val makeCuttingPlane : z polC -> z polC * z **)

let makeCuttingPlane p =
  let (g, c) = zgcd_pol p in
  if Z.gtb g Z0
  then ((zdiv_pol (psubC Z.sub p c) g), (Z.opp (ceiling (Z.opp c) g)))
  else (p, Z0)

(** val genCuttingPlane : z nFormula -> ((z polC * z) * op1) option **)

let genCuttingPlane = function
| (e, op) ->
  (match op with
   | Equal ->
     let (g, c) = zgcd_pol e in
     if if Z.gtb g Z0
        then if negb (zeq_bool c Z0)
             then negb (zeq_bool (Z.gcd g c) g)
             else false
        else false
     then None
     else Some ((makeCuttingPlane e), Equal)
   | NonEqual -> Some ((e, Z0), op)
   | Strict -> Some ((makeCuttingPlane (psubC Z.sub e (Zpos XH))), NonStrict)
   | NonStrict -> Some ((makeCuttingPlane e), NonStrict))

(** val nformula_of_cutting_plane : ((z polC * z) * op1) -> z nFormula **)

let nformula_of_cutting_plane = function
| (e_z, o) -> let (e, z0) = e_z in ((padd1 e (Pc z0)), o)

(** val is_pol_Z0 : z polC -> bool **)

let is_pol_Z0 = function
| Pc z0 -> (match z0 with
            | Z0 -> true
            | _ -> false)
| _ -> false

(** val eval_Psatz0 : z nFormula list -> zWitness -> z nFormula option **)

let eval_Psatz0 =
  eval_Psatz Z0 (Zpos XH) Z.add Z.mul zeq_bool Z.leb

(** val valid_cut_sign : op1 -> bool **)

let valid_cut_sign = function
| Equal -> true
| NonStrict -> true
| _ -> false

(** val bound_var : positive -> z formula **)

let bound_var v =
  { flhs = (PEX v); fop = OpGe; frhs = (PEc Z0) }

(** val mk_eq_pos : positive -> positive -> positive -> z formula **)

let mk_eq_pos x y t0 =
  { flhs = (PEX x); fop = OpEq; frhs = (PEsub ((PEX y), (PEX t0))) }

(** val max_var : positive -> z pol -> positive **)

let rec max_var jmp = function
| Pc _ -> jmp
| Pinj (j, p2) -> max_var (Coq_Pos.add j jmp) p2
| PX (p2, _, q) -> Coq_Pos.max (max_var jmp p2) (max_var (Coq_Pos.succ jmp) q)

(** val max_var_nformulae : z nFormula list -> positive **)

let max_var_nformulae l =
  fold_left (fun acc f -> Coq_Pos.max acc (max_var XH (fst f))) l XH

(** val zChecker : z nFormula list -> zArithProof -> bool **)

let rec zChecker l = function
| DoneProof -> false
| RatProof (w, pf0) ->
  (match eval_Psatz0 l w with
   | Some f -> if zunsat f then true else zChecker (Cons (f, l)) pf0
   | None -> false)
| CutProof (w, pf0) ->
  (match eval_Psatz0 l w with
   | Some f ->
     (match genCuttingPlane f with
      | Some cp -> zChecker (Cons ((nformula_of_cutting_plane cp), l)) pf0
      | None -> true)
   | None -> false)
| EnumProof (w1, w2, pf0) ->
  (match eval_Psatz0 l w1 with
   | Some f1 ->
     (match eval_Psatz0 l w2 with
      | Some f2 ->
        (match genCuttingPlane f1 with
         | Some p ->
           let (p2, op3) = p in
           let (e1, z1) = p2 in
           (match genCuttingPlane f2 with
            | Some p3 ->
              let (p4, op4) = p3 in
              let (e2, z2) = p4 in
              if if if valid_cut_sign op3 then valid_cut_sign op4 else false
                 then is_pol_Z0 (padd1 e1 e2)
                 else false
              then let rec label pfs lb ub =
                     match pfs with
                     | Nil -> Z.gtb lb ub
                     | Cons (pf1, rsr) ->
                       if zChecker (Cons (((psub1 e1 (Pc lb)), Equal), l)) pf1
                       then label rsr (Z.add lb (Zpos XH)) ub
                       else false
                   in label pf0 (Z.opp z1) z2
              else false
            | None -> true)
         | None -> true)
      | None -> false)
   | None -> false)
| ExProof (x, prf) ->
  let fr = max_var_nformulae l in
  if Coq_Pos.leb x fr
  then let z0 = Coq_Pos.succ fr in
       let t0 = Coq_Pos.succ z0 in
       let nfx = xnnormalise (mk_eq_pos x z0 t0) in
       let posz = xnnormalise (bound_var z0) in
       let post = xnnormalise (bound_var t0) in
       zChecker (Cons (nfx, (Cons (posz, (Cons (post, l)))))) prf
  else false

(** val zTautoChecker : z formula bFormula -> zArithProof list -> bool **)

let zTautoChecker f w =
  tauto_checker zunsat zdeduce normalise negate (fun cl ->
    zChecker (map fst cl)) f w

(** val size : nat **)

let size =
  S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
    (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S (S
    (S (S (S (S (S (S (S (S (S (S (S (S (S (S
    O))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))

(** val lsl0 : Uint63.t -> Uint63.t -> Uint63.t **)

let lsl0 = Uint63.l_sl

(** val lsr0 : Uint63.t -> Uint63.t -> Uint63.t **)

let lsr0 = Uint63.l_sr

(** val land0 : Uint63.t -> Uint63.t -> Uint63.t **)

let land0 = Uint63.l_and

(** val lxor0 : Uint63.t -> Uint63.t -> Uint63.t **)

let lxor0 = Uint63.l_xor

(** val add0 : Uint63.t -> Uint63.t -> Uint63.t **)

let add0 = Uint63.add

(** val sub0 : Uint63.t -> Uint63.t -> Uint63.t **)

let sub0 = Uint63.sub

(** val eqb0 : Uint63.t -> Uint63.t -> bool **)

let eqb0 = Uint63.equal

(** val ltb0 : Uint63.t -> Uint63.t -> bool **)

let ltb0 = Uint63.lt

(** val leb0 : Uint63.t -> Uint63.t -> bool **)

let leb0 = Uint63.le

(** val digits : Uint63.t **)

let digits =
  (Uint63.of_int (63))

(** val is_zero : Uint63.t -> bool **)

let is_zero i =
  eqb0 i (Uint63.of_int (0))

(** val is_even : Uint63.t -> bool **)

let is_even i =
  is_zero (land0 i (Uint63.of_int (1)))

(** val bit : Uint63.t -> Uint63.t -> bool **)

let bit i n0 =
  negb (is_zero (lsl0 (lsr0 i n0) (sub0 digits (Uint63.of_int (1)))))

(** val compare0 : Uint63.t -> Uint63.t -> int **)

let compare0 = Uint63.compare

type 'x compare1 =
| LT
| EQ0
| GT

module type OrderedType =
 sig
  type t

  val compare : t -> t -> t compare1

  val eq_dec : t -> t -> sumbool
 end

module OrderedTypeFacts =
 functor (O:OrderedType) ->
 struct
  module TO =
   struct
    type t = O.t
   end

  module IsTO =
   struct
   end

  module OrderTac = MakeOrderTac(TO)(IsTO)

  (** val eq_dec : O.t -> O.t -> sumbool **)

  let eq_dec =
    O.eq_dec

  (** val lt_dec : O.t -> O.t -> sumbool **)

  let lt_dec x y =
    match O.compare x y with
    | LT -> Left
    | _ -> Right

  (** val eqb : O.t -> O.t -> bool **)

  let eqb x y =
    match eq_dec x y with
    | Left -> true
    | Right -> false
 end

module KeyOrderedType =
 functor (O:OrderedType) ->
 struct
  module MO = OrderedTypeFacts(O)
 end

module Raw =
 functor (X:OrderedType) ->
 struct
  module MX = OrderedTypeFacts(X)

  module PX = KeyOrderedType(X)

  type key = X.t

  type 'elt t = (X.t * 'elt) list

  (** val empty : 'a1 t **)

  let empty =
    Nil

  (** val is_empty : 'a1 t -> bool **)

  let is_empty = function
  | Nil -> true
  | Cons (_, _) -> false

  (** val mem : key -> 'a1 t -> bool **)

  let rec mem k = function
  | Nil -> false
  | Cons (p, l) ->
    let (k', _) = p in
    (match X.compare k k' with
     | LT -> false
     | EQ0 -> true
     | GT -> mem k l)

  type 'elt coq_R_mem =
  | R_mem_0 of 'elt t
  | R_mem_1 of 'elt t * X.t * 'elt * (X.t * 'elt) list
  | R_mem_2 of 'elt t * X.t * 'elt * (X.t * 'elt) list
  | R_mem_3 of 'elt t * X.t * 'elt * (X.t * 'elt) list * bool * 'elt coq_R_mem

  (** val coq_R_mem_rect :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> bool -> 'a1 coq_R_mem -> 'a2 -> 'a2) -> 'a1 t ->
      bool -> 'a1 coq_R_mem -> 'a2 **)

  let rec coq_R_mem_rect k f f0 f1 f2 _ _ = function
  | R_mem_0 s -> f s __
  | R_mem_1 (s, k', _x, l) -> f0 s k' _x l __ __ __
  | R_mem_2 (s, k', _x, l) -> f1 s k' _x l __ __ __
  | R_mem_3 (s, k', _x, l, _res, r0) ->
    f2 s k' _x l __ __ __ _res r0 (coq_R_mem_rect k f f0 f1 f2 l _res r0)

  (** val coq_R_mem_rec :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> bool -> 'a1 coq_R_mem -> 'a2 -> 'a2) -> 'a1 t ->
      bool -> 'a1 coq_R_mem -> 'a2 **)

  let rec coq_R_mem_rec k f f0 f1 f2 _ _ = function
  | R_mem_0 s -> f s __
  | R_mem_1 (s, k', _x, l) -> f0 s k' _x l __ __ __
  | R_mem_2 (s, k', _x, l) -> f1 s k' _x l __ __ __
  | R_mem_3 (s, k', _x, l, _res, r0) ->
    f2 s k' _x l __ __ __ _res r0 (coq_R_mem_rec k f f0 f1 f2 l _res r0)

  (** val mem_rect :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2 -> 'a2) -> 'a1 t -> 'a2 **)

  let rec mem_rect k f2 f1 f0 f s =
    let f3 = f2 s in
    let f4 = f1 s in
    let f5 = f0 s in
    let f6 = f s in
    (match s with
     | Nil -> f3 __
     | Cons (p, l) ->
       let (t0, e) = p in
       let f7 = f6 t0 e l __ in
       let f8 = fun _ _ -> let hrec = mem_rect k f2 f1 f0 f l in f7 __ __ hrec
       in
       let f9 = f5 t0 e l __ in
       let f10 = f4 t0 e l __ in
       (match X.compare k t0 with
        | LT -> f10 __ __
        | EQ0 -> f9 __ __
        | GT -> f8 __ __))

  (** val mem_rec :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2 -> 'a2) -> 'a1 t -> 'a2 **)

  let mem_rec =
    mem_rect

  (** val coq_R_mem_correct : key -> 'a1 t -> bool -> 'a1 coq_R_mem **)

  let coq_R_mem_correct k s _res =
    Obj.magic mem_rect k (fun y _ _ _ -> R_mem_0 y)
      (fun y y0 y1 y2 _ _ _ _ _ -> R_mem_1 (y, y0, y1, y2))
      (fun y y0 y1 y2 _ _ _ _ _ -> R_mem_2 (y, y0, y1, y2))
      (fun y y0 y1 y2 _ _ _ y6 _ _ -> R_mem_3 (y, y0, y1, y2, (mem k y2),
      (y6 (mem k y2) __))) s _res __

  (** val find : key -> 'a1 t -> 'a1 option **)

  let rec find k = function
  | Nil -> None
  | Cons (p, s') ->
    let (k', x) = p in
    (match X.compare k k' with
     | LT -> None
     | EQ0 -> Some x
     | GT -> find k s')

  type 'elt coq_R_find =
  | R_find_0 of 'elt t
  | R_find_1 of 'elt t * X.t * 'elt * (X.t * 'elt) list
  | R_find_2 of 'elt t * X.t * 'elt * (X.t * 'elt) list
  | R_find_3 of 'elt t * X.t * 'elt * (X.t * 'elt) list * 'elt option
     * 'elt coq_R_find

  (** val coq_R_find_rect :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a1 option -> 'a1 coq_R_find -> 'a2 -> 'a2) -> 'a1
      t -> 'a1 option -> 'a1 coq_R_find -> 'a2 **)

  let rec coq_R_find_rect k f f0 f1 f2 _ _ = function
  | R_find_0 s -> f s __
  | R_find_1 (s, k', x, s') -> f0 s k' x s' __ __ __
  | R_find_2 (s, k', x, s') -> f1 s k' x s' __ __ __
  | R_find_3 (s, k', x, s', _res, r0) ->
    f2 s k' x s' __ __ __ _res r0 (coq_R_find_rect k f f0 f1 f2 s' _res r0)

  (** val coq_R_find_rec :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a1 option -> 'a1 coq_R_find -> 'a2 -> 'a2) -> 'a1
      t -> 'a1 option -> 'a1 coq_R_find -> 'a2 **)

  let rec coq_R_find_rec k f f0 f1 f2 _ _ = function
  | R_find_0 s -> f s __
  | R_find_1 (s, k', x, s') -> f0 s k' x s' __ __ __
  | R_find_2 (s, k', x, s') -> f1 s k' x s' __ __ __
  | R_find_3 (s, k', x, s', _res, r0) ->
    f2 s k' x s' __ __ __ _res r0 (coq_R_find_rec k f f0 f1 f2 s' _res r0)

  (** val find_rect :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2 -> 'a2) -> 'a1 t -> 'a2 **)

  let rec find_rect k f2 f1 f0 f s =
    let f3 = f2 s in
    let f4 = f1 s in
    let f5 = f0 s in
    let f6 = f s in
    (match s with
     | Nil -> f3 __
     | Cons (p, l) ->
       let (t0, e) = p in
       let f7 = f6 t0 e l __ in
       let f8 = fun _ _ ->
         let hrec = find_rect k f2 f1 f0 f l in f7 __ __ hrec
       in
       let f9 = f5 t0 e l __ in
       let f10 = f4 t0 e l __ in
       (match X.compare k t0 with
        | LT -> f10 __ __
        | EQ0 -> f9 __ __
        | GT -> f8 __ __))

  (** val find_rec :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2 -> 'a2) -> 'a1 t -> 'a2 **)

  let find_rec =
    find_rect

  (** val coq_R_find_correct :
      key -> 'a1 t -> 'a1 option -> 'a1 coq_R_find **)

  let coq_R_find_correct k s _res =
    Obj.magic find_rect k (fun y _ _ _ -> R_find_0 y)
      (fun y y0 y1 y2 _ _ _ _ _ -> R_find_1 (y, y0, y1, y2))
      (fun y y0 y1 y2 _ _ _ _ _ -> R_find_2 (y, y0, y1, y2))
      (fun y y0 y1 y2 _ _ _ y6 _ _ -> R_find_3 (y, y0, y1, y2, (find k y2),
      (y6 (find k y2) __))) s _res __

  (** val add : key -> 'a1 -> 'a1 t -> 'a1 t **)

  let rec add k x s = match s with
  | Nil -> Cons ((k, x), Nil)
  | Cons (p, l) ->
    let (k', y) = p in
    (match X.compare k k' with
     | LT -> Cons ((k, x), s)
     | EQ0 -> Cons ((k, x), l)
     | GT -> Cons ((k', y), (add k x l)))

  type 'elt coq_R_add =
  | R_add_0 of 'elt t
  | R_add_1 of 'elt t * X.t * 'elt * (X.t * 'elt) list
  | R_add_2 of 'elt t * X.t * 'elt * (X.t * 'elt) list
  | R_add_3 of 'elt t * X.t * 'elt * (X.t * 'elt) list * 'elt t
     * 'elt coq_R_add

  (** val coq_R_add_rect :
      key -> 'a1 -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a1 t -> 'a1 coq_R_add -> 'a2 ->
      'a2) -> 'a1 t -> 'a1 t -> 'a1 coq_R_add -> 'a2 **)

  let rec coq_R_add_rect k x f f0 f1 f2 _ _ = function
  | R_add_0 s -> f s __
  | R_add_1 (s, k', y, l) -> f0 s k' y l __ __ __
  | R_add_2 (s, k', y, l) -> f1 s k' y l __ __ __
  | R_add_3 (s, k', y, l, _res, r0) ->
    f2 s k' y l __ __ __ _res r0 (coq_R_add_rect k x f f0 f1 f2 l _res r0)

  (** val coq_R_add_rec :
      key -> 'a1 -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a1 t -> 'a1 coq_R_add -> 'a2 ->
      'a2) -> 'a1 t -> 'a1 t -> 'a1 coq_R_add -> 'a2 **)

  let rec coq_R_add_rec k x f f0 f1 f2 _ _ = function
  | R_add_0 s -> f s __
  | R_add_1 (s, k', y, l) -> f0 s k' y l __ __ __
  | R_add_2 (s, k', y, l) -> f1 s k' y l __ __ __
  | R_add_3 (s, k', y, l, _res, r0) ->
    f2 s k' y l __ __ __ _res r0 (coq_R_add_rec k x f f0 f1 f2 l _res r0)

  (** val add_rect :
      key -> 'a1 -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2 -> 'a2) -> 'a1 t -> 'a2 **)

  let rec add_rect k x f2 f1 f0 f s =
    let f3 = f2 s in
    let f4 = f1 s in
    let f5 = f0 s in
    let f6 = f s in
    (match s with
     | Nil -> f3 __
     | Cons (p, l) ->
       let (t0, e) = p in
       let f7 = f6 t0 e l __ in
       let f8 = fun _ _ ->
         let hrec = add_rect k x f2 f1 f0 f l in f7 __ __ hrec
       in
       let f9 = f5 t0 e l __ in
       let f10 = f4 t0 e l __ in
       (match X.compare k t0 with
        | LT -> f10 __ __
        | EQ0 -> f9 __ __
        | GT -> f8 __ __))

  (** val add_rec :
      key -> 'a1 -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2 -> 'a2) -> 'a1 t -> 'a2 **)

  let add_rec =
    add_rect

  (** val coq_R_add_correct :
      key -> 'a1 -> 'a1 t -> 'a1 t -> 'a1 coq_R_add **)

  let coq_R_add_correct k x s _res =
    add_rect k x (fun y _ _ _ -> R_add_0 y) (fun y y0 y1 y2 _ _ _ _ _ ->
      R_add_1 (y, y0, y1, y2)) (fun y y0 y1 y2 _ _ _ _ _ -> R_add_2 (y, y0,
      y1, y2)) (fun y y0 y1 y2 _ _ _ y6 _ _ -> R_add_3 (y, y0, y1, y2,
      (add k x y2), (y6 (add k x y2) __))) s _res __

  (** val remove : key -> 'a1 t -> 'a1 t **)

  let rec remove k s = match s with
  | Nil -> Nil
  | Cons (p, l) ->
    let (k', x) = p in
    (match X.compare k k' with
     | LT -> s
     | EQ0 -> l
     | GT -> Cons ((k', x), (remove k l)))

  type 'elt coq_R_remove =
  | R_remove_0 of 'elt t
  | R_remove_1 of 'elt t * X.t * 'elt * (X.t * 'elt) list
  | R_remove_2 of 'elt t * X.t * 'elt * (X.t * 'elt) list
  | R_remove_3 of 'elt t * X.t * 'elt * (X.t * 'elt) list * 'elt t
     * 'elt coq_R_remove

  (** val coq_R_remove_rect :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a1 t -> 'a1 coq_R_remove -> 'a2 -> 'a2) -> 'a1 t
      -> 'a1 t -> 'a1 coq_R_remove -> 'a2 **)

  let rec coq_R_remove_rect k f f0 f1 f2 _ _ = function
  | R_remove_0 s -> f s __
  | R_remove_1 (s, k', x, l) -> f0 s k' x l __ __ __
  | R_remove_2 (s, k', x, l) -> f1 s k' x l __ __ __
  | R_remove_3 (s, k', x, l, _res, r0) ->
    f2 s k' x l __ __ __ _res r0 (coq_R_remove_rect k f f0 f1 f2 l _res r0)

  (** val coq_R_remove_rec :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a1 t -> 'a1 coq_R_remove -> 'a2 -> 'a2) -> 'a1 t
      -> 'a1 t -> 'a1 coq_R_remove -> 'a2 **)

  let rec coq_R_remove_rec k f f0 f1 f2 _ _ = function
  | R_remove_0 s -> f s __
  | R_remove_1 (s, k', x, l) -> f0 s k' x l __ __ __
  | R_remove_2 (s, k', x, l) -> f1 s k' x l __ __ __
  | R_remove_3 (s, k', x, l, _res, r0) ->
    f2 s k' x l __ __ __ _res r0 (coq_R_remove_rec k f f0 f1 f2 l _res r0)

  (** val remove_rect :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2 -> 'a2) -> 'a1 t -> 'a2 **)

  let rec remove_rect k f2 f1 f0 f s =
    let f3 = f2 s in
    let f4 = f1 s in
    let f5 = f0 s in
    let f6 = f s in
    (match s with
     | Nil -> f3 __
     | Cons (p, l) ->
       let (t0, e) = p in
       let f7 = f6 t0 e l __ in
       let f8 = fun _ _ ->
         let hrec = remove_rect k f2 f1 f0 f l in f7 __ __ hrec
       in
       let f9 = f5 t0 e l __ in
       let f10 = f4 t0 e l __ in
       (match X.compare k t0 with
        | LT -> f10 __ __
        | EQ0 -> f9 __ __
        | GT -> f8 __ __))

  (** val remove_rec :
      key -> ('a1 t -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2) -> ('a1 t -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> __ -> __ -> 'a2 -> 'a2) -> 'a1 t -> 'a2 **)

  let remove_rec =
    remove_rect

  (** val coq_R_remove_correct : key -> 'a1 t -> 'a1 t -> 'a1 coq_R_remove **)

  let coq_R_remove_correct k s _res =
    Obj.magic remove_rect k (fun y _ _ _ -> R_remove_0 y)
      (fun y y0 y1 y2 _ _ _ _ _ -> R_remove_1 (y, y0, y1, y2))
      (fun y y0 y1 y2 _ _ _ _ _ -> R_remove_2 (y, y0, y1, y2))
      (fun y y0 y1 y2 _ _ _ y6 _ _ -> R_remove_3 (y, y0, y1, y2,
      (remove k y2), (y6 (remove k y2) __))) s _res __

  (** val elements : 'a1 t -> 'a1 t **)

  let elements m =
    m

  (** val fold : (key -> 'a1 -> 'a2 -> 'a2) -> 'a1 t -> 'a2 -> 'a2 **)

  let rec fold f m acc =
    match m with
    | Nil -> acc
    | Cons (p, m') -> let (k, e) = p in fold f m' (f k e acc)

  type ('elt, 'a) coq_R_fold =
  | R_fold_0 of 'elt t * 'a
  | R_fold_1 of 'elt t * 'a * X.t * 'elt * (X.t * 'elt) list * 'a
     * ('elt, 'a) coq_R_fold

  (** val coq_R_fold_rect :
      (key -> 'a1 -> 'a2 -> 'a2) -> ('a1 t -> 'a2 -> __ -> 'a3) -> ('a1 t ->
      'a2 -> X.t -> 'a1 -> (X.t * 'a1) list -> __ -> 'a2 -> ('a1, 'a2)
      coq_R_fold -> 'a3 -> 'a3) -> 'a1 t -> 'a2 -> 'a2 -> ('a1, 'a2)
      coq_R_fold -> 'a3 **)

  let rec coq_R_fold_rect f f0 f1 _ _ _ = function
  | R_fold_0 (m, acc) -> f0 m acc __
  | R_fold_1 (m, acc, k, e, m', _res, r0) ->
    f1 m acc k e m' __ _res r0
      (coq_R_fold_rect f f0 f1 m' (f k e acc) _res r0)

  (** val coq_R_fold_rec :
      (key -> 'a1 -> 'a2 -> 'a2) -> ('a1 t -> 'a2 -> __ -> 'a3) -> ('a1 t ->
      'a2 -> X.t -> 'a1 -> (X.t * 'a1) list -> __ -> 'a2 -> ('a1, 'a2)
      coq_R_fold -> 'a3 -> 'a3) -> 'a1 t -> 'a2 -> 'a2 -> ('a1, 'a2)
      coq_R_fold -> 'a3 **)

  let rec coq_R_fold_rec f f0 f1 _ _ _ = function
  | R_fold_0 (m, acc) -> f0 m acc __
  | R_fold_1 (m, acc, k, e, m', _res, r0) ->
    f1 m acc k e m' __ _res r0 (coq_R_fold_rec f f0 f1 m' (f k e acc) _res r0)

  (** val fold_rect :
      (key -> 'a1 -> 'a2 -> 'a2) -> ('a1 t -> 'a2 -> __ -> 'a3) -> ('a1 t ->
      'a2 -> X.t -> 'a1 -> (X.t * 'a1) list -> __ -> 'a3 -> 'a3) -> 'a1 t ->
      'a2 -> 'a3 **)

  let rec fold_rect f1 f0 f m acc =
    let f2 = f0 m acc in
    let f3 = f m acc in
    (match m with
     | Nil -> f2 __
     | Cons (p, l) ->
       let (t0, e) = p in
       let f4 = f3 t0 e l __ in
       let hrec = fold_rect f1 f0 f l (f1 t0 e acc) in f4 hrec)

  (** val fold_rec :
      (key -> 'a1 -> 'a2 -> 'a2) -> ('a1 t -> 'a2 -> __ -> 'a3) -> ('a1 t ->
      'a2 -> X.t -> 'a1 -> (X.t * 'a1) list -> __ -> 'a3 -> 'a3) -> 'a1 t ->
      'a2 -> 'a3 **)

  let fold_rec =
    fold_rect

  (** val coq_R_fold_correct :
      (key -> 'a1 -> 'a2 -> 'a2) -> 'a1 t -> 'a2 -> 'a2 -> ('a1, 'a2)
      coq_R_fold **)

  let coq_R_fold_correct f m acc _res =
    fold_rect f (fun y y0 _ _ _ -> R_fold_0 (y, y0))
      (fun y y0 y1 y2 y3 _ y5 _ _ -> R_fold_1 (y, y0, y1, y2, y3,
      (fold f y3 (f y1 y2 y0)), (y5 (fold f y3 (f y1 y2 y0)) __))) m acc _res
      __

  (** val equal : ('a1 -> 'a1 -> bool) -> 'a1 t -> 'a1 t -> bool **)

  let rec equal cmp m m' =
    match m with
    | Nil -> (match m' with
              | Nil -> true
              | Cons (_, _) -> false)
    | Cons (p, l) ->
      let (x, e) = p in
      (match m' with
       | Nil -> false
       | Cons (p2, l') ->
         let (x', e') = p2 in
         (match X.compare x x' with
          | EQ0 -> if cmp e e' then equal cmp l l' else false
          | _ -> false))

  type 'elt coq_R_equal =
  | R_equal_0 of 'elt t * 'elt t
  | R_equal_1 of 'elt t * 'elt t * X.t * 'elt * (X.t * 'elt) list * X.t
     * 'elt * (X.t * 'elt) list * bool * 'elt coq_R_equal
  | R_equal_2 of 'elt t * 'elt t * X.t * 'elt * (X.t * 'elt) list * X.t
     * 'elt * (X.t * 'elt) list * X.t compare1
  | R_equal_3 of 'elt t * 'elt t * 'elt t * 'elt t

  (** val coq_R_equal_rect :
      ('a1 -> 'a1 -> bool) -> ('a1 t -> 'a1 t -> __ -> __ -> 'a2) -> ('a1 t
      -> 'a1 t -> X.t -> 'a1 -> (X.t * 'a1) list -> __ -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> bool -> 'a1 coq_R_equal -> 'a2 ->
      'a2) -> ('a1 t -> 'a1 t -> X.t -> 'a1 -> (X.t * 'a1) list -> __ -> X.t
      -> 'a1 -> (X.t * 'a1) list -> __ -> X.t compare1 -> __ -> __ -> 'a2) ->
      ('a1 t -> 'a1 t -> 'a1 t -> __ -> 'a1 t -> __ -> __ -> 'a2) -> 'a1 t ->
      'a1 t -> bool -> 'a1 coq_R_equal -> 'a2 **)

  let rec coq_R_equal_rect cmp f f0 f1 f2 _ _ _ = function
  | R_equal_0 (m, m') -> f m m' __ __
  | R_equal_1 (m, m', x, e, l, x', e', l', _res, r0) ->
    f0 m m' x e l __ x' e' l' __ __ __ _res r0
      (coq_R_equal_rect cmp f f0 f1 f2 l l' _res r0)
  | R_equal_2 (m, m', x, e, l, x', e', l', _x) ->
    f1 m m' x e l __ x' e' l' __ _x __ __
  | R_equal_3 (m, m', _x, _x0) -> f2 m m' _x __ _x0 __ __

  (** val coq_R_equal_rec :
      ('a1 -> 'a1 -> bool) -> ('a1 t -> 'a1 t -> __ -> __ -> 'a2) -> ('a1 t
      -> 'a1 t -> X.t -> 'a1 -> (X.t * 'a1) list -> __ -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> bool -> 'a1 coq_R_equal -> 'a2 ->
      'a2) -> ('a1 t -> 'a1 t -> X.t -> 'a1 -> (X.t * 'a1) list -> __ -> X.t
      -> 'a1 -> (X.t * 'a1) list -> __ -> X.t compare1 -> __ -> __ -> 'a2) ->
      ('a1 t -> 'a1 t -> 'a1 t -> __ -> 'a1 t -> __ -> __ -> 'a2) -> 'a1 t ->
      'a1 t -> bool -> 'a1 coq_R_equal -> 'a2 **)

  let rec coq_R_equal_rec cmp f f0 f1 f2 _ _ _ = function
  | R_equal_0 (m, m') -> f m m' __ __
  | R_equal_1 (m, m', x, e, l, x', e', l', _res, r0) ->
    f0 m m' x e l __ x' e' l' __ __ __ _res r0
      (coq_R_equal_rec cmp f f0 f1 f2 l l' _res r0)
  | R_equal_2 (m, m', x, e, l, x', e', l', _x) ->
    f1 m m' x e l __ x' e' l' __ _x __ __
  | R_equal_3 (m, m', _x, _x0) -> f2 m m' _x __ _x0 __ __

  (** val equal_rect :
      ('a1 -> 'a1 -> bool) -> ('a1 t -> 'a1 t -> __ -> __ -> 'a2) -> ('a1 t
      -> 'a1 t -> X.t -> 'a1 -> (X.t * 'a1) list -> __ -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2 -> 'a2) -> ('a1 t -> 'a1 t ->
      X.t -> 'a1 -> (X.t * 'a1) list -> __ -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> X.t compare1 -> __ -> __ -> 'a2) -> ('a1 t -> 'a1 t -> 'a1 t
      -> __ -> 'a1 t -> __ -> __ -> 'a2) -> 'a1 t -> 'a1 t -> 'a2 **)

  let rec equal_rect cmp f2 f1 f0 f m m' =
    let f3 = f2 m m' in
    let f4 = f1 m m' in
    let f5 = f0 m m' in
    let f6 = f m m' in
    let f7 = f6 m __ in
    let f8 = f7 m' __ in
    (match m with
     | Nil ->
       let f9 = f3 __ in (match m' with
                          | Nil -> f9 __
                          | Cons (_, _) -> f8 __)
     | Cons (p, l) ->
       let (t0, e) = p in
       let f9 = f5 t0 e l __ in
       let f10 = f4 t0 e l __ in
       (match m' with
        | Nil -> f8 __
        | Cons (p2, l0) ->
          let (t1, e0) = p2 in
          let f11 = f9 t1 e0 l0 __ in
          let f12 = let _x = X.compare t0 t1 in f11 _x __ in
          let f13 = f10 t1 e0 l0 __ in
          let f14 = fun _ _ ->
            let hrec = equal_rect cmp f2 f1 f0 f l l0 in f13 __ __ hrec
          in
          (match X.compare t0 t1 with
           | EQ0 -> f14 __ __
           | _ -> f12 __)))

  (** val equal_rec :
      ('a1 -> 'a1 -> bool) -> ('a1 t -> 'a1 t -> __ -> __ -> 'a2) -> ('a1 t
      -> 'a1 t -> X.t -> 'a1 -> (X.t * 'a1) list -> __ -> X.t -> 'a1 ->
      (X.t * 'a1) list -> __ -> __ -> __ -> 'a2 -> 'a2) -> ('a1 t -> 'a1 t ->
      X.t -> 'a1 -> (X.t * 'a1) list -> __ -> X.t -> 'a1 -> (X.t * 'a1) list
      -> __ -> X.t compare1 -> __ -> __ -> 'a2) -> ('a1 t -> 'a1 t -> 'a1 t
      -> __ -> 'a1 t -> __ -> __ -> 'a2) -> 'a1 t -> 'a1 t -> 'a2 **)

  let equal_rec =
    equal_rect

  (** val coq_R_equal_correct :
      ('a1 -> 'a1 -> bool) -> 'a1 t -> 'a1 t -> bool -> 'a1 coq_R_equal **)

  let coq_R_equal_correct cmp m m' _res =
    equal_rect cmp (fun y y0 _ _ _ _ -> R_equal_0 (y, y0))
      (fun y y0 y1 y2 y3 _ y5 y6 y7 _ _ _ y11 _ _ -> R_equal_1 (y, y0, y1,
      y2, y3, y5, y6, y7, (equal cmp y3 y7), (y11 (equal cmp y3 y7) __)))
      (fun y y0 y1 y2 y3 _ y5 y6 y7 _ y9 _ _ _ _ -> R_equal_2 (y, y0, y1, y2,
      y3, y5, y6, y7, y9)) (fun y y0 y1 _ y3 _ _ _ _ -> R_equal_3 (y, y0, y1,
      y3)) m m' _res __

  (** val map : ('a1 -> 'a2) -> 'a1 t -> 'a2 t **)

  let rec map f = function
  | Nil -> Nil
  | Cons (p, m') -> let (k, e) = p in Cons ((k, (f e)), (map f m'))

  (** val mapi : (key -> 'a1 -> 'a2) -> 'a1 t -> 'a2 t **)

  let rec mapi f = function
  | Nil -> Nil
  | Cons (p, m') -> let (k, e) = p in Cons ((k, (f k e)), (mapi f m'))

  (** val option_cons :
      key -> 'a1 option -> (key * 'a1) list -> (key * 'a1) list **)

  let option_cons k o l =
    match o with
    | Some e -> Cons ((k, e), l)
    | None -> l

  (** val map2_l :
      ('a1 option -> 'a2 option -> 'a3 option) -> 'a1 t -> 'a3 t **)

  let rec map2_l f = function
  | Nil -> Nil
  | Cons (p, l) ->
    let (k, e) = p in option_cons k (f (Some e) None) (map2_l f l)

  (** val map2_r :
      ('a1 option -> 'a2 option -> 'a3 option) -> 'a2 t -> 'a3 t **)

  let rec map2_r f = function
  | Nil -> Nil
  | Cons (p, l') ->
    let (k, e') = p in option_cons k (f None (Some e')) (map2_r f l')

  (** val map2 :
      ('a1 option -> 'a2 option -> 'a3 option) -> 'a1 t -> 'a2 t -> 'a3 t **)

  let rec map2 f m = match m with
  | Nil -> map2_r f
  | Cons (p, l) ->
    let (k, e) = p in
    let rec map2_aux m' = match m' with
    | Nil -> map2_l f m
    | Cons (p2, l') ->
      let (k', e') = p2 in
      (match X.compare k k' with
       | LT -> option_cons k (f (Some e) None) (map2 f l m')
       | EQ0 -> option_cons k (f (Some e) (Some e')) (map2 f l l')
       | GT -> option_cons k' (f None (Some e')) (map2_aux l'))
    in map2_aux

  (** val combine : 'a1 t -> 'a2 t -> ('a1 option * 'a2 option) t **)

  let rec combine m = match m with
  | Nil -> map (fun e' -> (None, (Some e')))
  | Cons (p, l) ->
    let (k, e) = p in
    let rec combine_aux m' = match m' with
    | Nil -> map (fun e0 -> ((Some e0), None)) m
    | Cons (p2, l') ->
      let (k', e') = p2 in
      (match X.compare k k' with
       | LT -> Cons ((k, ((Some e), None)), (combine l m'))
       | EQ0 -> Cons ((k, ((Some e), (Some e'))), (combine l l'))
       | GT -> Cons ((k', (None, (Some e'))), (combine_aux l')))
    in combine_aux

  (** val fold_right_pair :
      ('a1 -> 'a2 -> 'a3 -> 'a3) -> ('a1 * 'a2) list -> 'a3 -> 'a3 **)

  let fold_right_pair f l i =
    fold_right (fun p -> f (fst p) (snd p)) i l

  (** val map2_alt :
      ('a1 option -> 'a2 option -> 'a3 option) -> 'a1 t -> 'a2 t ->
      (key * 'a3) list **)

  let map2_alt f m m' =
    let m0 = combine m m' in
    let m1 = map (fun p -> f (fst p) (snd p)) m0 in
    fold_right_pair option_cons m1 Nil

  (** val at_least_one :
      'a1 option -> 'a2 option -> ('a1 option * 'a2 option) option **)

  let at_least_one o o' =
    match o with
    | Some _ -> Some (o, o')
    | None -> (match o' with
               | Some _ -> Some (o, o')
               | None -> None)

  (** val at_least_one_then_f :
      ('a1 option -> 'a2 option -> 'a3 option) -> 'a1 option -> 'a2 option ->
      'a3 option **)

  let at_least_one_then_f f o o' =
    match o with
    | Some _ -> f o o'
    | None -> (match o' with
               | Some _ -> f o o'
               | None -> None)
 end

module type Int =
 sig
  type t

  val i2z : t -> z

  val _0 : t

  val _1 : t

  val _2 : t

  val _3 : t

  val add : t -> t -> t

  val opp : t -> t

  val sub : t -> t -> t

  val mul : t -> t -> t

  val max : t -> t -> t

  val eqb : t -> t -> bool

  val ltb : t -> t -> bool

  val leb : t -> t -> bool

  val gt_le_dec : t -> t -> sumbool

  val ge_lt_dec : t -> t -> sumbool

  val eq_dec : t -> t -> sumbool
 end

module Z_as_Int =
 struct
  type t = z

  (** val _0 : z **)

  let _0 =
    Z0

  (** val _1 : z **)

  let _1 =
    Zpos XH

  (** val _2 : z **)

  let _2 =
    Zpos (XO XH)

  (** val _3 : z **)

  let _3 =
    Zpos (XI XH)

  (** val add : z -> z -> z **)

  let add =
    Z.add

  (** val opp : z -> z **)

  let opp =
    Z.opp

  (** val sub : z -> z -> z **)

  let sub =
    Z.sub

  (** val mul : z -> z -> z **)

  let mul =
    Z.mul

  (** val max : z -> z -> z **)

  let max =
    Z.max

  (** val eqb : z -> z -> bool **)

  let eqb =
    Z.eqb

  (** val ltb : z -> z -> bool **)

  let ltb =
    Z.ltb

  (** val leb : z -> z -> bool **)

  let leb =
    Z.leb

  (** val eq_dec : z -> z -> sumbool **)

  let eq_dec =
    Z.eq_dec

  (** val gt_le_dec : z -> z -> sumbool **)

  let gt_le_dec i j =
    let b = Z.ltb j i in if b then Left else Right

  (** val ge_lt_dec : z -> z -> sumbool **)

  let ge_lt_dec i j =
    let b = Z.ltb i j in if b then Right else Left

  (** val i2z : t -> z **)

  let i2z n0 =
    n0
 end

module Coq_Raw =
 functor (I:Int) ->
 functor (X:OrderedType) ->
 struct
  type key = X.t

  type 'elt tree =
  | Leaf
  | Node of 'elt tree * key * 'elt * 'elt tree * I.t

  (** val tree_rect :
      'a2 -> ('a1 tree -> 'a2 -> key -> 'a1 -> 'a1 tree -> 'a2 -> I.t -> 'a2)
      -> 'a1 tree -> 'a2 **)

  let rec tree_rect f f0 = function
  | Leaf -> f
  | Node (t1, k, y, t2, t3) ->
    f0 t1 (tree_rect f f0 t1) k y t2 (tree_rect f f0 t2) t3

  (** val tree_rec :
      'a2 -> ('a1 tree -> 'a2 -> key -> 'a1 -> 'a1 tree -> 'a2 -> I.t -> 'a2)
      -> 'a1 tree -> 'a2 **)

  let rec tree_rec f f0 = function
  | Leaf -> f
  | Node (t1, k, y, t2, t3) ->
    f0 t1 (tree_rec f f0 t1) k y t2 (tree_rec f f0 t2) t3

  (** val height : 'a1 tree -> I.t **)

  let height = function
  | Leaf -> I._0
  | Node (_, _, _, _, h) -> h

  (** val cardinal : 'a1 tree -> nat **)

  let rec cardinal = function
  | Leaf -> O
  | Node (l, _, _, r, _) -> S (add (cardinal l) (cardinal r))

  (** val empty : 'a1 tree **)

  let empty =
    Leaf

  (** val is_empty : 'a1 tree -> bool **)

  let is_empty = function
  | Leaf -> true
  | Node (_, _, _, _, _) -> false

  (** val mem : X.t -> 'a1 tree -> bool **)

  let rec mem x = function
  | Leaf -> false
  | Node (l, y, _, r, _) ->
    (match X.compare x y with
     | LT -> mem x l
     | EQ0 -> true
     | GT -> mem x r)

  (** val find : X.t -> 'a1 tree -> 'a1 option **)

  let rec find x = function
  | Leaf -> None
  | Node (l, y, d, r, _) ->
    (match X.compare x y with
     | LT -> find x l
     | EQ0 -> Some d
     | GT -> find x r)

  (** val create : 'a1 tree -> key -> 'a1 -> 'a1 tree -> 'a1 tree **)

  let create l x e r =
    Node (l, x, e, r, (I.add (I.max (height l) (height r)) I._1))

  (** val assert_false : 'a1 tree -> key -> 'a1 -> 'a1 tree -> 'a1 tree **)

  let assert_false =
    create

  (** val bal : 'a1 tree -> key -> 'a1 -> 'a1 tree -> 'a1 tree **)

  let bal l x d r =
    let hl = height l in
    let hr = height r in
    (match I.gt_le_dec hl (I.add hr I._2) with
     | Left ->
       (match l with
        | Leaf -> assert_false l x d r
        | Node (ll, lx, ld, lr, _) ->
          (match I.ge_lt_dec (height ll) (height lr) with
           | Left -> create ll lx ld (create lr x d r)
           | Right ->
             (match lr with
              | Leaf -> assert_false l x d r
              | Node (lrl, lrx, lrd, lrr, _) ->
                create (create ll lx ld lrl) lrx lrd (create lrr x d r))))
     | Right ->
       (match I.gt_le_dec hr (I.add hl I._2) with
        | Left ->
          (match r with
           | Leaf -> assert_false l x d r
           | Node (rl, rx, rd, rr, _) ->
             (match I.ge_lt_dec (height rr) (height rl) with
              | Left -> create (create l x d rl) rx rd rr
              | Right ->
                (match rl with
                 | Leaf -> assert_false l x d r
                 | Node (rll, rlx, rld, rlr, _) ->
                   create (create l x d rll) rlx rld (create rlr rx rd rr))))
        | Right -> create l x d r))

  (** val add : key -> 'a1 -> 'a1 tree -> 'a1 tree **)

  let rec add x d = function
  | Leaf -> Node (Leaf, x, d, Leaf, I._1)
  | Node (l, y, d', r, h) ->
    (match X.compare x y with
     | LT -> bal (add x d l) y d' r
     | EQ0 -> Node (l, y, d, r, h)
     | GT -> bal l y d' (add x d r))

  (** val remove_min :
      'a1 tree -> key -> 'a1 -> 'a1 tree -> 'a1 tree * (key * 'a1) **)

  let rec remove_min l x d r =
    match l with
    | Leaf -> (r, (x, d))
    | Node (ll, lx, ld, lr, _) ->
      let (l', m) = remove_min ll lx ld lr in ((bal l' x d r), m)

  (** val merge : 'a1 tree -> 'a1 tree -> 'a1 tree **)

  let merge s1 s2 =
    match s1 with
    | Leaf -> s2
    | Node (_, _, _, _, _) ->
      (match s2 with
       | Leaf -> s1
       | Node (l2, x2, d2, r2, _) ->
         let (s2', p) = remove_min l2 x2 d2 r2 in
         let (x, d) = p in bal s1 x d s2')

  (** val remove : X.t -> 'a1 tree -> 'a1 tree **)

  let rec remove x = function
  | Leaf -> Leaf
  | Node (l, y, d, r, _) ->
    (match X.compare x y with
     | LT -> bal (remove x l) y d r
     | EQ0 -> merge l r
     | GT -> bal l y d (remove x r))

  (** val join : 'a1 tree -> key -> 'a1 -> 'a1 tree -> 'a1 tree **)

  let rec join l = match l with
  | Leaf -> add
  | Node (ll, lx, ld, lr, lh) ->
    (fun x d ->
      let rec join_aux r = match r with
      | Leaf -> add x d l
      | Node (rl, rx, rd, rr, rh) ->
        (match I.gt_le_dec lh (I.add rh I._2) with
         | Left -> bal ll lx ld (join lr x d r)
         | Right ->
           (match I.gt_le_dec rh (I.add lh I._2) with
            | Left -> bal (join_aux rl) rx rd rr
            | Right -> create l x d r))
      in join_aux)

  type 'elt triple = { t_left : 'elt tree; t_opt : 'elt option;
                       t_right : 'elt tree }

  (** val t_left : 'a1 triple -> 'a1 tree **)

  let t_left t0 =
    t0.t_left

  (** val t_opt : 'a1 triple -> 'a1 option **)

  let t_opt t0 =
    t0.t_opt

  (** val t_right : 'a1 triple -> 'a1 tree **)

  let t_right t0 =
    t0.t_right

  (** val split : X.t -> 'a1 tree -> 'a1 triple **)

  let rec split x = function
  | Leaf -> { t_left = Leaf; t_opt = None; t_right = Leaf }
  | Node (l, y, d, r, _) ->
    (match X.compare x y with
     | LT ->
       let { t_left = ll; t_opt = o; t_right = rl } = split x l in
       { t_left = ll; t_opt = o; t_right = (join rl y d r) }
     | EQ0 -> { t_left = l; t_opt = (Some d); t_right = r }
     | GT ->
       let { t_left = rl; t_opt = o; t_right = rr } = split x r in
       { t_left = (join l y d rl); t_opt = o; t_right = rr })

  (** val concat : 'a1 tree -> 'a1 tree -> 'a1 tree **)

  let concat m1 m2 =
    match m1 with
    | Leaf -> m2
    | Node (_, _, _, _, _) ->
      (match m2 with
       | Leaf -> m1
       | Node (l2, x2, d2, r2, _) ->
         let (m2', xd) = remove_min l2 x2 d2 r2 in
         join m1 (fst xd) (snd xd) m2')

  (** val elements_aux : (key * 'a1) list -> 'a1 tree -> (key * 'a1) list **)

  let rec elements_aux acc = function
  | Leaf -> acc
  | Node (l, x, d, r, _) ->
    elements_aux (Cons ((x, d), (elements_aux acc r))) l

  (** val elements : 'a1 tree -> (key * 'a1) list **)

  let elements m =
    elements_aux Nil m

  (** val fold : (key -> 'a1 -> 'a2 -> 'a2) -> 'a1 tree -> 'a2 -> 'a2 **)

  let rec fold f m a =
    match m with
    | Leaf -> a
    | Node (l, x, d, r, _) -> fold f r (f x d (fold f l a))

  type 'elt enumeration =
  | End
  | More of key * 'elt * 'elt tree * 'elt enumeration

  (** val enumeration_rect :
      'a2 -> (key -> 'a1 -> 'a1 tree -> 'a1 enumeration -> 'a2 -> 'a2) -> 'a1
      enumeration -> 'a2 **)

  let rec enumeration_rect f f0 = function
  | End -> f
  | More (k, e0, t0, e1) -> f0 k e0 t0 e1 (enumeration_rect f f0 e1)

  (** val enumeration_rec :
      'a2 -> (key -> 'a1 -> 'a1 tree -> 'a1 enumeration -> 'a2 -> 'a2) -> 'a1
      enumeration -> 'a2 **)

  let rec enumeration_rec f f0 = function
  | End -> f
  | More (k, e0, t0, e1) -> f0 k e0 t0 e1 (enumeration_rec f f0 e1)

  (** val cons : 'a1 tree -> 'a1 enumeration -> 'a1 enumeration **)

  let rec cons m e =
    match m with
    | Leaf -> e
    | Node (l, x, d, r, _) -> cons l (More (x, d, r, e))

  (** val equal_more :
      ('a1 -> 'a1 -> bool) -> X.t -> 'a1 -> ('a1 enumeration -> bool) -> 'a1
      enumeration -> bool **)

  let equal_more cmp x1 d1 cont = function
  | End -> false
  | More (x2, d2, r2, e3) ->
    (match X.compare x1 x2 with
     | EQ0 -> if cmp d1 d2 then cont (cons r2 e3) else false
     | _ -> false)

  (** val equal_cont :
      ('a1 -> 'a1 -> bool) -> 'a1 tree -> ('a1 enumeration -> bool) -> 'a1
      enumeration -> bool **)

  let rec equal_cont cmp m1 cont e2 =
    match m1 with
    | Leaf -> cont e2
    | Node (l1, x1, d1, r1, _) ->
      equal_cont cmp l1 (equal_more cmp x1 d1 (equal_cont cmp r1 cont)) e2

  (** val equal_end : 'a1 enumeration -> bool **)

  let equal_end = function
  | End -> true
  | More (_, _, _, _) -> false

  (** val equal : ('a1 -> 'a1 -> bool) -> 'a1 tree -> 'a1 tree -> bool **)

  let equal cmp m1 m2 =
    equal_cont cmp m1 equal_end (cons m2 End)

  (** val map : ('a1 -> 'a2) -> 'a1 tree -> 'a2 tree **)

  let rec map f = function
  | Leaf -> Leaf
  | Node (l, x, d, r, h) -> Node ((map f l), x, (f d), (map f r), h)

  (** val mapi : (key -> 'a1 -> 'a2) -> 'a1 tree -> 'a2 tree **)

  let rec mapi f = function
  | Leaf -> Leaf
  | Node (l, x, d, r, h) -> Node ((mapi f l), x, (f x d), (mapi f r), h)

  (** val map_option : (key -> 'a1 -> 'a2 option) -> 'a1 tree -> 'a2 tree **)

  let rec map_option f = function
  | Leaf -> Leaf
  | Node (l, x, d, r, _) ->
    (match f x d with
     | Some d' -> join (map_option f l) x d' (map_option f r)
     | None -> concat (map_option f l) (map_option f r))

  (** val map2_opt :
      (key -> 'a1 -> 'a2 option -> 'a3 option) -> ('a1 tree -> 'a3 tree) ->
      ('a2 tree -> 'a3 tree) -> 'a1 tree -> 'a2 tree -> 'a3 tree **)

  let rec map2_opt f mapl mapr m1 m2 =
    match m1 with
    | Leaf -> mapr m2
    | Node (l1, x1, d1, r1, _) ->
      (match m2 with
       | Leaf -> mapl m1
       | Node (_, _, _, _, _) ->
         let { t_left = l2'; t_opt = o2; t_right = r2' } = split x1 m2 in
         (match f x1 d1 o2 with
          | Some e ->
            join (map2_opt f mapl mapr l1 l2') x1 e
              (map2_opt f mapl mapr r1 r2')
          | None ->
            concat (map2_opt f mapl mapr l1 l2') (map2_opt f mapl mapr r1 r2')))

  (** val map2 :
      ('a1 option -> 'a2 option -> 'a3 option) -> 'a1 tree -> 'a2 tree -> 'a3
      tree **)

  let map2 f =
    map2_opt (fun _ d o -> f (Some d) o)
      (map_option (fun _ d -> f (Some d) None))
      (map_option (fun _ d' -> f None (Some d')))

  module Proofs =
   struct
    module MX = OrderedTypeFacts(X)

    module PX = KeyOrderedType(X)

    module L = Raw(X)

    type 'elt coq_R_mem =
    | R_mem_0 of 'elt tree
    | R_mem_1 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t * 
       bool * 'elt coq_R_mem
    | R_mem_2 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
    | R_mem_3 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t * 
       bool * 'elt coq_R_mem

    (** val coq_R_mem_rect :
        X.t -> ('a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> bool -> 'a1 coq_R_mem -> 'a2
        -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t ->
        __ -> __ -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1
        tree -> I.t -> __ -> __ -> __ -> bool -> 'a1 coq_R_mem -> 'a2 -> 'a2)
        -> 'a1 tree -> bool -> 'a1 coq_R_mem -> 'a2 **)

    let rec coq_R_mem_rect x f f0 f1 f2 _ _ = function
    | R_mem_0 m -> f m __
    | R_mem_1 (m, l, y, _x, r0, _x0, _res, r1) ->
      f0 m l y _x r0 _x0 __ __ __ _res r1
        (coq_R_mem_rect x f f0 f1 f2 l _res r1)
    | R_mem_2 (m, l, y, _x, r0, _x0) -> f1 m l y _x r0 _x0 __ __ __
    | R_mem_3 (m, l, y, _x, r0, _x0, _res, r1) ->
      f2 m l y _x r0 _x0 __ __ __ _res r1
        (coq_R_mem_rect x f f0 f1 f2 r0 _res r1)

    (** val coq_R_mem_rec :
        X.t -> ('a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> bool -> 'a1 coq_R_mem -> 'a2
        -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t ->
        __ -> __ -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1
        tree -> I.t -> __ -> __ -> __ -> bool -> 'a1 coq_R_mem -> 'a2 -> 'a2)
        -> 'a1 tree -> bool -> 'a1 coq_R_mem -> 'a2 **)

    let rec coq_R_mem_rec x f f0 f1 f2 _ _ = function
    | R_mem_0 m -> f m __
    | R_mem_1 (m, l, y, _x, r0, _x0, _res, r1) ->
      f0 m l y _x r0 _x0 __ __ __ _res r1
        (coq_R_mem_rec x f f0 f1 f2 l _res r1)
    | R_mem_2 (m, l, y, _x, r0, _x0) -> f1 m l y _x r0 _x0 __ __ __
    | R_mem_3 (m, l, y, _x, r0, _x0, _res, r1) ->
      f2 m l y _x r0 _x0 __ __ __ _res r1
        (coq_R_mem_rec x f f0 f1 f2 r0 _res r1)

    type 'elt coq_R_find =
    | R_find_0 of 'elt tree
    | R_find_1 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
       * 'elt option * 'elt coq_R_find
    | R_find_2 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
    | R_find_3 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
       * 'elt option * 'elt coq_R_find

    (** val coq_R_find_rect :
        X.t -> ('a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 option -> 'a1 coq_R_find
        -> 'a2 -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree ->
        I.t -> __ -> __ -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 option -> 'a1 coq_R_find
        -> 'a2 -> 'a2) -> 'a1 tree -> 'a1 option -> 'a1 coq_R_find -> 'a2 **)

    let rec coq_R_find_rect x f f0 f1 f2 _ _ = function
    | R_find_0 m -> f m __
    | R_find_1 (m, l, y, d, r0, _x, _res, r1) ->
      f0 m l y d r0 _x __ __ __ _res r1
        (coq_R_find_rect x f f0 f1 f2 l _res r1)
    | R_find_2 (m, l, y, d, r0, _x) -> f1 m l y d r0 _x __ __ __
    | R_find_3 (m, l, y, d, r0, _x, _res, r1) ->
      f2 m l y d r0 _x __ __ __ _res r1
        (coq_R_find_rect x f f0 f1 f2 r0 _res r1)

    (** val coq_R_find_rec :
        X.t -> ('a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 option -> 'a1 coq_R_find
        -> 'a2 -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree ->
        I.t -> __ -> __ -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 option -> 'a1 coq_R_find
        -> 'a2 -> 'a2) -> 'a1 tree -> 'a1 option -> 'a1 coq_R_find -> 'a2 **)

    let rec coq_R_find_rec x f f0 f1 f2 _ _ = function
    | R_find_0 m -> f m __
    | R_find_1 (m, l, y, d, r0, _x, _res, r1) ->
      f0 m l y d r0 _x __ __ __ _res r1
        (coq_R_find_rec x f f0 f1 f2 l _res r1)
    | R_find_2 (m, l, y, d, r0, _x) -> f1 m l y d r0 _x __ __ __
    | R_find_3 (m, l, y, d, r0, _x, _res, r1) ->
      f2 m l y d r0 _x __ __ __ _res r1
        (coq_R_find_rec x f f0 f1 f2 r0 _res r1)

    type 'elt coq_R_bal =
    | R_bal_0 of 'elt tree * key * 'elt * 'elt tree
    | R_bal_1 of 'elt tree * key * 'elt * 'elt tree * 'elt tree * key * 
       'elt * 'elt tree * I.t
    | R_bal_2 of 'elt tree * key * 'elt * 'elt tree * 'elt tree * key * 
       'elt * 'elt tree * I.t
    | R_bal_3 of 'elt tree * key * 'elt * 'elt tree * 'elt tree * key * 
       'elt * 'elt tree * I.t * 'elt tree * key * 'elt * 'elt tree * 
       I.t
    | R_bal_4 of 'elt tree * key * 'elt * 'elt tree
    | R_bal_5 of 'elt tree * key * 'elt * 'elt tree * 'elt tree * key * 
       'elt * 'elt tree * I.t
    | R_bal_6 of 'elt tree * key * 'elt * 'elt tree * 'elt tree * key * 
       'elt * 'elt tree * I.t
    | R_bal_7 of 'elt tree * key * 'elt * 'elt tree * 'elt tree * key * 
       'elt * 'elt tree * I.t * 'elt tree * key * 'elt * 'elt tree * 
       I.t
    | R_bal_8 of 'elt tree * key * 'elt * 'elt tree

    (** val coq_R_bal_rect :
        ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> __ -> __ -> 'a2) -> ('a1
        tree -> key -> 'a1 -> 'a1 tree -> __ -> __ -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a2) -> ('a1 tree -> key ->
        'a1 -> 'a1 tree -> __ -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree ->
        I.t -> __ -> __ -> __ -> __ -> 'a2) -> ('a1 tree -> key -> 'a1 -> 'a1
        tree -> __ -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __
        -> __ -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ ->
        'a2) -> ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> __ -> __ -> __
        -> __ -> 'a2) -> ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> __ ->
        __ -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ ->
        __ -> 'a2) -> ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> __ -> __
        -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> __
        -> __ -> 'a2) -> ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> __ ->
        __ -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ ->
        __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> 'a2) -> ('a1
        tree -> key -> 'a1 -> 'a1 tree -> __ -> __ -> __ -> __ -> 'a2) -> 'a1
        tree -> key -> 'a1 -> 'a1 tree -> 'a1 tree -> 'a1 coq_R_bal -> 'a2 **)

    let coq_R_bal_rect f f0 f1 f2 f3 f4 f5 f6 f7 _ _ _ _ _ = function
    | R_bal_0 (x, x0, x1, x2) -> f x x0 x1 x2 __ __ __
    | R_bal_1 (x, x0, x1, x2, x3, x4, x5, x6, x7) ->
      f0 x x0 x1 x2 __ __ x3 x4 x5 x6 x7 __ __ __
    | R_bal_2 (x, x0, x1, x2, x3, x4, x5, x6, x7) ->
      f1 x x0 x1 x2 __ __ x3 x4 x5 x6 x7 __ __ __ __
    | R_bal_3 (x, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) ->
      f2 x x0 x1 x2 __ __ x3 x4 x5 x6 x7 __ __ __ x8 x9 x10 x11 x12 __
    | R_bal_4 (x, x0, x1, x2) -> f3 x x0 x1 x2 __ __ __ __ __
    | R_bal_5 (x, x0, x1, x2, x3, x4, x5, x6, x7) ->
      f4 x x0 x1 x2 __ __ __ __ x3 x4 x5 x6 x7 __ __ __
    | R_bal_6 (x, x0, x1, x2, x3, x4, x5, x6, x7) ->
      f5 x x0 x1 x2 __ __ __ __ x3 x4 x5 x6 x7 __ __ __ __
    | R_bal_7 (x, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) ->
      f6 x x0 x1 x2 __ __ __ __ x3 x4 x5 x6 x7 __ __ __ x8 x9 x10 x11 x12 __
    | R_bal_8 (x, x0, x1, x2) -> f7 x x0 x1 x2 __ __ __ __

    (** val coq_R_bal_rec :
        ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> __ -> __ -> 'a2) -> ('a1
        tree -> key -> 'a1 -> 'a1 tree -> __ -> __ -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a2) -> ('a1 tree -> key ->
        'a1 -> 'a1 tree -> __ -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree ->
        I.t -> __ -> __ -> __ -> __ -> 'a2) -> ('a1 tree -> key -> 'a1 -> 'a1
        tree -> __ -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __
        -> __ -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ ->
        'a2) -> ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> __ -> __ -> __
        -> __ -> 'a2) -> ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> __ ->
        __ -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ ->
        __ -> 'a2) -> ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> __ -> __
        -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> __
        -> __ -> 'a2) -> ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> __ ->
        __ -> __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ ->
        __ -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> 'a2) -> ('a1
        tree -> key -> 'a1 -> 'a1 tree -> __ -> __ -> __ -> __ -> 'a2) -> 'a1
        tree -> key -> 'a1 -> 'a1 tree -> 'a1 tree -> 'a1 coq_R_bal -> 'a2 **)

    let coq_R_bal_rec f f0 f1 f2 f3 f4 f5 f6 f7 _ _ _ _ _ = function
    | R_bal_0 (x, x0, x1, x2) -> f x x0 x1 x2 __ __ __
    | R_bal_1 (x, x0, x1, x2, x3, x4, x5, x6, x7) ->
      f0 x x0 x1 x2 __ __ x3 x4 x5 x6 x7 __ __ __
    | R_bal_2 (x, x0, x1, x2, x3, x4, x5, x6, x7) ->
      f1 x x0 x1 x2 __ __ x3 x4 x5 x6 x7 __ __ __ __
    | R_bal_3 (x, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) ->
      f2 x x0 x1 x2 __ __ x3 x4 x5 x6 x7 __ __ __ x8 x9 x10 x11 x12 __
    | R_bal_4 (x, x0, x1, x2) -> f3 x x0 x1 x2 __ __ __ __ __
    | R_bal_5 (x, x0, x1, x2, x3, x4, x5, x6, x7) ->
      f4 x x0 x1 x2 __ __ __ __ x3 x4 x5 x6 x7 __ __ __
    | R_bal_6 (x, x0, x1, x2, x3, x4, x5, x6, x7) ->
      f5 x x0 x1 x2 __ __ __ __ x3 x4 x5 x6 x7 __ __ __ __
    | R_bal_7 (x, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) ->
      f6 x x0 x1 x2 __ __ __ __ x3 x4 x5 x6 x7 __ __ __ x8 x9 x10 x11 x12 __
    | R_bal_8 (x, x0, x1, x2) -> f7 x x0 x1 x2 __ __ __ __

    type 'elt coq_R_add =
    | R_add_0 of 'elt tree
    | R_add_1 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
       * 'elt tree * 'elt coq_R_add
    | R_add_2 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
    | R_add_3 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
       * 'elt tree * 'elt coq_R_add

    (** val coq_R_add_rect :
        key -> 'a1 -> ('a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key
        -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 tree -> 'a1
        coq_R_add -> 'a2 -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 ->
        'a1 tree -> I.t -> __ -> __ -> __ -> 'a2) -> ('a1 tree -> 'a1 tree ->
        key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 tree -> 'a1
        coq_R_add -> 'a2 -> 'a2) -> 'a1 tree -> 'a1 tree -> 'a1 coq_R_add ->
        'a2 **)

    let rec coq_R_add_rect x d f f0 f1 f2 _ _ = function
    | R_add_0 m -> f m __
    | R_add_1 (m, l, y, d', r0, h, _res, r1) ->
      f0 m l y d' r0 h __ __ __ _res r1
        (coq_R_add_rect x d f f0 f1 f2 l _res r1)
    | R_add_2 (m, l, y, d', r0, h) -> f1 m l y d' r0 h __ __ __
    | R_add_3 (m, l, y, d', r0, h, _res, r1) ->
      f2 m l y d' r0 h __ __ __ _res r1
        (coq_R_add_rect x d f f0 f1 f2 r0 _res r1)

    (** val coq_R_add_rec :
        key -> 'a1 -> ('a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key
        -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 tree -> 'a1
        coq_R_add -> 'a2 -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 ->
        'a1 tree -> I.t -> __ -> __ -> __ -> 'a2) -> ('a1 tree -> 'a1 tree ->
        key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 tree -> 'a1
        coq_R_add -> 'a2 -> 'a2) -> 'a1 tree -> 'a1 tree -> 'a1 coq_R_add ->
        'a2 **)

    let rec coq_R_add_rec x d f f0 f1 f2 _ _ = function
    | R_add_0 m -> f m __
    | R_add_1 (m, l, y, d', r0, h, _res, r1) ->
      f0 m l y d' r0 h __ __ __ _res r1
        (coq_R_add_rec x d f f0 f1 f2 l _res r1)
    | R_add_2 (m, l, y, d', r0, h) -> f1 m l y d' r0 h __ __ __
    | R_add_3 (m, l, y, d', r0, h, _res, r1) ->
      f2 m l y d' r0 h __ __ __ _res r1
        (coq_R_add_rec x d f f0 f1 f2 r0 _res r1)

    type 'elt coq_R_remove_min =
    | R_remove_min_0 of 'elt tree * key * 'elt * 'elt tree
    | R_remove_min_1 of 'elt tree * key * 'elt * 'elt tree * 'elt tree * 
       key * 'elt * 'elt tree * I.t * ('elt tree * (key * 'elt))
       * 'elt coq_R_remove_min * 'elt tree * (key * 'elt)

    (** val coq_R_remove_min_rect :
        ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> 'a2) -> ('a1 tree -> key
        -> 'a1 -> 'a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __
        -> ('a1 tree * (key * 'a1)) -> 'a1 coq_R_remove_min -> 'a2 -> 'a1
        tree -> (key * 'a1) -> __ -> 'a2) -> 'a1 tree -> key -> 'a1 -> 'a1
        tree -> ('a1 tree * (key * 'a1)) -> 'a1 coq_R_remove_min -> 'a2 **)

    let rec coq_R_remove_min_rect f f0 _ _ _ _ _ = function
    | R_remove_min_0 (l, x, d, r0) -> f l x d r0 __
    | R_remove_min_1 (l, x, d, r0, ll, lx, ld, lr, _x, _res, r1, l', m) ->
      f0 l x d r0 ll lx ld lr _x __ _res r1
        (coq_R_remove_min_rect f f0 ll lx ld lr _res r1) l' m __

    (** val coq_R_remove_min_rec :
        ('a1 tree -> key -> 'a1 -> 'a1 tree -> __ -> 'a2) -> ('a1 tree -> key
        -> 'a1 -> 'a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __
        -> ('a1 tree * (key * 'a1)) -> 'a1 coq_R_remove_min -> 'a2 -> 'a1
        tree -> (key * 'a1) -> __ -> 'a2) -> 'a1 tree -> key -> 'a1 -> 'a1
        tree -> ('a1 tree * (key * 'a1)) -> 'a1 coq_R_remove_min -> 'a2 **)

    let rec coq_R_remove_min_rec f f0 _ _ _ _ _ = function
    | R_remove_min_0 (l, x, d, r0) -> f l x d r0 __
    | R_remove_min_1 (l, x, d, r0, ll, lx, ld, lr, _x, _res, r1, l', m) ->
      f0 l x d r0 ll lx ld lr _x __ _res r1
        (coq_R_remove_min_rec f f0 ll lx ld lr _res r1) l' m __

    type 'elt coq_R_merge =
    | R_merge_0 of 'elt tree * 'elt tree
    | R_merge_1 of 'elt tree * 'elt tree * 'elt tree * key * 'elt * 'elt tree
       * I.t
    | R_merge_2 of 'elt tree * 'elt tree * 'elt tree * key * 'elt * 'elt tree
       * I.t * 'elt tree * key * 'elt * 'elt tree * I.t * 'elt tree
       * (key * 'elt) * key * 'elt

    (** val coq_R_merge_rect :
        ('a1 tree -> 'a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> 'a1
        tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> 'a2) -> ('a1
        tree -> 'a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __
        -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> 'a1 tree ->
        (key * 'a1) -> __ -> key -> 'a1 -> __ -> 'a2) -> 'a1 tree -> 'a1 tree
        -> 'a1 tree -> 'a1 coq_R_merge -> 'a2 **)

    let coq_R_merge_rect f f0 f1 _ _ _ = function
    | R_merge_0 (x, x0) -> f x x0 __
    | R_merge_1 (x, x0, x1, x2, x3, x4, x5) -> f0 x x0 x1 x2 x3 x4 x5 __ __
    | R_merge_2 (x, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12,
                 x13, x14) ->
      f1 x x0 x1 x2 x3 x4 x5 __ x6 x7 x8 x9 x10 __ x11 x12 __ x13 x14 __

    (** val coq_R_merge_rec :
        ('a1 tree -> 'a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> 'a1
        tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> 'a2) -> ('a1
        tree -> 'a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __
        -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> 'a1 tree ->
        (key * 'a1) -> __ -> key -> 'a1 -> __ -> 'a2) -> 'a1 tree -> 'a1 tree
        -> 'a1 tree -> 'a1 coq_R_merge -> 'a2 **)

    let coq_R_merge_rec f f0 f1 _ _ _ = function
    | R_merge_0 (x, x0) -> f x x0 __
    | R_merge_1 (x, x0, x1, x2, x3, x4, x5) -> f0 x x0 x1 x2 x3 x4 x5 __ __
    | R_merge_2 (x, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12,
                 x13, x14) ->
      f1 x x0 x1 x2 x3 x4 x5 __ x6 x7 x8 x9 x10 __ x11 x12 __ x13 x14 __

    type 'elt coq_R_remove =
    | R_remove_0 of 'elt tree
    | R_remove_1 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * 
       I.t * 'elt tree * 'elt coq_R_remove
    | R_remove_2 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
    | R_remove_3 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * 
       I.t * 'elt tree * 'elt coq_R_remove

    (** val coq_R_remove_rect :
        X.t -> ('a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 tree -> 'a1 coq_R_remove
        -> 'a2 -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree ->
        I.t -> __ -> __ -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 tree -> 'a1 coq_R_remove
        -> 'a2 -> 'a2) -> 'a1 tree -> 'a1 tree -> 'a1 coq_R_remove -> 'a2 **)

    let rec coq_R_remove_rect x f f0 f1 f2 _ _ = function
    | R_remove_0 m -> f m __
    | R_remove_1 (m, l, y, d, r0, _x, _res, r1) ->
      f0 m l y d r0 _x __ __ __ _res r1
        (coq_R_remove_rect x f f0 f1 f2 l _res r1)
    | R_remove_2 (m, l, y, d, r0, _x) -> f1 m l y d r0 _x __ __ __
    | R_remove_3 (m, l, y, d, r0, _x, _res, r1) ->
      f2 m l y d r0 _x __ __ __ _res r1
        (coq_R_remove_rect x f f0 f1 f2 r0 _res r1)

    (** val coq_R_remove_rec :
        X.t -> ('a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 tree -> 'a1 coq_R_remove
        -> 'a2 -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree ->
        I.t -> __ -> __ -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 tree -> 'a1 coq_R_remove
        -> 'a2 -> 'a2) -> 'a1 tree -> 'a1 tree -> 'a1 coq_R_remove -> 'a2 **)

    let rec coq_R_remove_rec x f f0 f1 f2 _ _ = function
    | R_remove_0 m -> f m __
    | R_remove_1 (m, l, y, d, r0, _x, _res, r1) ->
      f0 m l y d r0 _x __ __ __ _res r1
        (coq_R_remove_rec x f f0 f1 f2 l _res r1)
    | R_remove_2 (m, l, y, d, r0, _x) -> f1 m l y d r0 _x __ __ __
    | R_remove_3 (m, l, y, d, r0, _x, _res, r1) ->
      f2 m l y d r0 _x __ __ __ _res r1
        (coq_R_remove_rec x f f0 f1 f2 r0 _res r1)

    type 'elt coq_R_concat =
    | R_concat_0 of 'elt tree * 'elt tree
    | R_concat_1 of 'elt tree * 'elt tree * 'elt tree * key * 'elt
       * 'elt tree * I.t
    | R_concat_2 of 'elt tree * 'elt tree * 'elt tree * key * 'elt
       * 'elt tree * I.t * 'elt tree * key * 'elt * 'elt tree * I.t
       * 'elt tree * (key * 'elt)

    (** val coq_R_concat_rect :
        ('a1 tree -> 'a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> 'a1
        tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> 'a2) -> ('a1
        tree -> 'a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __
        -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> 'a1 tree ->
        (key * 'a1) -> __ -> 'a2) -> 'a1 tree -> 'a1 tree -> 'a1 tree -> 'a1
        coq_R_concat -> 'a2 **)

    let coq_R_concat_rect f f0 f1 _ _ _ = function
    | R_concat_0 (x, x0) -> f x x0 __
    | R_concat_1 (x, x0, x1, x2, x3, x4, x5) -> f0 x x0 x1 x2 x3 x4 x5 __ __
    | R_concat_2 (x, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) ->
      f1 x x0 x1 x2 x3 x4 x5 __ x6 x7 x8 x9 x10 __ x11 x12 __

    (** val coq_R_concat_rec :
        ('a1 tree -> 'a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> 'a1
        tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> 'a2) -> ('a1
        tree -> 'a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __
        -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> 'a1 tree ->
        (key * 'a1) -> __ -> 'a2) -> 'a1 tree -> 'a1 tree -> 'a1 tree -> 'a1
        coq_R_concat -> 'a2 **)

    let coq_R_concat_rec f f0 f1 _ _ _ = function
    | R_concat_0 (x, x0) -> f x x0 __
    | R_concat_1 (x, x0, x1, x2, x3, x4, x5) -> f0 x x0 x1 x2 x3 x4 x5 __ __
    | R_concat_2 (x, x0, x1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12) ->
      f1 x x0 x1 x2 x3 x4 x5 __ x6 x7 x8 x9 x10 __ x11 x12 __

    type 'elt coq_R_split =
    | R_split_0 of 'elt tree
    | R_split_1 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
       * 'elt triple * 'elt coq_R_split * 'elt tree * 'elt option * 'elt tree
    | R_split_2 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
    | R_split_3 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * I.t
       * 'elt triple * 'elt coq_R_split * 'elt tree * 'elt option * 'elt tree

    (** val coq_R_split_rect :
        X.t -> ('a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 triple -> 'a1 coq_R_split
        -> 'a2 -> 'a1 tree -> 'a1 option -> 'a1 tree -> __ -> 'a2) -> ('a1
        tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> __
        -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t ->
        __ -> __ -> __ -> 'a1 triple -> 'a1 coq_R_split -> 'a2 -> 'a1 tree ->
        'a1 option -> 'a1 tree -> __ -> 'a2) -> 'a1 tree -> 'a1 triple -> 'a1
        coq_R_split -> 'a2 **)

    let rec coq_R_split_rect x f f0 f1 f2 _ _ = function
    | R_split_0 m -> f m __
    | R_split_1 (m, l, y, d, r0, _x, _res, r1, ll, o, rl) ->
      f0 m l y d r0 _x __ __ __ _res r1
        (coq_R_split_rect x f f0 f1 f2 l _res r1) ll o rl __
    | R_split_2 (m, l, y, d, r0, _x) -> f1 m l y d r0 _x __ __ __
    | R_split_3 (m, l, y, d, r0, _x, _res, r1, rl, o, rr) ->
      f2 m l y d r0 _x __ __ __ _res r1
        (coq_R_split_rect x f f0 f1 f2 r0 _res r1) rl o rr __

    (** val coq_R_split_rec :
        X.t -> ('a1 tree -> __ -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1
        -> 'a1 tree -> I.t -> __ -> __ -> __ -> 'a1 triple -> 'a1 coq_R_split
        -> 'a2 -> 'a1 tree -> 'a1 option -> 'a1 tree -> __ -> 'a2) -> ('a1
        tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> __ -> __
        -> 'a2) -> ('a1 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t ->
        __ -> __ -> __ -> 'a1 triple -> 'a1 coq_R_split -> 'a2 -> 'a1 tree ->
        'a1 option -> 'a1 tree -> __ -> 'a2) -> 'a1 tree -> 'a1 triple -> 'a1
        coq_R_split -> 'a2 **)

    let rec coq_R_split_rec x f f0 f1 f2 _ _ = function
    | R_split_0 m -> f m __
    | R_split_1 (m, l, y, d, r0, _x, _res, r1, ll, o, rl) ->
      f0 m l y d r0 _x __ __ __ _res r1
        (coq_R_split_rec x f f0 f1 f2 l _res r1) ll o rl __
    | R_split_2 (m, l, y, d, r0, _x) -> f1 m l y d r0 _x __ __ __
    | R_split_3 (m, l, y, d, r0, _x, _res, r1, rl, o, rr) ->
      f2 m l y d r0 _x __ __ __ _res r1
        (coq_R_split_rec x f f0 f1 f2 r0 _res r1) rl o rr __

    type ('elt, 'x) coq_R_map_option =
    | R_map_option_0 of 'elt tree
    | R_map_option_1 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * 
       I.t * 'x * 'x tree * ('elt, 'x) coq_R_map_option * 'x tree
       * ('elt, 'x) coq_R_map_option
    | R_map_option_2 of 'elt tree * 'elt tree * key * 'elt * 'elt tree * 
       I.t * 'x tree * ('elt, 'x) coq_R_map_option * 'x tree
       * ('elt, 'x) coq_R_map_option

    (** val coq_R_map_option_rect :
        (key -> 'a1 -> 'a2 option) -> ('a1 tree -> __ -> 'a3) -> ('a1 tree ->
        'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> 'a2 -> __ -> 'a2
        tree -> ('a1, 'a2) coq_R_map_option -> 'a3 -> 'a2 tree -> ('a1, 'a2)
        coq_R_map_option -> 'a3 -> 'a3) -> ('a1 tree -> 'a1 tree -> key ->
        'a1 -> 'a1 tree -> I.t -> __ -> __ -> 'a2 tree -> ('a1, 'a2)
        coq_R_map_option -> 'a3 -> 'a2 tree -> ('a1, 'a2) coq_R_map_option ->
        'a3 -> 'a3) -> 'a1 tree -> 'a2 tree -> ('a1, 'a2) coq_R_map_option ->
        'a3 **)

    let rec coq_R_map_option_rect f f0 f1 f2 _ _ = function
    | R_map_option_0 m -> f0 m __
    | R_map_option_1 (m, l, x, d, r0, _x, d', _res0, r1, _res, r2) ->
      f1 m l x d r0 _x __ d' __ _res0 r1
        (coq_R_map_option_rect f f0 f1 f2 l _res0 r1) _res r2
        (coq_R_map_option_rect f f0 f1 f2 r0 _res r2)
    | R_map_option_2 (m, l, x, d, r0, _x, _res0, r1, _res, r2) ->
      f2 m l x d r0 _x __ __ _res0 r1
        (coq_R_map_option_rect f f0 f1 f2 l _res0 r1) _res r2
        (coq_R_map_option_rect f f0 f1 f2 r0 _res r2)

    (** val coq_R_map_option_rec :
        (key -> 'a1 -> 'a2 option) -> ('a1 tree -> __ -> 'a3) -> ('a1 tree ->
        'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> 'a2 -> __ -> 'a2
        tree -> ('a1, 'a2) coq_R_map_option -> 'a3 -> 'a2 tree -> ('a1, 'a2)
        coq_R_map_option -> 'a3 -> 'a3) -> ('a1 tree -> 'a1 tree -> key ->
        'a1 -> 'a1 tree -> I.t -> __ -> __ -> 'a2 tree -> ('a1, 'a2)
        coq_R_map_option -> 'a3 -> 'a2 tree -> ('a1, 'a2) coq_R_map_option ->
        'a3 -> 'a3) -> 'a1 tree -> 'a2 tree -> ('a1, 'a2) coq_R_map_option ->
        'a3 **)

    let rec coq_R_map_option_rec f f0 f1 f2 _ _ = function
    | R_map_option_0 m -> f0 m __
    | R_map_option_1 (m, l, x, d, r0, _x, d', _res0, r1, _res, r2) ->
      f1 m l x d r0 _x __ d' __ _res0 r1
        (coq_R_map_option_rec f f0 f1 f2 l _res0 r1) _res r2
        (coq_R_map_option_rec f f0 f1 f2 r0 _res r2)
    | R_map_option_2 (m, l, x, d, r0, _x, _res0, r1, _res, r2) ->
      f2 m l x d r0 _x __ __ _res0 r1
        (coq_R_map_option_rec f f0 f1 f2 l _res0 r1) _res r2
        (coq_R_map_option_rec f f0 f1 f2 r0 _res r2)

    type ('elt, 'x0, 'x) coq_R_map2_opt =
    | R_map2_opt_0 of 'elt tree * 'x0 tree
    | R_map2_opt_1 of 'elt tree * 'x0 tree * 'elt tree * key * 'elt
       * 'elt tree * I.t
    | R_map2_opt_2 of 'elt tree * 'x0 tree * 'elt tree * key * 'elt
       * 'elt tree * I.t * 'x0 tree * key * 'x0 * 'x0 tree * I.t * 'x0 tree
       * 'x0 option * 'x0 tree * 'x * 'x tree
       * ('elt, 'x0, 'x) coq_R_map2_opt * 'x tree
       * ('elt, 'x0, 'x) coq_R_map2_opt
    | R_map2_opt_3 of 'elt tree * 'x0 tree * 'elt tree * key * 'elt
       * 'elt tree * I.t * 'x0 tree * key * 'x0 * 'x0 tree * I.t * 'x0 tree
       * 'x0 option * 'x0 tree * 'x tree * ('elt, 'x0, 'x) coq_R_map2_opt
       * 'x tree * ('elt, 'x0, 'x) coq_R_map2_opt

    (** val coq_R_map2_opt_rect :
        (key -> 'a1 -> 'a2 option -> 'a3 option) -> ('a1 tree -> 'a3 tree) ->
        ('a2 tree -> 'a3 tree) -> ('a1 tree -> 'a2 tree -> __ -> 'a4) -> ('a1
        tree -> 'a2 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __
        -> __ -> 'a4) -> ('a1 tree -> 'a2 tree -> 'a1 tree -> key -> 'a1 ->
        'a1 tree -> I.t -> __ -> 'a2 tree -> key -> 'a2 -> 'a2 tree -> I.t ->
        __ -> 'a2 tree -> 'a2 option -> 'a2 tree -> __ -> 'a3 -> __ -> 'a3
        tree -> ('a1, 'a2, 'a3) coq_R_map2_opt -> 'a4 -> 'a3 tree -> ('a1,
        'a2, 'a3) coq_R_map2_opt -> 'a4 -> 'a4) -> ('a1 tree -> 'a2 tree ->
        'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> 'a2 tree -> key ->
        'a2 -> 'a2 tree -> I.t -> __ -> 'a2 tree -> 'a2 option -> 'a2 tree ->
        __ -> __ -> 'a3 tree -> ('a1, 'a2, 'a3) coq_R_map2_opt -> 'a4 -> 'a3
        tree -> ('a1, 'a2, 'a3) coq_R_map2_opt -> 'a4 -> 'a4) -> 'a1 tree ->
        'a2 tree -> 'a3 tree -> ('a1, 'a2, 'a3) coq_R_map2_opt -> 'a4 **)

    let rec coq_R_map2_opt_rect f mapl mapr f0 f1 f2 f3 _ _ _ = function
    | R_map2_opt_0 (m1, m2) -> f0 m1 m2 __
    | R_map2_opt_1 (m1, m2, l1, x1, d1, r1, _x) ->
      f1 m1 m2 l1 x1 d1 r1 _x __ __
    | R_map2_opt_2 (m1, m2, l1, x1, d1, r1, _x, _x0, _x1, _x2, _x3, _x4, l2',
                    o2, r2', e, _res0, r0, _res, r2) ->
      f2 m1 m2 l1 x1 d1 r1 _x __ _x0 _x1 _x2 _x3 _x4 __ l2' o2 r2' __ e __
        _res0 r0
        (coq_R_map2_opt_rect f mapl mapr f0 f1 f2 f3 l1 l2' _res0 r0) _res r2
        (coq_R_map2_opt_rect f mapl mapr f0 f1 f2 f3 r1 r2' _res r2)
    | R_map2_opt_3 (m1, m2, l1, x1, d1, r1, _x, _x0, _x1, _x2, _x3, _x4, l2',
                    o2, r2', _res0, r0, _res, r2) ->
      f3 m1 m2 l1 x1 d1 r1 _x __ _x0 _x1 _x2 _x3 _x4 __ l2' o2 r2' __ __
        _res0 r0
        (coq_R_map2_opt_rect f mapl mapr f0 f1 f2 f3 l1 l2' _res0 r0) _res r2
        (coq_R_map2_opt_rect f mapl mapr f0 f1 f2 f3 r1 r2' _res r2)

    (** val coq_R_map2_opt_rec :
        (key -> 'a1 -> 'a2 option -> 'a3 option) -> ('a1 tree -> 'a3 tree) ->
        ('a2 tree -> 'a3 tree) -> ('a1 tree -> 'a2 tree -> __ -> 'a4) -> ('a1
        tree -> 'a2 tree -> 'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __
        -> __ -> 'a4) -> ('a1 tree -> 'a2 tree -> 'a1 tree -> key -> 'a1 ->
        'a1 tree -> I.t -> __ -> 'a2 tree -> key -> 'a2 -> 'a2 tree -> I.t ->
        __ -> 'a2 tree -> 'a2 option -> 'a2 tree -> __ -> 'a3 -> __ -> 'a3
        tree -> ('a1, 'a2, 'a3) coq_R_map2_opt -> 'a4 -> 'a3 tree -> ('a1,
        'a2, 'a3) coq_R_map2_opt -> 'a4 -> 'a4) -> ('a1 tree -> 'a2 tree ->
        'a1 tree -> key -> 'a1 -> 'a1 tree -> I.t -> __ -> 'a2 tree -> key ->
        'a2 -> 'a2 tree -> I.t -> __ -> 'a2 tree -> 'a2 option -> 'a2 tree ->
        __ -> __ -> 'a3 tree -> ('a1, 'a2, 'a3) coq_R_map2_opt -> 'a4 -> 'a3
        tree -> ('a1, 'a2, 'a3) coq_R_map2_opt -> 'a4 -> 'a4) -> 'a1 tree ->
        'a2 tree -> 'a3 tree -> ('a1, 'a2, 'a3) coq_R_map2_opt -> 'a4 **)

    let rec coq_R_map2_opt_rec f mapl mapr f0 f1 f2 f3 _ _ _ = function
    | R_map2_opt_0 (m1, m2) -> f0 m1 m2 __
    | R_map2_opt_1 (m1, m2, l1, x1, d1, r1, _x) ->
      f1 m1 m2 l1 x1 d1 r1 _x __ __
    | R_map2_opt_2 (m1, m2, l1, x1, d1, r1, _x, _x0, _x1, _x2, _x3, _x4, l2',
                    o2, r2', e, _res0, r0, _res, r2) ->
      f2 m1 m2 l1 x1 d1 r1 _x __ _x0 _x1 _x2 _x3 _x4 __ l2' o2 r2' __ e __
        _res0 r0 (coq_R_map2_opt_rec f mapl mapr f0 f1 f2 f3 l1 l2' _res0 r0)
        _res r2 (coq_R_map2_opt_rec f mapl mapr f0 f1 f2 f3 r1 r2' _res r2)
    | R_map2_opt_3 (m1, m2, l1, x1, d1, r1, _x, _x0, _x1, _x2, _x3, _x4, l2',
                    o2, r2', _res0, r0, _res, r2) ->
      f3 m1 m2 l1 x1 d1 r1 _x __ _x0 _x1 _x2 _x3 _x4 __ l2' o2 r2' __ __
        _res0 r0 (coq_R_map2_opt_rec f mapl mapr f0 f1 f2 f3 l1 l2' _res0 r0)
        _res r2 (coq_R_map2_opt_rec f mapl mapr f0 f1 f2 f3 r1 r2' _res r2)

    (** val fold' : (key -> 'a1 -> 'a2 -> 'a2) -> 'a1 tree -> 'a2 -> 'a2 **)

    let fold' f s =
      L.fold f (elements s)

    (** val flatten_e : 'a1 enumeration -> (key * 'a1) list **)

    let rec flatten_e = function
    | End -> Nil
    | More (x, e0, t0, r) -> Cons ((x, e0), (app (elements t0) (flatten_e r)))
   end
 end

module IntMake =
 functor (I:Int) ->
 functor (X:OrderedType) ->
 struct
  module E = X

  module Raw = Coq_Raw(I)(X)

  type 'elt bst =
    'elt Raw.tree
    (* singleton inductive, whose constructor was Bst *)

  (** val this : 'a1 bst -> 'a1 Raw.tree **)

  let this b =
    b

  type 'elt t = 'elt bst

  type key = E.t

  (** val empty : 'a1 t **)

  let empty =
    Raw.empty

  (** val is_empty : 'a1 t -> bool **)

  let is_empty m =
    Raw.is_empty (this m)

  (** val add : key -> 'a1 -> 'a1 t -> 'a1 t **)

  let add x e m =
    Raw.add x e (this m)

  (** val remove : key -> 'a1 t -> 'a1 t **)

  let remove x m =
    Raw.remove x (this m)

  (** val mem : key -> 'a1 t -> bool **)

  let mem x m =
    Raw.mem x (this m)

  (** val find : key -> 'a1 t -> 'a1 option **)

  let find x m =
    Raw.find x (this m)

  (** val map : ('a1 -> 'a2) -> 'a1 t -> 'a2 t **)

  let map f m =
    Raw.map f (this m)

  (** val mapi : (key -> 'a1 -> 'a2) -> 'a1 t -> 'a2 t **)

  let mapi f m =
    Raw.mapi f (this m)

  (** val map2 :
      ('a1 option -> 'a2 option -> 'a3 option) -> 'a1 t -> 'a2 t -> 'a3 t **)

  let map2 f m m' =
    Raw.map2 f (this m) (this m')

  (** val elements : 'a1 t -> (key * 'a1) list **)

  let elements m =
    Raw.elements (this m)

  (** val cardinal : 'a1 t -> nat **)

  let cardinal m =
    Raw.cardinal (this m)

  (** val fold : (key -> 'a1 -> 'a2 -> 'a2) -> 'a1 t -> 'a2 -> 'a2 **)

  let fold f m i =
    Raw.fold f (this m) i

  (** val equal : ('a1 -> 'a1 -> bool) -> 'a1 t -> 'a1 t -> bool **)

  let equal cmp m m' =
    Raw.equal cmp (this m) (this m')
 end

module Make =
 functor (X:OrderedType) ->
 IntMake(Z_as_Int)(X)

module IntOrderedType =
 struct
  type t = Uint63.t

  (** val compare : Uint63.t -> Uint63.t -> Uint63.t compare1 **)

  let compare x y =
    if ltb0 x y then LT else if eqb0 x y then EQ0 else GT

  (** val eq_dec : Uint63.t -> Uint63.t -> sumbool **)

  let eq_dec x y =
    if eqb0 x y then Left else Right
 end

module Map = Make(IntOrderedType)

type 'a array = ('a Map.t * 'a) * Uint63.t

(** val make : Uint63.t -> 'a1 -> 'a1 array **)

let make l d =
  ((Map.empty, d), l)

module Coq__2 = struct
 (** val get : 'a1 array -> Uint63.t -> 'a1 **)
 let get t0 i =
   let (td, l) = t0 in
   let (t1, d) = td in
   if ltb0 i l then (match Map.find i t1 with
                     | Some x -> x
                     | None -> d) else d
end
include Coq__2

(** val default : 'a1 array -> 'a1 **)

let default = function
| (td, _) -> let (_, d) = td in d

(** val set : 'a1 array -> Uint63.t -> 'a1 -> 'a1 array **)

let set t0 i a =
  let (td, l) = t0 in
  if leb0 l i then t0 else let (t1, d) = td in (((Map.add i a t1), d), l)

(** val length0 : 'a1 array -> Uint63.t **)

let length0 = function
| (_, l) -> l

(** val iter_int63_aux : nat -> Uint63.t -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)

let rec iter_int63_aux n0 i f =
  match n0 with
  | O -> (fun x -> x)
  | S n1 ->
    if eqb0 i (Uint63.of_int (0))
    then (fun x -> x)
    else let g = iter_int63_aux n1 (lsr0 i (Uint63.of_int (1))) f in
         (fun x -> if bit i (Uint63.of_int (0)) then f (g (g x)) else g (g x))

(** val iter_int63 : Uint63.t -> ('a1 -> 'a1) -> 'a1 -> 'a1 **)

let iter_int63 i f x =
  iter_int63_aux size i f x

(** val foldi :
    (Uint63.t -> 'a1 -> 'a1) -> Uint63.t -> Uint63.t -> 'a1 -> 'a1 **)

let foldi f from to0 a =
  if leb0 to0 from
  then a
  else let (_, r) =
         iter_int63 (sub0 to0 from) (fun jy ->
           let (j, y) = jy in ((add0 j (Uint63.of_int (1))), (f j y))) (from,
           a)
       in
       r

(** val to_list : 'a1 array -> 'a1 list **)

let to_list t0 =
  rev
    (foldi (fun i l -> Cons ((get t0 i), l)) (Uint63.of_int (0)) (length0 t0)
      Nil)

(** val amapi : (Uint63.t -> 'a1 -> 'a2) -> 'a1 array -> 'a2 array **)

let amapi f t0 =
  let l = length0 t0 in
  foldi (fun i tb -> set tb i (f i (get t0 i))) (Uint63.of_int (0)) l
    (make l (f l (default t0)))

(** val amap : ('a1 -> 'a2) -> 'a1 array -> 'a2 array **)

let amap f =
  amapi (fun _ -> f)

(** val afold_left : 'a1 -> ('a1 -> 'a1 -> 'a1) -> 'a1 array -> 'a1 **)

let afold_left default0 oP v =
  if eqb0 (length0 v) (Uint63.of_int (0))
  then default0
  else foldi (fun i a -> oP a (get v i)) (Uint63.of_int (1)) (length0 v)
         (get v (Uint63.of_int (0)))

(** val afold_right : 'a1 -> ('a1 -> 'a1 -> 'a1) -> 'a1 array -> 'a1 **)

let afold_right default0 oP v =
  if eqb0 (length0 v) (Uint63.of_int (0))
  then default0
  else foldi (fun i ->
         oP (get v (sub0 (sub0 (length0 v) (Uint63.of_int (1))) i)))
         (Uint63.of_int (1)) (length0 v)
         (get v (sub0 (length0 v) (Uint63.of_int (1))))

(** val aexistsbi : (Uint63.t -> 'a1 -> bool) -> 'a1 array -> bool **)

let aexistsbi f t0 =
  afold_left false (fun b1 b2 -> if b1 then true else b2) (amapi f t0)

(** val aforallbi : (Uint63.t -> 'a1 -> bool) -> 'a1 array -> bool **)

let aforallbi f t0 =
  afold_left true (fun b1 b2 -> if b1 then b2 else false) (amapi f t0)

(** val forallb2 : ('a1 -> 'a2 -> bool) -> 'a1 list -> 'a2 list -> bool **)

let rec forallb2 f l1 l2 =
  match l1 with
  | Nil -> (match l2 with
            | Nil -> true
            | Cons (_, _) -> false)
  | Cons (a, l3) ->
    (match l2 with
     | Nil -> false
     | Cons (b, l4) -> if f a b then forallb2 f l3 l4 else false)

module RAWBITVECTOR_LIST =
 struct
  (** val beq_list : bool list -> bool list -> bool **)

  let rec beq_list l m =
    match l with
    | Nil -> (match m with
              | Nil -> true
              | Cons (_, _) -> false)
    | Cons (x, l') ->
      (match m with
       | Nil -> false
       | Cons (y, m') -> if eqb x y then beq_list l' m' else false)

  (** val pow2 : nat -> nat **)

  let rec pow2 = function
  | O -> S O
  | S n' -> mul (S (S O)) (pow2 n')

  (** val _list2nat_be : bool list -> nat -> nat -> nat **)

  let rec _list2nat_be a n0 i =
    match a with
    | Nil -> n0
    | Cons (xa, xsa) ->
      if xa
      then _list2nat_be xsa (add n0 (pow2 i)) (add i (S O))
      else _list2nat_be xsa n0 (add i (S O))

  (** val list2nat_be : bool list -> nat **)

  let list2nat_be a =
    _list2nat_be a O O
 end

module Lit =
 struct
  (** val is_pos : Uint63.t -> bool **)

  let is_pos =
    is_even

  (** val blit : Uint63.t -> Uint63.t **)

  let blit l =
    lsr0 l (Uint63.of_int (1))

  (** val lit : Uint63.t -> Uint63.t **)

  let lit x =
    lsl0 x (Uint63.of_int (1))

  (** val neg : Uint63.t -> Uint63.t **)

  let neg l =
    lxor0 l (Uint63.of_int (1))

  (** val nlit : Uint63.t -> Uint63.t **)

  let nlit x =
    neg (lit x)

  (** val _true : Uint63.t **)

  let _true =
    (Uint63.of_int (0))

  (** val _false : Uint63.t **)

  let _false =
    (Uint63.of_int (2))
 end

module C =
 struct
  type t = Uint63.t list

  (** val _true : t **)

  let _true =
    Cons (Lit._true, Nil)

  (** val is_false : t -> bool **)

  let is_false = function
  | Nil -> true
  | Cons (_, _) -> false

  (** val or_aux : (t -> t -> t) -> Uint63.t -> t -> t -> Uint63.t list **)

  let rec or_aux or0 l1 c1 c2 = match c2 with
  | Nil -> Cons (l1, c1)
  | Cons (l2, c2') ->
    (match compare0 l1 l2 with
     | 0 -> Cons (l1, (or0 c1 c2'))
     | (-1) -> Cons (l1, (or0 c1 c2))
     | 1 -> Cons (l2, (or_aux or0 l1 c1 c2')))

  (** val coq_or : t -> t -> t **)

  let rec coq_or c1 c2 =
    match c1 with
    | Nil -> c2
    | Cons (l1, c3) ->
      (match c2 with
       | Nil -> c1
       | Cons (l2, c2') ->
         (match compare0 l1 l2 with
          | 0 -> Cons (l1, (coq_or c3 c2'))
          | (-1) -> Cons (l1, (coq_or c3 c2))
          | 1 -> Cons (l2, (or_aux coq_or l1 c3 c2'))))

  (** val resolve_aux : (t -> t -> t) -> Uint63.t -> t -> t -> t **)

  let rec resolve_aux resolve0 l1 c1 c2 = match c2 with
  | Nil -> _true
  | Cons (l2, c2') ->
    (match compare0 l1 l2 with
     | 0 -> Cons (l1, (resolve0 c1 c2'))
     | (-1) ->
       if eqb0 (lxor0 l1 l2) (Uint63.of_int (1))
       then coq_or c1 c2'
       else Cons (l1, (resolve0 c1 c2))
     | 1 ->
       if eqb0 (lxor0 l1 l2) (Uint63.of_int (1))
       then coq_or c1 c2'
       else Cons (l2, (resolve_aux resolve0 l1 c1 c2')))

  (** val resolve : t -> t -> t **)

  let rec resolve c1 c2 =
    match c1 with
    | Nil -> _true
    | Cons (l1, c3) ->
      (match c2 with
       | Nil -> _true
       | Cons (l2, c2') ->
         (match compare0 l1 l2 with
          | 0 -> Cons (l1, (resolve c3 c2'))
          | (-1) ->
            if eqb0 (lxor0 l1 l2) (Uint63.of_int (1))
            then coq_or c3 c2'
            else Cons (l1, (resolve c3 c2))
          | 1 ->
            if eqb0 (lxor0 l1 l2) (Uint63.of_int (1))
            then coq_or c3 c2'
            else Cons (l2, (resolve_aux resolve l1 c3 c2'))))
 end

module S =
 struct
  type t = C.t array

  (** val get : t -> Uint63.t -> C.t **)

  let get =
    get

  (** val internal_set : t -> Uint63.t -> C.t -> t **)

  let internal_set =
    set

  (** val make : Uint63.t -> t **)

  let make nclauses =
    make nclauses C._true

  (** val insert_no_simpl : Uint63.t -> Uint63.t list -> Uint63.t list **)

  let rec insert_no_simpl l1 c = match c with
  | Nil -> Cons (l1, Nil)
  | Cons (l2, c') ->
    (match compare0 l1 l2 with
     | 0 -> c
     | (-1) -> Cons (l1, c)
     | 1 -> Cons (l2, (insert_no_simpl l1 c')))

  (** val insert_keep : Uint63.t -> Uint63.t list -> Uint63.t list **)

  let rec insert_keep l1 c = match c with
  | Nil -> Cons (l1, Nil)
  | Cons (l2, c') ->
    (match compare0 l1 l2 with
     | 1 -> Cons (l2, (insert_keep l1 c'))
     | _ -> Cons (l1, c))

  (** val sort : Uint63.t list -> Uint63.t list **)

  let rec sort = function
  | Nil -> Nil
  | Cons (l1, c0) -> insert_no_simpl l1 (sort c0)

  (** val sort_keep : Uint63.t list -> Uint63.t list **)

  let rec sort_keep = function
  | Nil -> Nil
  | Cons (l1, c0) -> insert_keep l1 (sort_keep c0)

  (** val set_clause : t -> Uint63.t -> C.t -> t **)

  let set_clause s pos c =
    set s pos (sort c)

  (** val set_clause_keep : t -> Uint63.t -> C.t -> t **)

  let set_clause_keep s pos c =
    set s pos (sort_keep c)

  (** val set_resolve : t -> Uint63.t -> Uint63.t array -> t **)

  let set_resolve s pos r =
    let len = length0 r in
    if eqb0 len (Uint63.of_int (0))
    then s
    else let c =
           foldi (fun i c' -> C.resolve (get s (Coq__2.get r i)) c')
             (Uint63.of_int (1)) len
             (get s (Coq__2.get r (Uint63.of_int (0))))
         in
         internal_set s pos c

  (** val subclause : Uint63.t list -> Uint63.t list -> bool **)

  let subclause cl1 cl2 =
    forallb (fun l1 ->
      if if eqb0 l1 Lit._false then true else eqb0 l1 (Lit.neg Lit._true)
      then true
      else existsb (fun l2 -> eqb0 l1 l2) cl2) cl1

  (** val check_weaken : t -> Uint63.t -> Uint63.t list -> C.t **)

  let check_weaken s cid cl =
    if subclause (get s cid) cl then cl else C._true

  (** val set_weaken : t -> Uint63.t -> Uint63.t -> Uint63.t list -> t **)

  let set_weaken s pos cid cl =
    set_clause_keep s pos (check_weaken s cid cl)
 end

module Form =
 struct
  type form =
  | Fatom of Uint63.t
  | Ftrue
  | Ffalse
  | Fnot2 of Uint63.t * Uint63.t
  | Fand of Uint63.t array
  | For of Uint63.t array
  | Fimp of Uint63.t array
  | Fxor of Uint63.t * Uint63.t
  | Fiff of Uint63.t * Uint63.t
  | Fite of Uint63.t * Uint63.t * Uint63.t
  | FbbT of Uint63.t * Uint63.t list

  (** val is_Ftrue : form -> bool **)

  let is_Ftrue = function
  | Ftrue -> true
  | _ -> false

  (** val is_Ffalse : form -> bool **)

  let is_Ffalse = function
  | Ffalse -> true
  | _ -> false

  (** val lt_form : Uint63.t -> form -> bool **)

  let lt_form i = function
  | Fnot2 (_, l) -> ltb0 (Lit.blit l) i
  | Fand args -> aforallbi (fun _ l -> ltb0 (Lit.blit l) i) args
  | For args -> aforallbi (fun _ l -> ltb0 (Lit.blit l) i) args
  | Fimp args -> aforallbi (fun _ l -> ltb0 (Lit.blit l) i) args
  | Fxor (a, b) -> if ltb0 (Lit.blit a) i then ltb0 (Lit.blit b) i else false
  | Fiff (a, b) -> if ltb0 (Lit.blit a) i then ltb0 (Lit.blit b) i else false
  | Fite (a, b, c) ->
    if if ltb0 (Lit.blit a) i then ltb0 (Lit.blit b) i else false
    then ltb0 (Lit.blit c) i
    else false
  | FbbT (_, ls) -> forallb (fun l -> ltb0 (Lit.blit l) i) ls
  | _ -> true

  (** val wf : form array -> bool **)

  let wf t_form =
    aforallbi lt_form t_form

  (** val check_form : form array -> bool **)

  let check_form t_form =
    if if if is_Ftrue (default t_form)
          then is_Ftrue (get t_form (Uint63.of_int (0)))
          else false
       then is_Ffalse (get t_form (Uint63.of_int (1)))
       else false
    then wf t_form
    else false
 end

module Typ =
 struct
  type coq_type =
  | TFArray of coq_type * coq_type
  | Tindex of n
  | TZ
  | Tbool
  | Tpositive
  | TBV of n

  (** val eqb : coq_type -> coq_type -> bool **)

  let rec eqb a b =
    match a with
    | TFArray (k1, e1) ->
      (match b with
       | TFArray (k2, e2) -> if eqb k1 k2 then eqb e1 e2 else false
       | _ -> false)
    | Tindex i -> (match b with
                   | Tindex j -> N.eqb i j
                   | _ -> false)
    | TZ -> (match b with
             | TZ -> true
             | _ -> false)
    | Tbool -> (match b with
                | Tbool -> true
                | _ -> false)
    | Tpositive -> (match b with
                    | Tpositive -> true
                    | _ -> false)
    | TBV n0 -> (match b with
                 | TBV m -> N.eqb n0 m
                 | _ -> false)
 end

(** val list_beq : ('a1 -> 'a1 -> bool) -> 'a1 list -> 'a1 list -> bool **)

let rec list_beq eq_A x y =
  match x with
  | Nil -> (match y with
            | Nil -> true
            | Cons (_, _) -> false)
  | Cons (x0, x1) ->
    (match y with
     | Nil -> false
     | Cons (x2, x3) -> if eq_A x0 x2 then list_beq eq_A x1 x3 else false)

module Atom =
 struct
  type cop =
  | CO_xH
  | CO_Z0
  | CO_BV of bool list * n

  type unop =
  | UO_xO
  | UO_xI
  | UO_Zpos
  | UO_Zneg
  | UO_Zopp
  | UO_BVbitOf of n * nat
  | UO_BVnot of n
  | UO_BVneg of n
  | UO_BVextr of n * n * n
  | UO_BVzextn of n * n
  | UO_BVsextn of n * n

  type binop =
  | BO_Zplus
  | BO_Zminus
  | BO_Zmult
  | BO_Zlt
  | BO_Zle
  | BO_Zge
  | BO_Zgt
  | BO_eq of Typ.coq_type
  | BO_BVand of n
  | BO_BVor of n
  | BO_BVxor of n
  | BO_BVadd of n
  | BO_BVmult of n
  | BO_BVult of n
  | BO_BVslt of n
  | BO_BVconcat of n * n
  | BO_BVshl of n
  | BO_BVshr of n
  | BO_select of Typ.coq_type * Typ.coq_type
  | BO_diffarray of Typ.coq_type * Typ.coq_type

  type nop =
    Typ.coq_type
    (* singleton inductive, whose constructor was NO_distinct *)

  type terop =
  | TO_store of Typ.coq_type * Typ.coq_type

  type atom =
  | Acop of cop
  | Auop of unop * Uint63.t
  | Abop of binop * Uint63.t * Uint63.t
  | Atop of terop * Uint63.t * Uint63.t * Uint63.t
  | Anop of nop * Uint63.t list
  | Aapp of Uint63.t * Uint63.t list

  (** val cop_eqb : cop -> cop -> bool **)

  let cop_eqb o o' =
    match o with
    | CO_xH -> (match o' with
                | CO_xH -> true
                | _ -> false)
    | CO_Z0 -> (match o' with
                | CO_Z0 -> true
                | _ -> false)
    | CO_BV (bv, s) ->
      (match o' with
       | CO_BV (bv', s') ->
         if N.eqb s s' then RAWBITVECTOR_LIST.beq_list bv bv' else false
       | _ -> false)

  (** val uop_eqb : unop -> unop -> bool **)

  let uop_eqb o o' =
    match o with
    | UO_xO -> (match o' with
                | UO_xO -> true
                | _ -> false)
    | UO_xI -> (match o' with
                | UO_xI -> true
                | _ -> false)
    | UO_Zpos -> (match o' with
                  | UO_Zpos -> true
                  | _ -> false)
    | UO_Zneg -> (match o' with
                  | UO_Zneg -> true
                  | _ -> false)
    | UO_Zopp -> (match o' with
                  | UO_Zopp -> true
                  | _ -> false)
    | UO_BVbitOf (s1, n0) ->
      (match o' with
       | UO_BVbitOf (s2, m) -> if Nat.eqb n0 m then N.eqb s1 s2 else false
       | _ -> false)
    | UO_BVnot s1 -> (match o' with
                      | UO_BVnot s2 -> N.eqb s1 s2
                      | _ -> false)
    | UO_BVneg s1 -> (match o' with
                      | UO_BVneg s2 -> N.eqb s1 s2
                      | _ -> false)
    | UO_BVextr (i0, n00, n01) ->
      (match o' with
       | UO_BVextr (i1, n10, n11) ->
         if if N.eqb i0 i1 then N.eqb n00 n10 else false
         then N.eqb n01 n11
         else false
       | _ -> false)
    | UO_BVzextn (s1, i1) ->
      (match o' with
       | UO_BVzextn (s2, i2) -> if N.eqb s1 s2 then N.eqb i1 i2 else false
       | _ -> false)
    | UO_BVsextn (s1, i1) ->
      (match o' with
       | UO_BVsextn (s2, i2) -> if N.eqb s1 s2 then N.eqb i1 i2 else false
       | _ -> false)

  (** val bop_eqb : binop -> binop -> bool **)

  let bop_eqb o o' =
    match o with
    | BO_Zplus -> (match o' with
                   | BO_Zplus -> true
                   | _ -> false)
    | BO_Zminus -> (match o' with
                    | BO_Zminus -> true
                    | _ -> false)
    | BO_Zmult -> (match o' with
                   | BO_Zmult -> true
                   | _ -> false)
    | BO_Zlt -> (match o' with
                 | BO_Zlt -> true
                 | _ -> false)
    | BO_Zle -> (match o' with
                 | BO_Zle -> true
                 | _ -> false)
    | BO_Zge -> (match o' with
                 | BO_Zge -> true
                 | _ -> false)
    | BO_Zgt -> (match o' with
                 | BO_Zgt -> true
                 | _ -> false)
    | BO_eq t0 -> (match o' with
                   | BO_eq t' -> Typ.eqb t0 t'
                   | _ -> false)
    | BO_BVand s1 -> (match o' with
                      | BO_BVand s2 -> N.eqb s1 s2
                      | _ -> false)
    | BO_BVor s1 -> (match o' with
                     | BO_BVor s2 -> N.eqb s1 s2
                     | _ -> false)
    | BO_BVxor s1 -> (match o' with
                      | BO_BVxor s2 -> N.eqb s1 s2
                      | _ -> false)
    | BO_BVadd s1 -> (match o' with
                      | BO_BVadd s2 -> N.eqb s1 s2
                      | _ -> false)
    | BO_BVmult s1 -> (match o' with
                       | BO_BVmult s2 -> N.eqb s1 s2
                       | _ -> false)
    | BO_BVult s1 -> (match o' with
                      | BO_BVult s2 -> N.eqb s1 s2
                      | _ -> false)
    | BO_BVslt s1 -> (match o' with
                      | BO_BVslt s2 -> N.eqb s1 s2
                      | _ -> false)
    | BO_BVconcat (s1, s2) ->
      (match o' with
       | BO_BVconcat (s3, s4) -> if N.eqb s1 s3 then N.eqb s2 s4 else false
       | _ -> false)
    | BO_BVshl s1 -> (match o' with
                      | BO_BVshl s2 -> N.eqb s1 s2
                      | _ -> false)
    | BO_BVshr s1 -> (match o' with
                      | BO_BVshr s2 -> N.eqb s1 s2
                      | _ -> false)
    | BO_select (ti, te) ->
      (match o' with
       | BO_select (ti', te') ->
         if Typ.eqb ti ti' then Typ.eqb te te' else false
       | _ -> false)
    | BO_diffarray (ti, te) ->
      (match o' with
       | BO_diffarray (ti', te') ->
         if Typ.eqb ti ti' then Typ.eqb te te' else false
       | _ -> false)

  (** val top_eqb : terop -> terop -> bool **)

  let top_eqb o o' =
    let TO_store (ti, te) = o in
    let TO_store (ti', te') = o' in
    if Typ.eqb ti ti' then Typ.eqb te te' else false

  (** val nop_eqb : nop -> nop -> bool **)

  let nop_eqb =
    Typ.eqb

  (** val eqb : atom -> atom -> bool **)

  let eqb t0 t' =
    match t0 with
    | Acop o -> (match t' with
                 | Acop o' -> cop_eqb o o'
                 | _ -> false)
    | Auop (o, t1) ->
      (match t' with
       | Auop (o', t'0) -> if uop_eqb o o' then eqb0 t1 t'0 else false
       | _ -> false)
    | Abop (o, t1, t2) ->
      (match t' with
       | Abop (o', t1', t2') ->
         if if bop_eqb o o' then eqb0 t1 t1' else false
         then eqb0 t2 t2'
         else false
       | _ -> false)
    | Atop (o, t1, t2, t3) ->
      (match t' with
       | Atop (o', t1', t2', t3') ->
         if if if top_eqb o o' then eqb0 t1 t1' else false
            then eqb0 t2 t2'
            else false
         then eqb0 t3 t3'
         else false
       | _ -> false)
    | Anop (o, t1) ->
      (match t' with
       | Anop (o', t'0) ->
         if nop_eqb o o' then list_beq eqb0 t1 t'0 else false
       | _ -> false)
    | Aapp (a, la) ->
      (match t' with
       | Aapp (b, lb) -> if eqb0 a b then list_beq eqb0 la lb else false
       | _ -> false)

  (** val lt_atom : Uint63.t -> atom -> bool **)

  let lt_atom i = function
  | Acop _ -> true
  | Auop (_, h) -> ltb0 h i
  | Abop (_, h1, h2) -> if ltb0 h1 i then ltb0 h2 i else false
  | Atop (_, h1, h2, h3) ->
    if if ltb0 h1 i then ltb0 h2 i else false then ltb0 h3 i else false
  | Anop (_, ha) -> forallb (fun h -> ltb0 h i) ha
  | Aapp (_, args) -> forallb (fun h -> ltb0 h i) args

  (** val wf : atom array -> bool **)

  let wf t_atom =
    aforallbi lt_atom t_atom

  (** val check_atom : atom array -> bool **)

  let check_atom t_atom =
    match default t_atom with
    | Acop c -> (match c with
                 | CO_xH -> wf t_atom
                 | _ -> false)
    | _ -> false
 end

(** val get_eq :
    Form.form array -> Atom.atom array -> Uint63.t -> (Uint63.t -> Uint63.t
    -> C.t) -> C.t **)

let get_eq t_form t_atom x f =
  match get t_form x with
  | Form.Fatom xa ->
    (match get t_atom xa with
     | Atom.Abop (b0, a, b) ->
       (match b0 with
        | Atom.BO_eq _ -> f a b
        | _ -> C._true)
     | _ -> C._true)
  | _ -> C._true

(** val check_trans_aux :
    Form.form array -> Atom.atom array -> Uint63.t -> Uint63.t -> Uint63.t
    list -> Uint63.t -> C.t -> C.t **)

let rec check_trans_aux t_form t_atom t1 t2 eqs res clause0 =
  match eqs with
  | Nil ->
    let xres = Lit.blit res in
    get_eq t_form t_atom xres (fun t1' t2' ->
      if if if eqb0 t1 t1' then eqb0 t2 t2' else false
         then true
         else if eqb0 t1 t2' then eqb0 t2 t1' else false
      then Cons ((Lit.lit xres), clause0)
      else C._true)
  | Cons (leq, eqs0) ->
    let xeq = Lit.blit leq in
    get_eq t_form t_atom xeq (fun t0 t' ->
      if eqb0 t2 t'
      then check_trans_aux t_form t_atom t1 t0 eqs0 res (Cons
             ((Lit.nlit xeq), clause0))
      else if eqb0 t2 t0
           then check_trans_aux t_form t_atom t1 t' eqs0 res (Cons
                  ((Lit.nlit xeq), clause0))
           else if eqb0 t1 t'
                then check_trans_aux t_form t_atom t0 t2 eqs0 res (Cons
                       ((Lit.nlit xeq), clause0))
                else if eqb0 t1 t0
                     then check_trans_aux t_form t_atom t' t2 eqs0 res (Cons
                            ((Lit.nlit xeq), clause0))
                     else C._true)

(** val check_trans :
    Form.form array -> Atom.atom array -> Uint63.t -> Uint63.t list -> C.t **)

let check_trans t_form t_atom res = function
| Nil ->
  let xres = Lit.blit res in
  get_eq t_form t_atom xres (fun t1 t2 ->
    if eqb0 t1 t2 then Cons ((Lit.lit xres), Nil) else C._true)
| Cons (leq, eqs0) ->
  let xeq = Lit.blit leq in
  get_eq t_form t_atom xeq (fun t1 t2 ->
    check_trans_aux t_form t_atom t1 t2 eqs0 res (Cons ((Lit.nlit xeq), Nil)))

(** val build_congr :
    Form.form array -> Atom.atom array -> Uint63.t option list -> Uint63.t
    list -> Uint63.t list -> C.t -> C.t **)

let rec build_congr t_form t_atom eqs l r c =
  match eqs with
  | Nil ->
    (match l with
     | Nil -> (match r with
               | Nil -> c
               | Cons (_, _) -> C._true)
     | Cons (_, _) -> C._true)
  | Cons (eq, eqs0) ->
    (match l with
     | Nil -> C._true
     | Cons (t1, l0) ->
       (match r with
        | Nil -> C._true
        | Cons (t2, r0) ->
          (match eq with
           | Some leq ->
             let xeq = Lit.blit leq in
             get_eq t_form t_atom xeq (fun t1' t2' ->
               if if if eqb0 t1 t1' then eqb0 t2 t2' else false
                  then true
                  else if eqb0 t1 t2' then eqb0 t2 t1' else false
               then build_congr t_form t_atom eqs0 l0 r0 (Cons
                      ((Lit.nlit xeq), c))
               else C._true)
           | None ->
             if eqb0 t1 t2
             then build_congr t_form t_atom eqs0 l0 r0 c
             else C._true)))

(** val check_congr :
    Form.form array -> Atom.atom array -> Uint63.t -> Uint63.t option list ->
    C.t **)

let check_congr t_form t_atom leq eqs =
  let xeq = Lit.blit leq in
  get_eq t_form t_atom xeq (fun t1 t2 ->
    match get t_atom t1 with
    | Atom.Auop (o1, a) ->
      (match get t_atom t2 with
       | Atom.Auop (o2, b) ->
         if Atom.uop_eqb o1 o2
         then build_congr t_form t_atom eqs (Cons (a, Nil)) (Cons (b, Nil))
                (Cons ((Lit.lit xeq), Nil))
         else C._true
       | _ -> C._true)
    | Atom.Abop (o1, a1, a2) ->
      (match get t_atom t2 with
       | Atom.Abop (o2, b1, b2) ->
         if Atom.bop_eqb o1 o2
         then build_congr t_form t_atom eqs (Cons (a1, (Cons (a2, Nil))))
                (Cons (b1, (Cons (b2, Nil)))) (Cons ((Lit.lit xeq), Nil))
         else C._true
       | _ -> C._true)
    | Atom.Aapp (f1, args1) ->
      (match get t_atom t2 with
       | Atom.Aapp (f2, args2) ->
         if eqb0 f1 f2
         then build_congr t_form t_atom eqs args1 args2 (Cons ((Lit.lit xeq),
                Nil))
         else C._true
       | _ -> C._true)
    | _ -> C._true)

(** val check_congr_pred :
    Form.form array -> Atom.atom array -> Uint63.t -> Uint63.t -> Uint63.t
    option list -> C.t **)

let check_congr_pred t_form t_atom pA pB eqs =
  let xPA = Lit.blit pA in
  let xPB = Lit.blit pB in
  (match get t_form xPA with
   | Form.Fatom pa ->
     (match get t_form xPB with
      | Form.Fatom pb ->
        (match get t_atom pa with
         | Atom.Auop (o1, a) ->
           (match get t_atom pb with
            | Atom.Auop (o2, b) ->
              if Atom.uop_eqb o1 o2
              then build_congr t_form t_atom eqs (Cons (a, Nil)) (Cons (b,
                     Nil)) (Cons ((Lit.nlit xPA), (Cons ((Lit.lit xPB),
                     Nil))))
              else C._true
            | _ -> C._true)
         | Atom.Abop (o1, a1, a2) ->
           (match get t_atom pb with
            | Atom.Abop (o2, b1, b2) ->
              if Atom.bop_eqb o1 o2
              then build_congr t_form t_atom eqs (Cons (a1, (Cons (a2,
                     Nil)))) (Cons (b1, (Cons (b2, Nil)))) (Cons
                     ((Lit.nlit xPA), (Cons ((Lit.lit xPB), Nil))))
              else C._true
            | _ -> C._true)
         | Atom.Aapp (p, a) ->
           (match get t_atom pb with
            | Atom.Aapp (p', b) ->
              if eqb0 p p'
              then build_congr t_form t_atom eqs a b (Cons ((Lit.nlit xPA),
                     (Cons ((Lit.lit xPB), Nil))))
              else C._true
            | _ -> C._true)
         | _ -> C._true)
      | _ -> C._true)
   | _ -> C._true)

(** val build_positive_atom_aux :
    (Uint63.t -> positive option) -> Atom.atom -> positive option **)

let build_positive_atom_aux build_positive0 = function
| Atom.Acop c -> (match c with
                  | Atom.CO_xH -> Some XH
                  | _ -> None)
| Atom.Auop (u, a0) ->
  (match u with
   | Atom.UO_xO -> option_map (fun x -> XO x) (build_positive0 a0)
   | Atom.UO_xI -> option_map (fun x -> XI x) (build_positive0 a0)
   | _ -> None)
| _ -> None

(** val build_positive : Atom.atom array -> Uint63.t -> positive option **)

let build_positive t_atom =
  foldi (fun _ cont h -> build_positive_atom_aux cont (get t_atom h))
    (Uint63.of_int (0)) (length0 t_atom) (fun _ -> None)

(** val build_z_atom_aux : Atom.atom array -> Atom.atom -> z option **)

let build_z_atom_aux t_atom = function
| Atom.Acop c -> (match c with
                  | Atom.CO_Z0 -> Some Z0
                  | _ -> None)
| Atom.Auop (u, a0) ->
  (match u with
   | Atom.UO_Zpos -> option_map (fun x -> Zpos x) (build_positive t_atom a0)
   | Atom.UO_Zneg -> option_map (fun x -> Zneg x) (build_positive t_atom a0)
   | _ -> None)
| _ -> None

(** val build_z_atom : Atom.atom array -> Atom.atom -> z option **)

let build_z_atom =
  build_z_atom_aux

type vmap = positive * Atom.atom list

(** val find_var_aux :
    Atom.atom -> positive -> Atom.atom list -> positive option **)

let rec find_var_aux h p = function
| Nil -> None
| Cons (h', l0) ->
  let p2 = Coq_Pos.pred p in
  if Atom.eqb h h' then Some p2 else find_var_aux h p2 l0

(** val find_var : vmap -> Atom.atom -> vmap * positive **)

let find_var vm h =
  let (count, map0) = vm in
  (match find_var_aux h count map0 with
   | Some p -> (vm, p)
   | None -> (((Coq_Pos.succ count), (Cons (h, map0))), count))

(** val empty_vmap : vmap **)

let empty_vmap =
  (XH, Nil)

(** val build_pexpr_atom_aux :
    Atom.atom array -> (vmap -> Uint63.t -> vmap * z pExpr) -> vmap ->
    Atom.atom -> vmap * z pExpr **)

let build_pexpr_atom_aux t_atom build_pexpr0 vm h = match h with
| Atom.Auop (u, a) ->
  (match u with
   | Atom.UO_Zopp -> let (vm0, pe) = build_pexpr0 vm a in (vm0, (PEopp pe))
   | _ ->
     (match build_z_atom t_atom h with
      | Some z0 -> (vm, (PEc z0))
      | None -> let (vm0, p) = find_var vm h in (vm0, (PEX p))))
| Atom.Abop (b, a1, a2) ->
  (match b with
   | Atom.BO_Zplus ->
     let (vm0, pe1) = build_pexpr0 vm a1 in
     let (vm1, pe2) = build_pexpr0 vm0 a2 in (vm1, (PEadd (pe1, pe2)))
   | Atom.BO_Zminus ->
     let (vm0, pe1) = build_pexpr0 vm a1 in
     let (vm1, pe2) = build_pexpr0 vm0 a2 in (vm1, (PEsub (pe1, pe2)))
   | Atom.BO_Zmult ->
     let (vm0, pe1) = build_pexpr0 vm a1 in
     let (vm1, pe2) = build_pexpr0 vm0 a2 in (vm1, (PEmul (pe1, pe2)))
   | _ ->
     (match build_z_atom t_atom h with
      | Some z0 -> (vm, (PEc z0))
      | None -> let (vm0, p) = find_var vm h in (vm0, (PEX p))))
| _ ->
  (match build_z_atom t_atom h with
   | Some z0 -> (vm, (PEc z0))
   | None -> let (vm0, p) = find_var vm h in (vm0, (PEX p)))

(** val build_pexpr :
    Atom.atom array -> vmap -> Uint63.t -> vmap * z pExpr **)

let build_pexpr t_atom =
  foldi (fun _ cont vm h ->
    build_pexpr_atom_aux t_atom cont vm (get t_atom h)) (Uint63.of_int (0))
    (length0 t_atom) (fun vm _ -> (vm, (PEc Z0)))

(** val build_op2 : Atom.binop -> op2 option **)

let build_op2 = function
| Atom.BO_Zlt -> Some OpLt
| Atom.BO_Zle -> Some OpLe
| Atom.BO_Zge -> Some OpGe
| Atom.BO_Zgt -> Some OpGt
| Atom.BO_eq t0 -> (match t0 with
                    | Typ.TZ -> Some OpEq
                    | _ -> None)
| _ -> None

(** val build_formula_atom :
    Atom.atom array -> vmap -> Atom.atom -> (vmap * z formula) option **)

let build_formula_atom t_atom vm = function
| Atom.Abop (op, a1, a2) ->
  (match build_op2 op with
   | Some o ->
     let (vm0, pe1) = build_pexpr t_atom vm a1 in
     let (vm1, pe2) = build_pexpr t_atom vm0 a2 in
     Some (vm1, { flhs = pe1; fop = o; frhs = pe2 })
   | None -> None)
| _ -> None

(** val build_formula :
    Atom.atom array -> vmap -> Uint63.t -> (vmap * z formula) option **)

let build_formula t_atom vm h =
  build_formula_atom t_atom vm (get t_atom h)

(** val build_not2 : Uint63.t -> z formula bFormula -> z formula bFormula **)

let build_not2 i f =
  foldi (fun _ f' -> NOT (IsProp, (NOT (IsProp, f')))) (Uint63.of_int (0)) i f

(** val build_hform :
    Atom.atom array -> (vmap -> Uint63.t -> (vmap * z formula bFormula)
    option) -> vmap -> Form.form -> (vmap * z formula bFormula) option **)

let build_hform t_atom build_var0 vm = function
| Form.Fatom h ->
  (match build_formula t_atom vm h with
   | Some p -> let (vm0, f0) = p in Some (vm0, (A (IsProp, f0, Tt)))
   | None -> None)
| Form.Ftrue -> Some (vm, (TT IsProp))
| Form.Ffalse -> Some (vm, (FF IsProp))
| Form.Fnot2 (i, l) ->
  (match build_var0 vm (Lit.blit l) with
   | Some p ->
     let (vm0, f0) = p in
     let f' = build_not2 i f0 in
     let f'' = if Lit.is_pos l then f' else NOT (IsProp, f') in
     Some (vm0, f'')
   | None -> None)
| Form.Fand args ->
  afold_left (fun vm0 -> Some (vm0, (TT IsProp))) (fun a b vm0 ->
    match a vm0 with
    | Some p ->
      let (vm1, f1) = p in
      (match b vm1 with
       | Some p2 -> let (vm2, f2) = p2 in Some (vm2, (AND (IsProp, f1, f2)))
       | None -> None)
    | None -> None)
    (amap (fun l vm0 ->
      match build_var0 vm0 (Lit.blit l) with
      | Some p ->
        let (vm', f0) = p in
        Some (vm', (if Lit.is_pos l then f0 else NOT (IsProp, f0)))
      | None -> None) args) vm
| Form.For args ->
  afold_left (fun vm0 -> Some (vm0, (FF IsProp))) (fun a b vm0 ->
    match a vm0 with
    | Some p ->
      let (vm1, f1) = p in
      (match b vm1 with
       | Some p2 -> let (vm2, f2) = p2 in Some (vm2, (OR (IsProp, f1, f2)))
       | None -> None)
    | None -> None)
    (amap (fun l vm0 ->
      match build_var0 vm0 (Lit.blit l) with
      | Some p ->
        let (vm', f0) = p in
        Some (vm', (if Lit.is_pos l then f0 else NOT (IsProp, f0)))
      | None -> None) args) vm
| Form.Fimp args ->
  afold_right (fun vm0 -> Some (vm0, (TT IsProp))) (fun a b vm0 ->
    match b vm0 with
    | Some p ->
      let (vm2, f2) = p in
      (match a vm2 with
       | Some p2 ->
         let (vm1, f1) = p2 in Some (vm1, (IMPL (IsProp, f1, None, f2)))
       | None -> None)
    | None -> None)
    (amap (fun l vm0 ->
      match build_var0 vm0 (Lit.blit l) with
      | Some p ->
        let (vm', f0) = p in
        Some (vm', (if Lit.is_pos l then f0 else NOT (IsProp, f0)))
      | None -> None) args) vm
| Form.Fxor (a, b) ->
  (match build_var0 vm (Lit.blit a) with
   | Some p ->
     let (vm1, f1) = p in
     (match build_var0 vm1 (Lit.blit b) with
      | Some p2 ->
        let (vm2, f2) = p2 in
        let f1' = if Lit.is_pos a then f1 else NOT (IsProp, f1) in
        let f2' = if Lit.is_pos b then f2 else NOT (IsProp, f2) in
        Some (vm2, (AND (IsProp, (OR (IsProp, f1', f2')), (OR (IsProp, (NOT
        (IsProp, f1')), (NOT (IsProp, f2')))))))
      | None -> None)
   | None -> None)
| Form.Fiff (a, b) ->
  (match build_var0 vm (Lit.blit a) with
   | Some p ->
     let (vm1, f1) = p in
     (match build_var0 vm1 (Lit.blit b) with
      | Some p2 ->
        let (vm2, f2) = p2 in
        let f1' = if Lit.is_pos a then f1 else NOT (IsProp, f1) in
        let f2' = if Lit.is_pos b then f2 else NOT (IsProp, f2) in
        Some (vm2, (AND (IsProp, (OR (IsProp, f1', (NOT (IsProp, f2')))), (OR
        (IsProp, (NOT (IsProp, f1')), f2')))))
      | None -> None)
   | None -> None)
| Form.Fite (a, b, c) ->
  (match build_var0 vm (Lit.blit a) with
   | Some p ->
     let (vm1, f1) = p in
     (match build_var0 vm1 (Lit.blit b) with
      | Some p2 ->
        let (vm2, f2) = p2 in
        (match build_var0 vm2 (Lit.blit c) with
         | Some p3 ->
           let (vm3, f3) = p3 in
           let f1' = if Lit.is_pos a then f1 else NOT (IsProp, f1) in
           let f2' = if Lit.is_pos b then f2 else NOT (IsProp, f2) in
           let f3' = if Lit.is_pos c then f3 else NOT (IsProp, f3) in
           Some (vm3, (OR (IsProp, (AND (IsProp, f1', f2')), (AND (IsProp,
           (NOT (IsProp, f1')), f3')))))
         | None -> None)
      | None -> None)
   | None -> None)
| Form.FbbT (_, _) -> None

(** val build_var :
    Form.form array -> Atom.atom array -> vmap -> Uint63.t -> (vmap * z
    formula bFormula) option **)

let build_var t_form t_atom =
  foldi (fun _ cont vm h -> build_hform t_atom cont vm (get t_form h))
    (Uint63.of_int (0)) (length0 t_form) (fun _ _ -> None)

(** val build_form :
    Form.form array -> Atom.atom array -> vmap -> Form.form -> (vmap * z
    formula bFormula) option **)

let build_form t_form t_atom =
  build_hform t_atom (build_var t_form t_atom)

(** val build_nlit :
    Form.form array -> Atom.atom array -> vmap -> Uint63.t -> (vmap * z
    formula bFormula) option **)

let build_nlit t_form t_atom vm l =
  let l0 = Lit.neg l in
  (match build_form t_form t_atom vm (get t_form (Lit.blit l0)) with
   | Some p ->
     let (vm0, f) = p in
     let f0 = if Lit.is_pos l0 then f else NOT (IsProp, f) in Some (vm0, f0)
   | None -> None)

(** val build_clause_aux :
    Form.form array -> Atom.atom array -> vmap -> Uint63.t list -> (vmap * z
    formula bFormula) option **)

let rec build_clause_aux t_form t_atom vm = function
| Nil -> None
| Cons (l, cl0) ->
  (match cl0 with
   | Nil -> build_nlit t_form t_atom vm l
   | Cons (_, _) ->
     (match build_nlit t_form t_atom vm l with
      | Some p ->
        let (vm0, bf1) = p in
        (match build_clause_aux t_form t_atom vm0 cl0 with
         | Some p2 ->
           let (vm1, bf2) = p2 in Some (vm1, (AND (IsProp, bf1, bf2)))
         | None -> None)
      | None -> None))

(** val build_clause :
    Form.form array -> Atom.atom array -> vmap -> Uint63.t list -> (vmap * (z
    formula, eKind, unit0, unit0) gFormula) option **)

let build_clause t_form t_atom vm cl =
  match build_clause_aux t_form t_atom vm cl with
  | Some p ->
    let (vm0, bf) = p in Some (vm0, (IMPL (IsProp, bf, None, (FF IsProp))))
  | None -> None

(** val get_eq0 :
    Form.form array -> Atom.atom array -> Uint63.t -> (Uint63.t -> Uint63.t
    -> C.t) -> C.t **)

let get_eq0 t_form t_atom l f =
  if Lit.is_pos l
  then (match get t_form (Lit.blit l) with
        | Form.Fatom xa ->
          (match get t_atom xa with
           | Atom.Abop (b0, a, b) ->
             (match b0 with
              | Atom.BO_eq _ -> f a b
              | _ -> C._true)
           | _ -> C._true)
        | _ -> C._true)
  else C._true

(** val get_not_le :
    Form.form array -> Atom.atom array -> Uint63.t -> (Uint63.t -> Uint63.t
    -> C.t) -> C.t **)

let get_not_le t_form t_atom l f =
  if negb (Lit.is_pos l)
  then (match get t_form (Lit.blit l) with
        | Form.Fatom xa ->
          (match get t_atom xa with
           | Atom.Abop (b0, a, b) ->
             (match b0 with
              | Atom.BO_Zle -> f a b
              | _ -> C._true)
           | _ -> C._true)
        | _ -> C._true)
  else C._true

(** val check_micromega :
    Form.form array -> Atom.atom array -> Uint63.t list -> zArithProof list
    -> C.t **)

let check_micromega t_form t_atom cl c =
  match build_clause t_form t_atom empty_vmap cl with
  | Some p -> let (_, bf) = p in if zTautoChecker bf c then cl else C._true
  | None -> C._true

(** val check_diseq :
    Form.form array -> Atom.atom array -> Uint63.t -> C.t **)

let check_diseq t_form t_atom l =
  match get t_form (Lit.blit l) with
  | Form.For a ->
    if eqb0 (length0 a) (Uint63.of_int (3))
    then let a_eq_b = get a (Uint63.of_int (0)) in
         let not_a_le_b = get a (Uint63.of_int (1)) in
         let not_b_le_a = get a (Uint63.of_int (2)) in
         get_eq0 t_form t_atom a_eq_b (fun a0 b ->
           get_not_le t_form t_atom not_a_le_b (fun a' b' ->
             get_not_le t_form t_atom not_b_le_a (fun b'' a'' ->
               if if if if eqb0 a0 a' then eqb0 a0 a'' else false
                     then eqb0 b b'
                     else false
                  then eqb0 b b''
                  else false
               then Cons ((Lit.lit (Lit.blit l)), Nil)
               else if if if if eqb0 a0 b' then eqb0 a0 b'' else false
                          then eqb0 b a'
                          else false
                       then eqb0 b a''
                       else false
                    then Cons ((Lit.lit (Lit.blit l)), Nil)
                    else C._true)))
    else C._true
  | _ -> C._true

(** val check_atom_aux :
    Atom.atom array -> (Uint63.t -> Uint63.t -> bool) -> Atom.atom ->
    Atom.atom -> bool **)

let check_atom_aux t_atom check_hatom0 a b =
  match a with
  | Atom.Acop o1 ->
    (match b with
     | Atom.Acop o2 -> Atom.cop_eqb o1 o2
     | _ -> false)
  | Atom.Auop (o1, a0) ->
    (match o1 with
     | Atom.UO_Zneg ->
       (match b with
        | Atom.Auop (o2, b0) ->
          (match o2 with
           | Atom.UO_Zopp ->
             (match get t_atom b0 with
              | Atom.Auop (u, q) ->
                (match u with
                 | Atom.UO_Zpos -> check_hatom0 a0 q
                 | _ -> false)
              | _ -> false)
           | _ -> if Atom.uop_eqb o1 o2 then check_hatom0 a0 b0 else false)
        | _ -> false)
     | Atom.UO_Zopp ->
       (match b with
        | Atom.Auop (o2, b0) ->
          (match o2 with
           | Atom.UO_Zneg ->
             (match get t_atom a0 with
              | Atom.Auop (u, p) ->
                (match u with
                 | Atom.UO_Zpos -> check_hatom0 p b0
                 | _ -> false)
              | _ -> false)
           | _ -> if Atom.uop_eqb o1 o2 then check_hatom0 a0 b0 else false)
        | _ -> false)
     | _ ->
       (match b with
        | Atom.Auop (o2, b0) ->
          if Atom.uop_eqb o1 o2 then check_hatom0 a0 b0 else false
        | _ -> false))
  | Atom.Abop (o1, a1, a2) ->
    (match b with
     | Atom.Abop (o2, b1, b2) ->
       (match o1 with
        | Atom.BO_Zplus ->
          (match o2 with
           | Atom.BO_Zplus ->
             if if check_hatom0 a1 b1 then check_hatom0 a2 b2 else false
             then true
             else if check_hatom0 a1 b2 then check_hatom0 a2 b1 else false
           | _ -> false)
        | Atom.BO_Zminus ->
          (match o2 with
           | Atom.BO_Zminus ->
             if check_hatom0 a1 b1 then check_hatom0 a2 b2 else false
           | _ -> false)
        | Atom.BO_Zmult ->
          (match o2 with
           | Atom.BO_Zmult ->
             if if check_hatom0 a1 b1 then check_hatom0 a2 b2 else false
             then true
             else if check_hatom0 a1 b2 then check_hatom0 a2 b1 else false
           | _ -> false)
        | Atom.BO_Zlt ->
          (match o2 with
           | Atom.BO_Zlt ->
             if check_hatom0 a1 b1 then check_hatom0 a2 b2 else false
           | Atom.BO_Zgt ->
             if check_hatom0 a1 b2 then check_hatom0 a2 b1 else false
           | _ -> false)
        | Atom.BO_Zle ->
          (match o2 with
           | Atom.BO_Zle ->
             if check_hatom0 a1 b1 then check_hatom0 a2 b2 else false
           | Atom.BO_Zge ->
             if check_hatom0 a1 b2 then check_hatom0 a2 b1 else false
           | _ -> false)
        | Atom.BO_Zge ->
          (match o2 with
           | Atom.BO_Zle ->
             if check_hatom0 a1 b2 then check_hatom0 a2 b1 else false
           | Atom.BO_Zge ->
             if check_hatom0 a1 b1 then check_hatom0 a2 b2 else false
           | _ -> false)
        | Atom.BO_Zgt ->
          (match o2 with
           | Atom.BO_Zlt ->
             if check_hatom0 a1 b2 then check_hatom0 a2 b1 else false
           | Atom.BO_Zgt ->
             if check_hatom0 a1 b1 then check_hatom0 a2 b2 else false
           | _ -> false)
        | Atom.BO_eq t1 ->
          (match o2 with
           | Atom.BO_eq t2 ->
             if Typ.eqb t1 t2
             then if if check_hatom0 a1 b1 then check_hatom0 a2 b2 else false
                  then true
                  else if check_hatom0 a1 b2
                       then check_hatom0 a2 b1
                       else false
             else false
           | _ -> false)
        | Atom.BO_BVand s1 ->
          (match o2 with
           | Atom.BO_BVand s2 ->
             if if N.eqb s1 s2 then check_hatom0 a1 b1 else false
             then check_hatom0 a2 b2
             else false
           | _ -> false)
        | Atom.BO_BVor s1 ->
          (match o2 with
           | Atom.BO_BVor s2 ->
             if if N.eqb s1 s2 then check_hatom0 a1 b1 else false
             then check_hatom0 a2 b2
             else false
           | _ -> false)
        | _ -> false)
     | _ -> false)
  | Atom.Atop (_, _, _, _) -> false
  | Atom.Anop (o1, l1) ->
    (match b with
     | Atom.Anop (o2, l2) ->
       if Typ.eqb o1 o2 then list_beq check_hatom0 l1 l2 else false
     | _ -> false)
  | Atom.Aapp (f1, aargs) ->
    (match b with
     | Atom.Aapp (f2, bargs) ->
       if eqb0 f1 f2 then list_beq check_hatom0 aargs bargs else false
     | _ -> false)

(** val check_hatom : Atom.atom array -> Uint63.t -> Uint63.t -> bool **)

let check_hatom t_atom h1 h2 =
  foldi (fun _ cont h3 h4 ->
    if eqb0 h3 h4
    then true
    else check_atom_aux t_atom cont (get t_atom h3) (get t_atom h4))
    (Uint63.of_int (0)) (length0 t_atom) (fun _ _ -> false) h1 h2

(** val check_neg_hatom : Atom.atom array -> Uint63.t -> Uint63.t -> bool **)

let check_neg_hatom t_atom h1 h2 =
  match get t_atom h1 with
  | Atom.Abop (op3, a1, a2) ->
    (match get t_atom h2 with
     | Atom.Abop (op4, b1, b2) ->
       (match op3 with
        | Atom.BO_Zlt ->
          (match op4 with
           | Atom.BO_Zle ->
             if check_hatom t_atom a1 b2
             then check_hatom t_atom a2 b1
             else false
           | Atom.BO_Zge ->
             if check_hatom t_atom a1 b1
             then check_hatom t_atom a2 b2
             else false
           | _ -> false)
        | Atom.BO_Zle ->
          (match op4 with
           | Atom.BO_Zlt ->
             if check_hatom t_atom a1 b2
             then check_hatom t_atom a2 b1
             else false
           | Atom.BO_Zgt ->
             if check_hatom t_atom a1 b1
             then check_hatom t_atom a2 b2
             else false
           | _ -> false)
        | Atom.BO_Zge ->
          (match op4 with
           | Atom.BO_Zlt ->
             if check_hatom t_atom a1 b1
             then check_hatom t_atom a2 b2
             else false
           | Atom.BO_Zgt ->
             if check_hatom t_atom a1 b2
             then check_hatom t_atom a2 b1
             else false
           | _ -> false)
        | Atom.BO_Zgt ->
          (match op4 with
           | Atom.BO_Zle ->
             if check_hatom t_atom a1 b1
             then check_hatom t_atom a2 b2
             else false
           | Atom.BO_Zge ->
             if check_hatom t_atom a1 b2
             then check_hatom t_atom a2 b1
             else false
           | _ -> false)
        | _ -> false)
     | _ -> false)
  | _ -> false

(** val remove_not : Form.form array -> Uint63.t -> Uint63.t **)

let remove_not t_form l =
  match get t_form (Lit.blit l) with
  | Form.Fnot2 (_, l') -> if Lit.is_pos l then l' else Lit.neg l'
  | _ -> l

(** val get_and : Form.form array -> Uint63.t -> Uint63.t array option **)

let get_and t_form l =
  let l0 = remove_not t_form l in
  if Lit.is_pos l0
  then (match get t_form (Lit.blit l0) with
        | Form.Fand args -> Some args
        | _ -> None)
  else None

(** val get_or : Form.form array -> Uint63.t -> Uint63.t array option **)

let get_or t_form l =
  let l0 = remove_not t_form l in
  if Lit.is_pos l0
  then (match get t_form (Lit.blit l0) with
        | Form.For args -> Some args
        | _ -> None)
  else None

(** val flatten_op_body :
    (Uint63.t -> Uint63.t array option) -> (Uint63.t list -> Uint63.t ->
    Uint63.t list) -> Uint63.t list -> Uint63.t -> Uint63.t list **)

let flatten_op_body get_op frec largs l =
  match get_op l with
  | Some a ->
    foldi (fun i x -> frec x (get a i)) (Uint63.of_int (0)) (length0 a) largs
  | None -> Cons (l, largs)

(** val flatten_op_lit :
    (Uint63.t -> Uint63.t array option) -> Uint63.t -> Uint63.t list ->
    Uint63.t -> Uint63.t list **)

let flatten_op_lit get_op max0 =
  foldi (fun _ -> flatten_op_body get_op) (Uint63.of_int (0)) max0
    (fun largs l -> Cons (l, largs))

(** val flatten_and : Form.form array -> Uint63.t array -> Uint63.t list **)

let flatten_and t_form t0 =
  foldi (fun i x ->
    flatten_op_lit (get_and t_form) (length0 t_form) x (get t0 i))
    (Uint63.of_int (0)) (length0 t0) Nil

(** val flatten_or : Form.form array -> Uint63.t array -> Uint63.t list **)

let flatten_or t_form t0 =
  foldi (fun i x ->
    flatten_op_lit (get_or t_form) (length0 t_form) x (get t0 i))
    (Uint63.of_int (0)) (length0 t0) Nil

(** val check_flatten_body :
    Form.form array -> (Uint63.t -> Uint63.t -> bool) -> (Uint63.t ->
    Uint63.t -> bool) -> (Uint63.t -> Uint63.t -> bool) -> Uint63.t ->
    Uint63.t -> bool **)

let check_flatten_body t_form check_atom0 check_neg_atom frec l lf =
  let l0 = remove_not t_form l in
  let lf0 = remove_not t_form lf in
  if eqb0 l0 lf0
  then true
  else if eqb0 (land0 (Uint63.of_int (1)) (lxor0 l0 lf0)) (Uint63.of_int (0))
       then (match get t_form (Lit.blit l0) with
             | Form.Fatom a1 ->
               (match get t_form (Lit.blit lf0) with
                | Form.Fatom a2 -> check_atom0 a1 a2
                | _ -> false)
             | Form.Ftrue ->
               (match get t_form (Lit.blit lf0) with
                | Form.Ftrue -> true
                | _ -> false)
             | Form.Ffalse ->
               (match get t_form (Lit.blit lf0) with
                | Form.Ffalse -> true
                | _ -> false)
             | Form.Fand args1 ->
               (match get t_form (Lit.blit lf0) with
                | Form.Fand args2 ->
                  let args3 = flatten_and t_form args1 in
                  let args4 = flatten_and t_form args2 in
                  forallb2 frec args3 args4
                | _ -> false)
             | Form.For args1 ->
               (match get t_form (Lit.blit lf0) with
                | Form.For args2 ->
                  let args3 = flatten_or t_form args1 in
                  let args4 = flatten_or t_form args2 in
                  forallb2 frec args3 args4
                | _ -> false)
             | Form.Fimp args1 ->
               (match get t_form (Lit.blit lf0) with
                | Form.Fimp args2 ->
                  if eqb0 (length0 args1) (length0 args2)
                  then aforallbi (fun i l1 -> frec l1 (get args2 i)) args1
                  else false
                | _ -> false)
             | Form.Fxor (l1, l2) ->
               (match get t_form (Lit.blit lf0) with
                | Form.Fxor (lf1, lf2) ->
                  if frec l1 lf1 then frec l2 lf2 else false
                | _ -> false)
             | Form.Fiff (l1, l2) ->
               (match get t_form (Lit.blit lf0) with
                | Form.Fiff (lf1, lf2) ->
                  if frec l1 lf1 then frec l2 lf2 else false
                | _ -> false)
             | Form.Fite (l1, l2, l3) ->
               (match get t_form (Lit.blit lf0) with
                | Form.Fite (lf1, lf2, lf3) ->
                  if if frec l1 lf1 then frec l2 lf2 else false
                  then frec l3 lf3
                  else false
                | _ -> false)
             | _ -> false)
       else (match get t_form (Lit.blit l0) with
             | Form.Fatom a1 ->
               (match get t_form (Lit.blit lf0) with
                | Form.Fatom a2 -> check_neg_atom a1 a2
                | _ -> false)
             | _ -> false)

(** val check_flatten_aux :
    Form.form array -> (Uint63.t -> Uint63.t -> bool) -> (Uint63.t ->
    Uint63.t -> bool) -> Uint63.t -> Uint63.t -> bool **)

let check_flatten_aux t_form check_atom0 check_neg_atom l lf =
  foldi (fun _ -> check_flatten_body t_form check_atom0 check_neg_atom)
    (Uint63.of_int (0)) (length0 t_form) (fun _ _ -> false) l lf

(** val check_flatten :
    Form.form array -> (Uint63.t -> Uint63.t -> bool) -> (Uint63.t ->
    Uint63.t -> bool) -> S.t -> Uint63.t -> Uint63.t -> C.t **)

let check_flatten t_form check_atom0 check_neg_atom s cid lf =
  match S.get s cid with
  | Nil -> C._true
  | Cons (l, l0) ->
    (match l0 with
     | Nil ->
       if check_flatten_aux t_form check_atom0 check_neg_atom l lf
       then Cons (lf, Nil)
       else C._true
     | Cons (_, _) -> C._true)

(** val check_spl_arith :
    Form.form array -> Atom.atom array -> Uint63.t list -> Uint63.t ->
    zArithProof list -> C.t **)

let check_spl_arith t_form t_atom orig res l =
  match orig with
  | Nil -> C._true
  | Cons (li, l0) ->
    (match l0 with
     | Nil ->
       let cl = Cons ((Lit.neg li), (Cons (res, Nil))) in
       (match build_clause t_form t_atom empty_vmap cl with
        | Some p ->
          let (_, bf) = p in
          if zTautoChecker bf l then Cons (res, Nil) else C._true
        | None -> C._true)
     | Cons (_, _) -> C._true)

(** val check_in : Uint63.t -> Uint63.t list -> bool **)

let rec check_in x = function
| Nil -> false
| Cons (t0, q) -> if eqb0 x t0 then true else check_in x q

(** val check_diseqs_complete_aux :
    Uint63.t -> Uint63.t list -> (Uint63.t * Uint63.t) option array -> bool **)

let rec check_diseqs_complete_aux a dist t0 =
  match dist with
  | Nil -> true
  | Cons (b, q) ->
    if aexistsbi (fun _ x ->
         match x with
         | Some p ->
           let (a', b') = p in
           if if eqb0 a a' then eqb0 b b' else false
           then true
           else if eqb0 a b' then eqb0 b a' else false
         | None -> false) t0
    then check_diseqs_complete_aux a q t0
    else false

(** val check_diseqs_complete :
    Uint63.t list -> (Uint63.t * Uint63.t) option array -> bool **)

let rec check_diseqs_complete dist t0 =
  match dist with
  | Nil -> true
  | Cons (a, q) ->
    if check_diseqs_complete_aux a q t0
    then check_diseqs_complete q t0
    else false

(** val check_diseqs :
    Form.form array -> Atom.atom array -> Typ.coq_type -> Uint63.t list ->
    Uint63.t array -> bool **)

let check_diseqs t_form t_atom ty dist diseq =
  let t0 =
    amap (fun t0 ->
      if Lit.is_pos t0
      then None
      else (match get t_form (Lit.blit t0) with
            | Form.Fatom a ->
              (match get t_atom a with
               | Atom.Acop _ -> None
               | Atom.Auop (_, _) -> None
               | Atom.Abop (b, h1, h2) ->
                 (match b with
                  | Atom.BO_Zplus -> None
                  | Atom.BO_Zminus -> None
                  | Atom.BO_Zmult -> None
                  | Atom.BO_Zlt -> None
                  | Atom.BO_Zle -> None
                  | Atom.BO_Zge -> None
                  | Atom.BO_Zgt -> None
                  | Atom.BO_eq a0 ->
                    if if if if Typ.eqb ty a0
                             then negb (eqb0 h1 h2)
                             else false
                          then check_in h1 dist
                          else false
                       then check_in h2 dist
                       else false
                    then Some (h1, h2)
                    else None
                  | _ -> None)
               | _ -> None)
            | _ -> None)) diseq
  in
  if aforallbi (fun _ x -> match x with
                           | Some _ -> true
                           | None -> false) t0
  then check_diseqs_complete dist t0
  else false

(** val check_distinct :
    Form.form array -> Atom.atom array -> Uint63.t -> Uint63.t array -> bool **)

let check_distinct t_form t_atom ha diseq =
  match get t_atom ha with
  | Atom.Anop (n0, dist) -> check_diseqs t_form t_atom n0 dist diseq
  | _ -> false

(** val check_distinct_two_args :
    Form.form array -> Atom.atom array -> Uint63.t -> Uint63.t -> bool **)

let check_distinct_two_args t_form t_atom f1 f2 =
  match get t_form f1 with
  | Form.Fatom ha ->
    (match get t_form f2 with
     | Form.Fatom hb ->
       (match get t_atom ha with
        | Atom.Anop (n0, l) ->
          (match l with
           | Nil -> false
           | Cons (x, l0) ->
             (match l0 with
              | Nil -> false
              | Cons (y, l1) ->
                (match l1 with
                 | Nil ->
                   (match get t_atom hb with
                    | Atom.Abop (b, x', y') ->
                      (match b with
                       | Atom.BO_eq ty' ->
                         if Typ.eqb n0 ty'
                         then if if eqb0 x x' then eqb0 y y' else false
                              then true
                              else if eqb0 x y' then eqb0 y x' else false
                         else false
                       | _ -> false)
                    | _ -> false)
                 | Cons (_, _) -> false)))
        | _ -> false)
     | _ -> false)
  | _ -> false

(** val check_lit :
    Form.form array -> Atom.atom array -> (Uint63.t -> Uint63.t -> bool) ->
    Uint63.t -> Uint63.t -> bool **)

let check_lit t_form t_atom check_var l1 l2 =
  if if eqb0 l1 l2
     then true
     else if eqb (Lit.is_pos l1) (Lit.is_pos l2)
          then check_var (Lit.blit l1) (Lit.blit l2)
          else false
  then true
  else if eqb (Lit.is_pos l1) (negb (Lit.is_pos l2))
       then check_distinct_two_args t_form t_atom (Lit.blit l1) (Lit.blit l2)
       else false

(** val check_form_aux :
    Form.form array -> Atom.atom array -> (Uint63.t -> Uint63.t -> bool) ->
    Form.form -> Form.form -> bool **)

let check_form_aux t_form t_atom check_var a b =
  match a with
  | Form.Fatom a0 ->
    (match b with
     | Form.Fatom b0 -> eqb0 a0 b0
     | Form.Fand diseq -> check_distinct t_form t_atom a0 diseq
     | _ -> false)
  | Form.Ftrue -> (match b with
                   | Form.Ftrue -> true
                   | _ -> false)
  | Form.Ffalse -> (match b with
                    | Form.Ffalse -> true
                    | _ -> false)
  | Form.Fnot2 (i1, l1) ->
    (match b with
     | Form.Fnot2 (i2, l2) ->
       if eqb0 i1 i2 then check_lit t_form t_atom check_var l1 l2 else false
     | _ -> false)
  | Form.Fand a1 ->
    (match b with
     | Form.Fand a2 ->
       if eqb0 (length0 a1) (length0 a2)
       then aforallbi (fun i l ->
              check_lit t_form t_atom check_var l (get a2 i)) a1
       else false
     | _ -> false)
  | Form.For a1 ->
    (match b with
     | Form.For a2 ->
       if eqb0 (length0 a1) (length0 a2)
       then aforallbi (fun i l ->
              check_lit t_form t_atom check_var l (get a2 i)) a1
       else false
     | _ -> false)
  | Form.Fimp a1 ->
    (match b with
     | Form.Fimp a2 ->
       if eqb0 (length0 a1) (length0 a2)
       then aforallbi (fun i l ->
              check_lit t_form t_atom check_var l (get a2 i)) a1
       else false
     | _ -> false)
  | Form.Fxor (l1, l2) ->
    (match b with
     | Form.Fxor (j1, j2) ->
       if check_lit t_form t_atom check_var l1 j1
       then check_lit t_form t_atom check_var l2 j2
       else false
     | _ -> false)
  | Form.Fiff (l1, l2) ->
    (match b with
     | Form.Fiff (j1, j2) ->
       if check_lit t_form t_atom check_var l1 j1
       then check_lit t_form t_atom check_var l2 j2
       else false
     | _ -> false)
  | Form.Fite (l1, l2, l3) ->
    (match b with
     | Form.Fite (j1, j2, j3) ->
       if if check_lit t_form t_atom check_var l1 j1
          then check_lit t_form t_atom check_var l2 j2
          else false
       then check_lit t_form t_atom check_var l3 j3
       else false
     | _ -> false)
  | Form.FbbT (_, _) -> false

(** val check_hform :
    Form.form array -> Atom.atom array -> Uint63.t -> Uint63.t -> bool **)

let check_hform t_form t_atom h1 h2 =
  foldi (fun _ cont h3 h4 ->
    if eqb0 h3 h4
    then true
    else check_form_aux t_form t_atom cont (get t_form h3) (get t_form h4))
    (Uint63.of_int (0)) (length0 t_form) (fun _ _ -> false) h1 h2

(** val check_lit' :
    Form.form array -> Atom.atom array -> Uint63.t -> Uint63.t -> bool **)

let check_lit' t_form t_atom =
  check_lit t_form t_atom (check_hform t_form t_atom)

(** val check_distinct_elim :
    Form.form array -> Atom.atom array -> Uint63.t list -> Uint63.t ->
    Uint63.t list **)

let rec check_distinct_elim t_form t_atom input res =
  match input with
  | Nil -> Nil
  | Cons (l, q) ->
    if check_lit' t_form t_atom l res
    then Cons (res, q)
    else Cons (l, (check_distinct_elim t_form t_atom q res))

(** val or_of_imp : Uint63.t array -> Uint63.t array **)

let or_of_imp args =
  let last = sub0 (length0 args) (Uint63.of_int (1)) in
  amapi (fun i l -> if eqb0 i last then l else Lit.neg l) args

(** val check_True : C.t **)

let check_True =
  C._true

(** val check_False : Uint63.t list **)

let check_False =
  Cons ((Lit.neg Lit._false), Nil)

(** val check_BuildDef : Form.form array -> Uint63.t -> C.t **)

let check_BuildDef t_form l =
  match get t_form (Lit.blit l) with
  | Form.Fand args ->
    if Lit.is_pos l then Cons (l, (map Lit.neg (to_list args))) else C._true
  | Form.For args ->
    if Lit.is_pos l then C._true else Cons (l, (to_list args))
  | Form.Fimp args ->
    if Lit.is_pos l
    then C._true
    else if eqb0 (length0 args) (Uint63.of_int (0))
         then C._true
         else let args0 = or_of_imp args in Cons (l, (to_list args0))
  | Form.Fxor (a, b) ->
    if Lit.is_pos l
    then Cons (l, (Cons (a, (Cons ((Lit.neg b), Nil)))))
    else Cons (l, (Cons (a, (Cons (b, Nil)))))
  | Form.Fiff (a, b) ->
    if Lit.is_pos l
    then Cons (l, (Cons ((Lit.neg a), (Cons ((Lit.neg b), Nil)))))
    else Cons (l, (Cons (a, (Cons ((Lit.neg b), Nil)))))
  | Form.Fite (a, _, c) ->
    if Lit.is_pos l
    then Cons (l, (Cons (a, (Cons ((Lit.neg c), Nil)))))
    else Cons (l, (Cons (a, (Cons (c, Nil)))))
  | _ -> C._true

(** val check_ImmBuildDef : Form.form array -> S.t -> Uint63.t -> C.t **)

let check_ImmBuildDef t_form s pos =
  match S.get s pos with
  | Nil -> C._true
  | Cons (l, l0) ->
    (match l0 with
     | Nil ->
       (match get t_form (Lit.blit l) with
        | Form.Fand args ->
          if Lit.is_pos l then C._true else map Lit.neg (to_list args)
        | Form.For args -> if Lit.is_pos l then to_list args else C._true
        | Form.Fimp args ->
          if eqb0 (length0 args) (Uint63.of_int (0))
          then C._true
          else if Lit.is_pos l
               then let args0 = or_of_imp args in to_list args0
               else C._true
        | Form.Fxor (a, b) ->
          if Lit.is_pos l
          then Cons (a, (Cons (b, Nil)))
          else Cons (a, (Cons ((Lit.neg b), Nil)))
        | Form.Fiff (a, b) ->
          if Lit.is_pos l
          then Cons (a, (Cons ((Lit.neg b), Nil)))
          else Cons ((Lit.neg a), (Cons ((Lit.neg b), Nil)))
        | Form.Fite (a, _, c) ->
          if Lit.is_pos l
          then Cons (a, (Cons (c, Nil)))
          else Cons (a, (Cons ((Lit.neg c), Nil)))
        | _ -> C._true)
     | Cons (_, _) -> C._true)

(** val check_BuildDef2 : Form.form array -> Uint63.t -> C.t **)

let check_BuildDef2 t_form l =
  match get t_form (Lit.blit l) with
  | Form.Fxor (a, b) ->
    if Lit.is_pos l
    then Cons (l, (Cons ((Lit.neg a), (Cons (b, Nil)))))
    else Cons (l, (Cons ((Lit.neg a), (Cons ((Lit.neg b), Nil)))))
  | Form.Fiff (a, b) ->
    if Lit.is_pos l
    then Cons (l, (Cons (a, (Cons (b, Nil)))))
    else Cons (l, (Cons ((Lit.neg a), (Cons (b, Nil)))))
  | Form.Fite (a, b, _) ->
    if Lit.is_pos l
    then Cons (l, (Cons ((Lit.neg a), (Cons ((Lit.neg b), Nil)))))
    else Cons (l, (Cons ((Lit.neg a), (Cons (b, Nil)))))
  | _ -> C._true

(** val check_ImmBuildDef2 : Form.form array -> S.t -> Uint63.t -> C.t **)

let check_ImmBuildDef2 t_form s pos =
  match S.get s pos with
  | Nil -> C._true
  | Cons (l, l0) ->
    (match l0 with
     | Nil ->
       (match get t_form (Lit.blit l) with
        | Form.Fxor (a, b) ->
          if Lit.is_pos l
          then Cons ((Lit.neg a), (Cons ((Lit.neg b), Nil)))
          else Cons ((Lit.neg a), (Cons (b, Nil)))
        | Form.Fiff (a, b) ->
          if Lit.is_pos l
          then Cons ((Lit.neg a), (Cons (b, Nil)))
          else Cons (a, (Cons (b, Nil)))
        | Form.Fite (a, b, _) ->
          if Lit.is_pos l
          then Cons ((Lit.neg a), (Cons (b, Nil)))
          else Cons ((Lit.neg a), (Cons ((Lit.neg b), Nil)))
        | _ -> C._true)
     | Cons (_, _) -> C._true)

(** val check_BuildProj : Form.form array -> Uint63.t -> Uint63.t -> C.t **)

let check_BuildProj t_form l i =
  let x = Lit.blit l in
  (match get t_form x with
   | Form.Fand args ->
     if ltb0 i (length0 args)
     then Cons ((Lit.nlit x), (Cons ((get args i), Nil)))
     else C._true
   | Form.For args ->
     if ltb0 i (length0 args)
     then Cons ((Lit.lit x), (Cons ((Lit.neg (get args i)), Nil)))
     else C._true
   | Form.Fimp args ->
     let len = length0 args in
     if ltb0 i len
     then if eqb0 i (sub0 len (Uint63.of_int (1)))
          then Cons ((Lit.lit x), (Cons ((Lit.neg (get args i)), Nil)))
          else Cons ((Lit.lit x), (Cons ((get args i), Nil)))
     else C._true
   | _ -> C._true)

(** val check_ImmBuildProj :
    Form.form array -> S.t -> Uint63.t -> Uint63.t -> C.t **)

let check_ImmBuildProj t_form s pos i =
  match S.get s pos with
  | Nil -> C._true
  | Cons (l, l0) ->
    (match l0 with
     | Nil ->
       let x = Lit.blit l in
       (match get t_form x with
        | Form.Fand args ->
          if if ltb0 i (length0 args) then Lit.is_pos l else false
          then Cons ((get args i), Nil)
          else C._true
        | Form.For args ->
          if if ltb0 i (length0 args) then negb (Lit.is_pos l) else false
          then Cons ((Lit.neg (get args i)), Nil)
          else C._true
        | Form.Fimp args ->
          let len = length0 args in
          if if ltb0 i len then negb (Lit.is_pos l) else false
          then if eqb0 i (sub0 len (Uint63.of_int (1)))
               then Cons ((Lit.neg (get args i)), Nil)
               else Cons ((get args i), Nil)
          else C._true
        | _ -> C._true)
     | Cons (_, _) -> C._true)

(** val check_bbc : Form.form array -> bool list -> Uint63.t list -> bool **)

let rec check_bbc t_form a_bv bs =
  match a_bv with
  | Nil -> (match bs with
            | Nil -> true
            | Cons (_, _) -> false)
  | Cons (v, a_bv0) ->
    (match bs with
     | Nil -> false
     | Cons (b, bs0) ->
       if Lit.is_pos b
       then (match get t_form (Lit.blit b) with
             | Form.Ftrue -> if v then check_bbc t_form a_bv0 bs0 else false
             | Form.Ffalse -> if v then false else check_bbc t_form a_bv0 bs0
             | _ -> false)
       else false)

(** val check_bbConst :
    Atom.atom array -> Form.form array -> Uint63.t -> C.t **)

let check_bbConst t_atom t_form lres =
  if Lit.is_pos lres
  then (match get t_form (Lit.blit lres) with
        | Form.FbbT (a, bs) ->
          (match get t_atom a with
           | Atom.Acop c ->
             (match c with
              | Atom.CO_BV (bv, n0) ->
                if if check_bbc t_form bv bs
                   then N.eqb (N.of_nat (length bv)) n0
                   else false
                then Cons (lres, Nil)
                else C._true
              | _ -> C._true)
           | _ -> C._true)
        | _ -> C._true)
  else C._true

(** val check_bb :
    Atom.atom array -> Form.form array -> Uint63.t -> Uint63.t list -> nat ->
    nat -> bool **)

let rec check_bb t_atom t_form a bs i n0 =
  match bs with
  | Nil -> Nat.eqb i n0
  | Cons (b, bs0) ->
    if Lit.is_pos b
    then (match get t_form (Lit.blit b) with
          | Form.Fatom a' ->
            (match get t_atom a' with
             | Atom.Auop (u, a'0) ->
               (match u with
                | Atom.UO_BVbitOf (n1, p) ->
                  if if if eqb0 a a'0 then Nat.eqb i p else false
                     then Nat.eqb n0 (N.to_nat n1)
                     else false
                  then check_bb t_atom t_form a bs0 (S i) n0
                  else false
                | _ -> false)
             | _ -> false)
          | _ -> false)
    else false

(** val check_bbVar :
    Atom.atom array -> Form.form array -> Uint63.t -> C.t **)

let check_bbVar t_atom t_form lres =
  if Lit.is_pos lres
  then (match get t_form (Lit.blit lres) with
        | Form.FbbT (a, bs) ->
          if check_bb t_atom t_form a bs O (length bs)
          then Cons (lres, Nil)
          else C._true
        | _ -> C._true)
  else C._true

(** val check_not : Uint63.t list -> Uint63.t list -> bool **)

let rec check_not bs br =
  match bs with
  | Nil -> (match br with
            | Nil -> true
            | Cons (_, _) -> false)
  | Cons (b, bs0) ->
    (match br with
     | Nil -> false
     | Cons (r, br0) ->
       if eqb0 r (Lit.neg b) then check_not bs0 br0 else false)

(** val check_bbNot :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t -> C.t **)

let check_bbNot t_atom t_form s pos lres =
  match S.get s pos with
  | Nil -> C._true
  | Cons (l, l0) ->
    (match l0 with
     | Nil ->
       if if Lit.is_pos l then Lit.is_pos lres else false
       then (match get t_form (Lit.blit l) with
             | Form.FbbT (a, bs) ->
               (match get t_form (Lit.blit lres) with
                | Form.FbbT (r, br) ->
                  (match get t_atom r with
                   | Atom.Auop (u, a') ->
                     (match u with
                      | Atom.UO_BVnot n0 ->
                        if if if eqb0 a a' then check_not bs br else false
                           then N.eqb (N.of_nat (length bs)) n0
                           else false
                        then Cons (lres, Nil)
                        else C._true
                      | _ -> C._true)
                   | _ -> C._true)
                | _ -> C._true)
             | _ -> C._true)
       else C._true
     | Cons (_, _) -> C._true)

(** val check_symopp :
    Form.form array -> Uint63.t list -> Uint63.t list -> Uint63.t list ->
    Atom.binop -> bool **)

let rec check_symopp t_form bs1 bs2 bsres bvop =
  match bs1 with
  | Nil ->
    (match bs2 with
     | Nil -> (match bsres with
               | Nil -> true
               | Cons (_, _) -> false)
     | Cons (_, _) -> false)
  | Cons (b1, bs3) ->
    (match bs2 with
     | Nil -> false
     | Cons (b2, bs4) ->
       (match bsres with
        | Nil -> false
        | Cons (bres, bsres0) ->
          if Lit.is_pos bres
          then (match get t_form (Lit.blit bres) with
                | Form.Fand args ->
                  (match bvop with
                   | Atom.BO_BVand n0 ->
                     let ires =
                       if eqb0 (length0 args) (Uint63.of_int (2))
                       then let a1 = get args (Uint63.of_int (0)) in
                            let a2 = get args (Uint63.of_int (1)) in
                            if if eqb0 a1 b1 then eqb0 a2 b2 else false
                            then true
                            else if eqb0 a1 b2 then eqb0 a2 b1 else false
                       else false
                     in
                     let bvop0 = Atom.BO_BVand (N.sub n0 (Npos XH)) in
                     if ires
                     then check_symopp t_form bs3 bs4 bsres0 bvop0
                     else false
                   | _ ->
                     let ires = false in
                     if ires
                     then check_symopp t_form bs3 bs4 bsres0 bvop
                     else false)
                | Form.For args ->
                  (match bvop with
                   | Atom.BO_BVor n0 ->
                     let ires =
                       if eqb0 (length0 args) (Uint63.of_int (2))
                       then let a1 = get args (Uint63.of_int (0)) in
                            let a2 = get args (Uint63.of_int (1)) in
                            if if eqb0 a1 b1 then eqb0 a2 b2 else false
                            then true
                            else if eqb0 a1 b2 then eqb0 a2 b1 else false
                       else false
                     in
                     let bvop0 = Atom.BO_BVor (N.sub n0 (Npos XH)) in
                     if ires
                     then check_symopp t_form bs3 bs4 bsres0 bvop0
                     else false
                   | _ ->
                     let ires = false in
                     if ires
                     then check_symopp t_form bs3 bs4 bsres0 bvop
                     else false)
                | Form.Fxor (a1, a2) ->
                  (match bvop with
                   | Atom.BO_BVxor n0 ->
                     let ires =
                       if if eqb0 a1 b1 then eqb0 a2 b2 else false
                       then true
                       else if eqb0 a1 b2 then eqb0 a2 b1 else false
                     in
                     let bvop0 = Atom.BO_BVxor (N.sub n0 (Npos XH)) in
                     if ires
                     then check_symopp t_form bs3 bs4 bsres0 bvop0
                     else false
                   | _ ->
                     let ires = false in
                     if ires
                     then check_symopp t_form bs3 bs4 bsres0 bvop
                     else false)
                | Form.Fiff (a1, a2) ->
                  (match bvop with
                   | Atom.BO_eq t0 ->
                     (match t0 with
                      | Typ.TBV n0 ->
                        let ires =
                          if if eqb0 a1 b1 then eqb0 a2 b2 else false
                          then true
                          else if eqb0 a1 b2 then eqb0 a2 b1 else false
                        in
                        let bvop0 = Atom.BO_eq (Typ.TBV n0) in
                        if ires
                        then check_symopp t_form bs3 bs4 bsres0 bvop0
                        else false
                      | _ ->
                        let ires = false in
                        if ires
                        then check_symopp t_form bs3 bs4 bsres0 bvop
                        else false)
                   | _ ->
                     let ires = false in
                     if ires
                     then check_symopp t_form bs3 bs4 bsres0 bvop
                     else false)
                | _ ->
                  let ires = false in
                  if ires
                  then check_symopp t_form bs3 bs4 bsres0 bvop
                  else false)
          else false))

(** val check_bbOp :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t ->
    Uint63.t -> C.t **)

let check_bbOp t_atom t_form s pos1 pos2 lres =
  match S.get s pos1 with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       (match S.get s pos2 with
        | Nil -> C._true
        | Cons (l2, l0) ->
          (match l0 with
           | Nil ->
             if if if Lit.is_pos l1 then Lit.is_pos l2 else false
                then Lit.is_pos lres
                else false
             then (match get t_form (Lit.blit l1) with
                   | Form.FbbT (a1, bs1) ->
                     (match get t_form (Lit.blit l2) with
                      | Form.FbbT (a2, bs2) ->
                        (match get t_form (Lit.blit lres) with
                         | Form.FbbT (a, bsres) ->
                           (match get t_atom a with
                            | Atom.Abop (b, a1', a2') ->
                              (match b with
                               | Atom.BO_BVand n0 ->
                                 if if if if if eqb0 a1 a1'
                                             then eqb0 a2 a2'
                                             else false
                                          then true
                                          else if eqb0 a1 a2'
                                               then eqb0 a2 a1'
                                               else false
                                       then check_symopp t_form bs1 bs2 bsres
                                              (Atom.BO_BVand n0)
                                       else false
                                    then N.eqb (N.of_nat (length bs1)) n0
                                    else false
                                 then Cons (lres, Nil)
                                 else C._true
                               | Atom.BO_BVor n0 ->
                                 if if if if if eqb0 a1 a1'
                                             then eqb0 a2 a2'
                                             else false
                                          then true
                                          else if eqb0 a1 a2'
                                               then eqb0 a2 a1'
                                               else false
                                       then check_symopp t_form bs1 bs2 bsres
                                              (Atom.BO_BVor n0)
                                       else false
                                    then N.eqb (N.of_nat (length bs1)) n0
                                    else false
                                 then Cons (lres, Nil)
                                 else C._true
                               | Atom.BO_BVxor n0 ->
                                 if if if if if eqb0 a1 a1'
                                             then eqb0 a2 a2'
                                             else false
                                          then true
                                          else if eqb0 a1 a2'
                                               then eqb0 a2 a1'
                                               else false
                                       then check_symopp t_form bs1 bs2 bsres
                                              (Atom.BO_BVxor n0)
                                       else false
                                    then N.eqb (N.of_nat (length bs1)) n0
                                    else false
                                 then Cons (lres, Nil)
                                 else C._true
                               | _ -> C._true)
                            | _ -> C._true)
                         | _ -> C._true)
                      | _ -> C._true)
                   | _ -> C._true)
             else C._true
           | Cons (_, _) -> C._true))
     | Cons (_, _) -> C._true)

(** val check_eq :
    Form.form array -> Uint63.t list -> Uint63.t list -> Uint63.t list -> bool **)

let rec check_eq t_form bs1 bs2 bsres =
  match bs1 with
  | Nil ->
    (match bs2 with
     | Nil -> (match bsres with
               | Nil -> true
               | Cons (_, _) -> false)
     | Cons (_, _) -> false)
  | Cons (b1, bs3) ->
    (match bs2 with
     | Nil -> false
     | Cons (b2, bs4) ->
       (match bsres with
        | Nil -> false
        | Cons (bres, bsres0) ->
          (match bs3 with
           | Nil ->
             if Lit.is_pos bres
             then let ires =
                    match get t_form (Lit.blit bres) with
                    | Form.Fiff (a1, a2) ->
                      if if eqb0 a1 b1 then eqb0 a2 b2 else false
                      then true
                      else if eqb0 a1 b2 then eqb0 a2 b1 else false
                    | _ -> false
                  in
                  if ires then check_eq t_form bs3 bs4 bsres0 else false
             else false
           | Cons (_, _) ->
             (match bs4 with
              | Nil ->
                if Lit.is_pos bres
                then let ires =
                       match get t_form (Lit.blit bres) with
                       | Form.Fiff (a1, a2) ->
                         if if eqb0 a1 b1 then eqb0 a2 b2 else false
                         then true
                         else if eqb0 a1 b2 then eqb0 a2 b1 else false
                       | _ -> false
                     in
                     if ires then check_eq t_form bs3 bs4 bsres0 else false
                else false
              | Cons (_, _) ->
                (match bsres0 with
                 | Nil ->
                   if Lit.is_pos bres
                   then (match get t_form (Lit.blit bres) with
                         | Form.Fand args ->
                           (match to_list args with
                            | Nil -> false
                            | Cons (bres0, bsres1) ->
                              if Lit.is_pos bres0
                              then let ires =
                                     match get t_form (Lit.blit bres0) with
                                     | Form.Fiff (a1, a2) ->
                                       if if eqb0 a1 b1
                                          then eqb0 a2 b2
                                          else false
                                       then true
                                       else if eqb0 a1 b2
                                            then eqb0 a2 b1
                                            else false
                                     | _ -> false
                                   in
                                   if ires
                                   then check_eq t_form bs3 bs4 bsres1
                                   else false
                              else false)
                         | _ -> false)
                   else false
                 | Cons (_, _) ->
                   if Lit.is_pos bres
                   then let ires =
                          match get t_form (Lit.blit bres) with
                          | Form.Fiff (a1, a2) ->
                            if if eqb0 a1 b1 then eqb0 a2 b2 else false
                            then true
                            else if eqb0 a1 b2 then eqb0 a2 b1 else false
                          | _ -> false
                        in
                        if ires then check_eq t_form bs3 bs4 bsres0 else false
                   else false)))))

(** val check_bbEq :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t ->
    Uint63.t -> C.t **)

let check_bbEq t_atom t_form s pos1 pos2 lres =
  match S.get s pos1 with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       (match S.get s pos2 with
        | Nil -> C._true
        | Cons (l2, l0) ->
          (match l0 with
           | Nil ->
             if if if Lit.is_pos l1 then Lit.is_pos l2 else false
                then Lit.is_pos lres
                else false
             then (match get t_form (Lit.blit l1) with
                   | Form.FbbT (a1, bs1) ->
                     (match get t_form (Lit.blit l2) with
                      | Form.FbbT (a2, bs2) ->
                        (match get t_form (Lit.blit lres) with
                         | Form.Fiff (leq, lbb) ->
                           if eqb (Lit.is_pos leq) (Lit.is_pos lbb)
                           then (match get t_form (Lit.blit leq) with
                                 | Form.Fatom a ->
                                   (match get t_atom a with
                                    | Atom.Abop (b, a1', a2') ->
                                      (match b with
                                       | Atom.BO_eq t0 ->
                                         (match t0 with
                                          | Typ.TBV n0 ->
                                            if if if if if eqb0 a1 a1'
                                                        then eqb0 a2 a2'
                                                        else false
                                                     then true
                                                     else if eqb0 a1 a2'
                                                          then eqb0 a2 a1'
                                                          else false
                                                  then check_eq t_form bs1
                                                         bs2 (Cons (lbb, Nil))
                                                  else false
                                               then N.eqb
                                                      (N.of_nat (length bs1))
                                                      n0
                                               else false
                                            then Cons (lres, Nil)
                                            else C._true
                                          | _ -> C._true)
                                       | _ -> C._true)
                                    | _ -> C._true)
                                 | _ -> C._true)
                           else C._true
                         | _ -> C._true)
                      | _ -> C._true)
                   | _ -> C._true)
             else C._true
           | Cons (_, _) -> C._true))
     | Cons (_, _) -> C._true)

type carry =
| Clit of Uint63.t
| Cand of carry * carry
| Cxor of carry * carry
| Cor of carry * carry
| Ciff of carry * carry

(** val eq_carry_lit : Form.form array -> carry -> Uint63.t -> bool **)

let rec eq_carry_lit t_form carry0 c =
  if Lit.is_pos c
  then (match carry0 with
        | Clit l -> eqb0 l c
        | Cand (c1, c2) ->
          (match get t_form (Lit.blit c) with
           | Form.Fand args ->
             if eqb0 (length0 args) (Uint63.of_int (2))
             then if eq_carry_lit t_form c1 (get args (Uint63.of_int (0)))
                  then eq_carry_lit t_form c2 (get args (Uint63.of_int (1)))
                  else false
             else false
           | _ -> false)
        | Cxor (c1, c2) ->
          (match get t_form (Lit.blit c) with
           | Form.Fxor (a1, a2) ->
             if eq_carry_lit t_form c1 a1
             then eq_carry_lit t_form c2 a2
             else false
           | _ -> false)
        | Cor (c1, c2) ->
          (match get t_form (Lit.blit c) with
           | Form.For args ->
             if eqb0 (length0 args) (Uint63.of_int (2))
             then if eq_carry_lit t_form c1 (get args (Uint63.of_int (0)))
                  then eq_carry_lit t_form c2 (get args (Uint63.of_int (1)))
                  else false
             else false
           | _ -> false)
        | Ciff (c1, c2) ->
          (match get t_form (Lit.blit c) with
           | Form.Fiff (a1, a2) ->
             if eq_carry_lit t_form c1 a1
             then eq_carry_lit t_form c2 a2
             else false
           | _ -> false))
  else (match carry0 with
        | Clit l -> eqb0 l c
        | _ -> false)

(** val check_add :
    Form.form array -> Uint63.t list -> Uint63.t list -> Uint63.t list ->
    carry -> bool **)

let rec check_add t_form bs1 bs2 bsres carry0 =
  match bs1 with
  | Nil ->
    (match bs2 with
     | Nil -> (match bsres with
               | Nil -> true
               | Cons (_, _) -> false)
     | Cons (_, _) -> false)
  | Cons (b1, bs3) ->
    (match bs2 with
     | Nil -> false
     | Cons (b2, bs4) ->
       (match bsres with
        | Nil -> false
        | Cons (bres, bsres0) ->
          if Lit.is_pos bres
          then (match get t_form (Lit.blit bres) with
                | Form.Fxor (xab, c) ->
                  if Lit.is_pos xab
                  then (match get t_form (Lit.blit xab) with
                        | Form.Fxor (a1, a2) ->
                          let carry' = Cor ((Cand ((Clit b1), (Clit b2))),
                            (Cand ((Cxor ((Clit b1), (Clit b2))), carry0)))
                          in
                          if if if if eqb0 a1 b1 then eqb0 a2 b2 else false
                                then true
                                else if eqb0 a1 b2 then eqb0 a2 b1 else false
                             then eq_carry_lit t_form carry0 c
                             else false
                          then check_add t_form bs3 bs4 bsres0 carry'
                          else false
                        | _ -> false)
                  else false
                | _ -> false)
          else false))

(** val check_bbAdd :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t ->
    Uint63.t -> C.t **)

let check_bbAdd t_atom t_form s pos1 pos2 lres =
  match S.get s pos1 with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       (match S.get s pos2 with
        | Nil -> C._true
        | Cons (l2, l0) ->
          (match l0 with
           | Nil ->
             if if if Lit.is_pos l1 then Lit.is_pos l2 else false
                then Lit.is_pos lres
                else false
             then (match get t_form (Lit.blit l1) with
                   | Form.FbbT (a1, bs1) ->
                     (match get t_form (Lit.blit l2) with
                      | Form.FbbT (a2, bs2) ->
                        (match get t_form (Lit.blit lres) with
                         | Form.FbbT (a, bsres) ->
                           (match get t_atom a with
                            | Atom.Abop (b, a1', a2') ->
                              (match b with
                               | Atom.BO_BVadd n0 ->
                                 if if if if if eqb0 a1 a1'
                                             then eqb0 a2 a2'
                                             else false
                                          then true
                                          else if eqb0 a1 a2'
                                               then eqb0 a2 a1'
                                               else false
                                       then check_add t_form bs1 bs2 bsres
                                              (Clit Lit._false)
                                       else false
                                    then N.eqb (N.of_nat (length bs1)) n0
                                    else false
                                 then Cons (lres, Nil)
                                 else C._true
                               | _ -> C._true)
                            | _ -> C._true)
                         | _ -> C._true)
                      | _ -> C._true)
                   | _ -> C._true)
             else C._true
           | Cons (_, _) -> C._true))
     | Cons (_, _) -> C._true)

(** val check_neg :
    Form.form array -> Uint63.t list -> Uint63.t list -> bool **)

let check_neg t_form bs br =
  let z0 = map (fun _ -> Lit._false) bs in
  let nbs = map Lit.neg bs in check_add t_form nbs z0 br (Clit Lit._true)

(** val check_bbNeg :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t -> C.t **)

let check_bbNeg t_atom t_form s pos lres =
  match S.get s pos with
  | Nil -> C._true
  | Cons (l, l0) ->
    (match l0 with
     | Nil ->
       if if Lit.is_pos l then Lit.is_pos lres else false
       then (match get t_form (Lit.blit l) with
             | Form.FbbT (a, bs) ->
               (match get t_form (Lit.blit lres) with
                | Form.FbbT (r, br) ->
                  (match get t_atom r with
                   | Atom.Auop (u, a') ->
                     (match u with
                      | Atom.UO_BVneg n0 ->
                        if if if eqb0 a a'
                              then check_neg t_form bs br
                              else false
                           then N.eqb (N.of_nat (length bs)) n0
                           else false
                        then Cons (lres, Nil)
                        else C._true
                      | _ -> C._true)
                   | _ -> C._true)
                | _ -> C._true)
             | _ -> C._true)
       else C._true
     | Cons (_, _) -> C._true)

(** val and_with_bit : Uint63.t list -> Uint63.t -> carry list **)

let rec and_with_bit a bt =
  match a with
  | Nil -> Nil
  | Cons (ai, a') ->
    Cons ((Cand ((Clit bt), (Clit ai))), (and_with_bit a' bt))

(** val mult_step_k_h :
    carry list -> carry list -> carry -> z -> carry list **)

let rec mult_step_k_h a b c k =
  match a with
  | Nil -> Nil
  | Cons (ai, a') ->
    (match b with
     | Nil -> Cons (ai, (mult_step_k_h a' b c k))
     | Cons (bi, b') ->
       if Z.ltb (Z.sub k (Zpos XH)) Z0
       then let carry_out = Cor ((Cand (ai, bi)), (Cand ((Cxor (ai, bi)), c)))
            in
            let curr = Cxor ((Cxor (ai, bi)), c) in
            Cons (curr, (mult_step_k_h a' b' carry_out (Z.sub k (Zpos XH))))
       else Cons (ai, (mult_step_k_h a' b c (Z.sub k (Zpos XH)))))

(** val mult_step :
    Uint63.t list -> Uint63.t list -> carry list -> nat -> nat -> carry list **)

let rec mult_step a b res k k' =
  let ak = firstn (S k') a in
  let b' = and_with_bit ak (nth k b Lit._false) in
  let res' = mult_step_k_h res b' (Clit Lit._false) (Z.of_nat k) in
  (match k' with
   | O -> res'
   | S pk' -> mult_step a b res' (S k) pk')

(** val bblast_bvmult :
    Uint63.t list -> Uint63.t list -> nat -> carry list **)

let bblast_bvmult a b n0 =
  let res = and_with_bit a (nth O b Lit._false) in
  (match n0 with
   | O -> res
   | S n1 -> (match n1 with
              | O -> res
              | S k -> mult_step a b res (S O) k))

(** val check_mult :
    Form.form array -> Uint63.t list -> Uint63.t list -> Uint63.t list -> bool **)

let check_mult t_form bs1 bs2 bsres =
  if Nat.eqb (length bs1) (length bs2)
  then let bvm12 = bblast_bvmult bs1 bs2 (length bs1) in
       forallb2 (eq_carry_lit t_form) bvm12 bsres
  else false

(** val check_bbMult :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t ->
    Uint63.t -> C.t **)

let check_bbMult t_atom t_form s pos1 pos2 lres =
  match S.get s pos1 with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       (match S.get s pos2 with
        | Nil -> C._true
        | Cons (l2, l0) ->
          (match l0 with
           | Nil ->
             if if if Lit.is_pos l1 then Lit.is_pos l2 else false
                then Lit.is_pos lres
                else false
             then (match get t_form (Lit.blit l1) with
                   | Form.FbbT (a1, bs1) ->
                     (match get t_form (Lit.blit l2) with
                      | Form.FbbT (a2, bs2) ->
                        (match get t_form (Lit.blit lres) with
                         | Form.FbbT (a, bsres) ->
                           (match get t_atom a with
                            | Atom.Abop (b, a1', a2') ->
                              (match b with
                               | Atom.BO_BVmult n0 ->
                                 if if if if eqb0 a1 a1'
                                          then eqb0 a2 a2'
                                          else false
                                       then check_mult t_form bs1 bs2 bsres
                                       else false
                                    then N.eqb (N.of_nat (length bs1)) n0
                                    else false
                                 then Cons (lres, Nil)
                                 else C._true
                               | _ -> C._true)
                            | _ -> C._true)
                         | _ -> C._true)
                      | _ -> C._true)
                   | _ -> C._true)
             else C._true
           | Cons (_, _) -> C._true))
     | Cons (_, _) -> C._true)

(** val ult_big_endian_lit_list : Uint63.t list -> Uint63.t list -> carry **)

let rec ult_big_endian_lit_list bs1 bs2 =
  match bs1 with
  | Nil -> Clit Lit._false
  | Cons (xi, x') ->
    (match x' with
     | Nil ->
       (match bs2 with
        | Nil -> Clit Lit._false
        | Cons (yi, y') ->
          (match y' with
           | Nil -> Cand ((Clit (Lit.neg xi)), (Clit yi))
           | Cons (_, _) ->
             Cor ((Cand ((Ciff ((Clit xi), (Clit yi))),
               (ult_big_endian_lit_list x' y'))), (Cand ((Clit (Lit.neg xi)),
               (Clit yi))))))
     | Cons (_, _) ->
       (match bs2 with
        | Nil -> Clit Lit._false
        | Cons (yi, y') ->
          Cor ((Cand ((Ciff ((Clit xi), (Clit yi))),
            (ult_big_endian_lit_list x' y'))), (Cand ((Clit (Lit.neg xi)),
            (Clit yi))))))

(** val ult_lit_list : Uint63.t list -> Uint63.t list -> carry **)

let ult_lit_list x y =
  ult_big_endian_lit_list (rev x) (rev y)

(** val check_ult :
    Form.form array -> Uint63.t list -> Uint63.t list -> Uint63.t -> bool **)

let check_ult t_form bs1 bs2 bsres =
  if Lit.is_pos bsres
  then eq_carry_lit t_form (ult_lit_list bs1 bs2) bsres
  else false

(** val check_bbUlt :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t ->
    Uint63.t -> C.t **)

let check_bbUlt t_atom t_form s pos1 pos2 lres =
  match S.get s pos1 with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       (match S.get s pos2 with
        | Nil -> C._true
        | Cons (l2, l0) ->
          (match l0 with
           | Nil ->
             if if if Lit.is_pos l1 then Lit.is_pos l2 else false
                then Lit.is_pos lres
                else false
             then (match get t_form (Lit.blit l1) with
                   | Form.FbbT (a1, bs1) ->
                     (match get t_form (Lit.blit l2) with
                      | Form.FbbT (a2, bs2) ->
                        (match get t_form (Lit.blit lres) with
                         | Form.Fiff (llt, lbb) ->
                           if eqb (Lit.is_pos llt) (Lit.is_pos lbb)
                           then (match get t_form (Lit.blit llt) with
                                 | Form.Fatom a ->
                                   (match get t_atom a with
                                    | Atom.Abop (b, a1', a2') ->
                                      (match b with
                                       | Atom.BO_BVult n0 ->
                                         if if if if if eqb0 a1 a1'
                                                     then eqb0 a2 a2'
                                                     else false
                                                  then check_ult t_form bs1
                                                         bs2 lbb
                                                  else false
                                               then N.eqb
                                                      (N.of_nat (length bs1))
                                                      n0
                                               else false
                                            then N.eqb
                                                   (N.of_nat (length bs2)) n0
                                            else false
                                         then Cons (lres, Nil)
                                         else C._true
                                       | _ -> C._true)
                                    | _ -> C._true)
                                 | _ -> C._true)
                           else C._true
                         | _ -> C._true)
                      | _ -> C._true)
                   | _ -> C._true)
             else C._true
           | Cons (_, _) -> C._true))
     | Cons (_, _) -> C._true)

(** val slt_big_endian_lit_list : Uint63.t list -> Uint63.t list -> carry **)

let slt_big_endian_lit_list x y =
  match x with
  | Nil -> Clit Lit._false
  | Cons (xi, x') ->
    (match x' with
     | Nil ->
       (match y with
        | Nil -> Clit Lit._false
        | Cons (yi, y') ->
          (match y' with
           | Nil -> Cand ((Clit xi), (Clit (Lit.neg yi)))
           | Cons (_, _) ->
             Cor ((Cand ((Ciff ((Clit xi), (Clit yi))),
               (ult_big_endian_lit_list x' y'))), (Cand ((Clit xi), (Clit
               (Lit.neg yi)))))))
     | Cons (_, _) ->
       (match y with
        | Nil -> Clit Lit._false
        | Cons (yi, y') ->
          Cor ((Cand ((Ciff ((Clit xi), (Clit yi))),
            (ult_big_endian_lit_list x' y'))), (Cand ((Clit xi), (Clit
            (Lit.neg yi)))))))

(** val slt_lit_list : Uint63.t list -> Uint63.t list -> carry **)

let slt_lit_list x y =
  slt_big_endian_lit_list (rev x) (rev y)

(** val check_slt :
    Form.form array -> Uint63.t list -> Uint63.t list -> Uint63.t -> bool **)

let check_slt t_form bs1 bs2 bsres =
  if Lit.is_pos bsres
  then eq_carry_lit t_form (slt_lit_list bs1 bs2) bsres
  else false

(** val check_bbSlt :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t ->
    Uint63.t -> C.t **)

let check_bbSlt t_atom t_form s pos1 pos2 lres =
  match S.get s pos1 with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       (match S.get s pos2 with
        | Nil -> C._true
        | Cons (l2, l0) ->
          (match l0 with
           | Nil ->
             if if if Lit.is_pos l1 then Lit.is_pos l2 else false
                then Lit.is_pos lres
                else false
             then (match get t_form (Lit.blit l1) with
                   | Form.FbbT (a1, bs1) ->
                     (match get t_form (Lit.blit l2) with
                      | Form.FbbT (a2, bs2) ->
                        (match get t_form (Lit.blit lres) with
                         | Form.Fiff (llt, lbb) ->
                           if eqb (Lit.is_pos llt) (Lit.is_pos lbb)
                           then (match get t_form (Lit.blit llt) with
                                 | Form.Fatom a ->
                                   (match get t_atom a with
                                    | Atom.Abop (b, a1', a2') ->
                                      (match b with
                                       | Atom.BO_BVslt n0 ->
                                         if if if if if eqb0 a1 a1'
                                                     then eqb0 a2 a2'
                                                     else false
                                                  then check_slt t_form bs1
                                                         bs2 lbb
                                                  else false
                                               then N.eqb
                                                      (N.of_nat (length bs1))
                                                      n0
                                               else false
                                            then N.eqb
                                                   (N.of_nat (length bs2)) n0
                                            else false
                                         then Cons (lres, Nil)
                                         else C._true
                                       | _ -> C._true)
                                    | _ -> C._true)
                                 | _ -> C._true)
                           else C._true
                         | _ -> C._true)
                      | _ -> C._true)
                   | _ -> C._true)
             else C._true
           | Cons (_, _) -> C._true))
     | Cons (_, _) -> C._true)

(** val lit_to_carry : Uint63.t list -> carry list **)

let rec lit_to_carry = function
| Nil -> Nil
| Cons (xbs, xsbs) -> Cons ((Clit xbs), (lit_to_carry xsbs))

(** val check_concat :
    Form.form array -> Uint63.t list -> Uint63.t list -> Uint63.t list -> bool **)

let check_concat t_form bs1 bs2 bsres =
  forallb2 (eq_carry_lit t_form) (lit_to_carry (app bs2 bs1)) bsres

(** val check_bbConcat :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t ->
    Uint63.t -> C.t **)

let check_bbConcat t_atom t_form s pos1 pos2 lres =
  match S.get s pos1 with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       (match S.get s pos2 with
        | Nil -> C._true
        | Cons (l2, l0) ->
          (match l0 with
           | Nil ->
             if if if Lit.is_pos l1 then Lit.is_pos l2 else false
                then Lit.is_pos lres
                else false
             then (match get t_form (Lit.blit l1) with
                   | Form.FbbT (a1, bs1) ->
                     (match get t_form (Lit.blit l2) with
                      | Form.FbbT (a2, bs2) ->
                        (match get t_form (Lit.blit lres) with
                         | Form.FbbT (a, bsres) ->
                           (match get t_atom a with
                            | Atom.Abop (b, a1', a2') ->
                              (match b with
                               | Atom.BO_BVconcat (n0, m) ->
                                 if if if if if eqb0 a1 a1'
                                             then eqb0 a2 a2'
                                             else false
                                          then check_concat t_form bs1 bs2
                                                 bsres
                                          else false
                                       then N.eqb (N.of_nat (length bs1)) n0
                                       else false
                                    then N.eqb (N.of_nat (length bs2)) m
                                    else false
                                 then Cons (lres, Nil)
                                 else C._true
                               | _ -> C._true)
                            | _ -> C._true)
                         | _ -> C._true)
                      | _ -> C._true)
                   | _ -> C._true)
             else C._true
           | Cons (_, _) -> C._true))
     | Cons (_, _) -> C._true)

(** val list_diseqb : bool list -> bool list -> bool **)

let rec list_diseqb a b =
  match a with
  | Nil -> (match b with
            | Nil -> false
            | Cons (_, _) -> true)
  | Cons (xa, xsa) ->
    (match b with
     | Nil -> true
     | Cons (xb, xsb) ->
       if eqb xa false
       then if eqb xb false then list_diseqb xsa xsb else true
       else if eqb xb true then list_diseqb xsa xsb else true)

(** val check_bbDiseq :
    Atom.atom array -> Form.form array -> Uint63.t -> C.t **)

let check_bbDiseq t_atom t_form lres =
  if negb (Lit.is_pos lres)
  then (match get t_form (Lit.blit lres) with
        | Form.Fatom f ->
          (match get t_atom f with
           | Atom.Abop (b0, a, b) ->
             (match b0 with
              | Atom.BO_eq t0 ->
                (match t0 with
                 | Typ.TBV n0 ->
                   (match get t_atom a with
                    | Atom.Acop c ->
                      (match c with
                       | Atom.CO_BV (bv1, n1) ->
                         (match get t_atom b with
                          | Atom.Acop c0 ->
                            (match c0 with
                             | Atom.CO_BV (bv2, n2) ->
                               if if if if if list_diseqb bv1 bv2
                                           then N.eqb (N.of_nat (length bv1))
                                                  n0
                                           else false
                                        then N.eqb (N.of_nat (length bv2)) n0
                                        else false
                                     then N.eqb n1 n0
                                     else false
                                  then N.eqb n2 n0
                                  else false
                               then Cons (lres, Nil)
                               else C._true
                             | _ -> C._true)
                          | _ -> C._true)
                       | _ -> C._true)
                    | _ -> C._true)
                 | _ -> C._true)
              | _ -> C._true)
           | _ -> C._true)
        | _ -> C._true)
  else C._true

(** val extract_lit : Uint63.t list -> nat -> nat -> Uint63.t list **)

let rec extract_lit x i j =
  match x with
  | Nil -> Nil
  | Cons (bx, x') ->
    (match i with
     | O -> (match j with
             | O -> Nil
             | S j' -> Cons (bx, (extract_lit x' i j')))
     | S i' -> (match j with
                | O -> Nil
                | S j' -> extract_lit x' i' j'))

(** val check_extract :
    Form.form array -> Uint63.t list -> Uint63.t list -> n -> n -> bool **)

let check_extract t_form bs bsres i j =
  if N.ltb (N.of_nat (length bs)) j
  then false
  else forallb2 (eq_carry_lit t_form)
         (lit_to_carry (extract_lit bs (N.to_nat i) (N.to_nat j))) bsres

(** val check_bbExtract :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t -> C.t **)

let check_bbExtract t_atom t_form s pos lres =
  match S.get s pos with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       if if Lit.is_pos l1 then Lit.is_pos lres else false
       then (match get t_form (Lit.blit l1) with
             | Form.FbbT (a1, bs) ->
               (match get t_form (Lit.blit lres) with
                | Form.FbbT (a, bsres) ->
                  (match get t_atom a with
                   | Atom.Auop (u, a1') ->
                     (match u with
                      | Atom.UO_BVextr (i, n0, n1) ->
                        if if if if eqb0 a1 a1'
                                 then check_extract t_form bs bsres i
                                        (N.add n0 i)
                                 else false
                              then N.eqb (N.of_nat (length bs)) n1
                              else false
                           then N.leb (N.add n0 i) n1
                           else false
                        then Cons (lres, Nil)
                        else C._true
                      | _ -> C._true)
                   | _ -> C._true)
                | _ -> C._true)
             | _ -> C._true)
       else C._true
     | Cons (_, _) -> C._true)

(** val extend_lit : Uint63.t list -> nat -> Uint63.t -> Uint63.t list **)

let rec extend_lit x i b =
  match i with
  | O -> x
  | S i' -> Cons (b, (extend_lit x i' b))

(** val zextend_lit : Uint63.t list -> nat -> Uint63.t list **)

let zextend_lit x i =
  extend_lit x i Lit._false

(** val check_zextend :
    Form.form array -> Uint63.t list -> Uint63.t list -> n -> bool **)

let check_zextend t_form bs bsres i =
  forallb2 (eq_carry_lit t_form) (lit_to_carry (zextend_lit bs (N.to_nat i)))
    bsres

(** val check_bbZextend :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t -> C.t **)

let check_bbZextend t_atom t_form s pos lres =
  match S.get s pos with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       if if Lit.is_pos l1 then Lit.is_pos lres else false
       then (match get t_form (Lit.blit l1) with
             | Form.FbbT (a1, bs) ->
               (match get t_form (Lit.blit lres) with
                | Form.FbbT (a, bsres) ->
                  (match get t_atom a with
                   | Atom.Auop (u, a1') ->
                     (match u with
                      | Atom.UO_BVzextn (n0, i) ->
                        if if if eqb0 a1 a1'
                              then check_zextend t_form bs bsres i
                              else false
                           then N.eqb (N.of_nat (length bs)) n0
                           else false
                        then Cons (lres, Nil)
                        else C._true
                      | _ -> C._true)
                   | _ -> C._true)
                | _ -> C._true)
             | _ -> C._true)
       else C._true
     | Cons (_, _) -> C._true)

(** val mk_list_lit_false : nat -> Uint63.t list **)

let rec mk_list_lit_false = function
| O -> Nil
| S t' -> Cons (Lit._false, (mk_list_lit_false t'))

(** val sextend_lit : Uint63.t list -> nat -> Uint63.t list **)

let sextend_lit x i =
  match x with
  | Nil -> mk_list_lit_false i
  | Cons (xb, _) -> extend_lit x i xb

(** val check_sextend :
    Form.form array -> Uint63.t list -> Uint63.t list -> n -> bool **)

let check_sextend t_form bs bsres i =
  forallb2 (eq_carry_lit t_form) (lit_to_carry (sextend_lit bs (N.to_nat i)))
    bsres

(** val check_bbSextend :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t -> C.t **)

let check_bbSextend t_atom t_form s pos lres =
  match S.get s pos with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       if if Lit.is_pos l1 then Lit.is_pos lres else false
       then (match get t_form (Lit.blit l1) with
             | Form.FbbT (a1, bs) ->
               (match get t_form (Lit.blit lres) with
                | Form.FbbT (a, bsres) ->
                  (match get t_atom a with
                   | Atom.Auop (u, a1') ->
                     (match u with
                      | Atom.UO_BVsextn (n0, i) ->
                        if if if eqb0 a1 a1'
                              then check_sextend t_form bs bsres i
                              else false
                           then N.eqb (N.of_nat (length bs)) n0
                           else false
                        then Cons (lres, Nil)
                        else C._true
                      | _ -> C._true)
                   | _ -> C._true)
                | _ -> C._true)
             | _ -> C._true)
       else C._true
     | Cons (_, _) -> C._true)

(** val _shl_lit_be : Uint63.t list -> Uint63.t list **)

let _shl_lit_be a = match a with
| Nil -> Nil
| Cons (_, _) -> Cons (Lit._false, (removelast a))

(** val nshl_lit_be : Uint63.t list -> nat -> Uint63.t list **)

let rec nshl_lit_be a = function
| O -> a
| S n' -> nshl_lit_be (_shl_lit_be a) n'

(** val shl_lit_be : Uint63.t list -> bool list -> Uint63.t list **)

let shl_lit_be a b =
  nshl_lit_be a (RAWBITVECTOR_LIST.list2nat_be b)

(** val check_shl :
    Form.form array -> Uint63.t list -> bool list -> Uint63.t list -> bool **)

let check_shl t_form bs1 bs2 bsres =
  if Nat.eqb (length bs1) (length bs2)
  then forallb2 (eq_carry_lit t_form) (lit_to_carry (shl_lit_be bs1 bs2))
         bsres
  else false

(** val check_bbShl :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t ->
    Uint63.t -> C.t **)

let check_bbShl t_atom t_form s pos1 pos2 lres =
  match S.get s pos1 with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       (match S.get s pos2 with
        | Nil -> C._true
        | Cons (l2, l0) ->
          (match l0 with
           | Nil ->
             if if if Lit.is_pos l1 then Lit.is_pos l2 else false
                then Lit.is_pos lres
                else false
             then (match get t_form (Lit.blit l1) with
                   | Form.FbbT (a1, bs1) ->
                     (match get t_form (Lit.blit l2) with
                      | Form.Fatom a2 ->
                        (match get t_form (Lit.blit lres) with
                         | Form.FbbT (a, bsres) ->
                           (match get t_atom a with
                            | Atom.Abop (b, a1', a2') ->
                              (match b with
                               | Atom.BO_BVshl n0 ->
                                 (match get t_atom a2 with
                                  | Atom.Acop c ->
                                    (match c with
                                     | Atom.CO_BV (bv2, n2) ->
                                       if if if if if if eqb0 a1 a1'
                                                      then eqb0 a2 a2'
                                                      else false
                                                   then check_shl t_form bs1
                                                          bv2 bsres
                                                   else false
                                                then N.eqb
                                                       (N.of_nat (length bs1))
                                                       n0
                                                else false
                                             then N.eqb
                                                    (N.of_nat (length bv2)) n0
                                             else false
                                          then N.eqb n2 n0
                                          else false
                                       then Cons (lres, Nil)
                                       else C._true
                                     | _ -> C._true)
                                  | _ -> C._true)
                               | _ -> C._true)
                            | _ -> C._true)
                         | _ -> C._true)
                      | _ -> C._true)
                   | _ -> C._true)
             else C._true
           | Cons (_, _) -> C._true))
     | Cons (_, _) -> C._true)

(** val _shr_lit_be : Uint63.t list -> Uint63.t list **)

let _shr_lit_be = function
| Nil -> Nil
| Cons (_, xsa) -> app xsa (Cons (Lit._false, Nil))

(** val nshr_lit_be : Uint63.t list -> nat -> Uint63.t list **)

let rec nshr_lit_be a = function
| O -> a
| S n' -> nshr_lit_be (_shr_lit_be a) n'

(** val shr_lit_be : Uint63.t list -> bool list -> Uint63.t list **)

let shr_lit_be a b =
  nshr_lit_be a (RAWBITVECTOR_LIST.list2nat_be b)

(** val check_shr :
    Form.form array -> Uint63.t list -> bool list -> Uint63.t list -> bool **)

let check_shr t_form bs1 bs2 bsres =
  if Nat.eqb (length bs1) (length bs2)
  then forallb2 (eq_carry_lit t_form) (lit_to_carry (shr_lit_be bs1 bs2))
         bsres
  else false

(** val check_bbShr :
    Atom.atom array -> Form.form array -> S.t -> Uint63.t -> Uint63.t ->
    Uint63.t -> C.t **)

let check_bbShr t_atom t_form s pos1 pos2 lres =
  match S.get s pos1 with
  | Nil -> C._true
  | Cons (l1, l) ->
    (match l with
     | Nil ->
       (match S.get s pos2 with
        | Nil -> C._true
        | Cons (l2, l0) ->
          (match l0 with
           | Nil ->
             if if if Lit.is_pos l1 then Lit.is_pos l2 else false
                then Lit.is_pos lres
                else false
             then (match get t_form (Lit.blit l1) with
                   | Form.FbbT (a1, bs1) ->
                     (match get t_form (Lit.blit l2) with
                      | Form.Fatom a2 ->
                        (match get t_form (Lit.blit lres) with
                         | Form.FbbT (a, bsres) ->
                           (match get t_atom a with
                            | Atom.Abop (b, a1', a2') ->
                              (match b with
                               | Atom.BO_BVshr n0 ->
                                 (match get t_atom a2 with
                                  | Atom.Acop c ->
                                    (match c with
                                     | Atom.CO_BV (bv2, n2) ->
                                       if if if if if if eqb0 a1 a1'
                                                      then eqb0 a2 a2'
                                                      else false
                                                   then check_shr t_form bs1
                                                          bv2 bsres
                                                   else false
                                                then N.eqb
                                                       (N.of_nat (length bs1))
                                                       n0
                                                else false
                                             then N.eqb
                                                    (N.of_nat (length bv2)) n0
                                             else false
                                          then N.eqb n2 n0
                                          else false
                                       then Cons (lres, Nil)
                                       else C._true
                                     | _ -> C._true)
                                  | _ -> C._true)
                               | _ -> C._true)
                            | _ -> C._true)
                         | _ -> C._true)
                      | _ -> C._true)
                   | _ -> C._true)
             else C._true
           | Cons (_, _) -> C._true))
     | Cons (_, _) -> C._true)

(** val check_roweq :
    Form.form array -> Atom.atom array -> Uint63.t -> C.t **)

let check_roweq t_form t_atom lres =
  if Lit.is_pos lres
  then (match get t_form (Lit.blit lres) with
        | Form.Fatom a ->
          (match get t_atom a with
           | Atom.Abop (b, xa, v) ->
             (match b with
              | Atom.BO_eq te ->
                (match get t_atom xa with
                 | Atom.Abop (b0, sa, i) ->
                   (match b0 with
                    | Atom.BO_select (ti1, te1) ->
                      (match get t_atom sa with
                       | Atom.Atop (t0, _, j, v2) ->
                         let Atom.TO_store (ti2, te2) = t0 in
                         if if if if if Typ.eqb ti1 ti2
                                     then Typ.eqb te te1
                                     else false
                                  then Typ.eqb te te2
                                  else false
                               then eqb0 i j
                               else false
                            then eqb0 v v2
                            else false
                         then Cons (lres, Nil)
                         else C._true
                       | _ -> C._true)
                    | _ -> C._true)
                 | _ -> C._true)
              | _ -> C._true)
           | _ -> C._true)
        | _ -> C._true)
  else C._true

(** val store_of_me :
    Atom.atom array -> Uint63.t -> Uint63.t ->
    ((Typ.coq_type * Typ.coq_type) * Uint63.t) option **)

let store_of_me t_atom a b =
  match get t_atom b with
  | Atom.Atop (t0, a', i, _) ->
    let Atom.TO_store (ti, te) = t0 in
    if eqb0 a' a then Some ((ti, te), i) else None
  | _ -> None

(** val check_rowneq :
    Form.form array -> Atom.atom array -> Uint63.t list -> C.t **)

let check_rowneq t_form t_atom cl = match cl with
| Nil -> C._true
| Cons (leqij, l) ->
  (match l with
   | Nil -> C._true
   | Cons (leqrow, l0) ->
     (match l0 with
      | Nil ->
        if if Lit.is_pos leqij then Lit.is_pos leqrow else false
        then (match get t_form (Lit.blit leqij) with
              | Form.Fatom eqij ->
                (match get t_form (Lit.blit leqrow) with
                 | Form.Fatom eqrow ->
                   (match get t_atom eqij with
                    | Atom.Abop (b, i, j) ->
                      (match b with
                       | Atom.BO_eq ti ->
                         (match get t_atom eqrow with
                          | Atom.Abop (b0, xa, x) ->
                            (match b0 with
                             | Atom.BO_eq te ->
                               (match get t_atom xa with
                                | Atom.Abop (b1, sa, j1) ->
                                  (match b1 with
                                   | Atom.BO_select (ti1, te1) ->
                                     (match get t_atom x with
                                      | Atom.Abop (b2, sa2, j2) ->
                                        (match b2 with
                                         | Atom.BO_select (ti2, te2) ->
                                           if if if if Typ.eqb ti ti1
                                                    then Typ.eqb ti ti2
                                                    else false
                                                 then Typ.eqb te te1
                                                 else false
                                              then Typ.eqb te te2
                                              else false
                                           then (match store_of_me t_atom sa
                                                         sa2 with
                                                 | Some p ->
                                                   let (p2, i1) = p in
                                                   let (ti3, te3) = p2 in
                                                   (match store_of_me t_atom
                                                            sa2 sa with
                                                    | Some _ -> C._true
                                                    | None ->
                                                      if if if Typ.eqb ti ti3
                                                            then Typ.eqb te
                                                                   te3
                                                            else false
                                                         then if if if 
                                                                    eqb0 i1 i
                                                                    then 
                                                                    eqb0 j1 j
                                                                    else false
                                                                 then 
                                                                   eqb0 j2 j
                                                                 else false
                                                              then true
                                                              else if 
                                                                    if 
                                                                    eqb0 i1 j
                                                                    then 
                                                                    eqb0 j1 i
                                                                    else false
                                                                   then 
                                                                    eqb0 j2 i
                                                                   else false
                                                         else false
                                                      then cl
                                                      else C._true)
                                                 | None ->
                                                   (match store_of_me t_atom
                                                            sa2 sa with
                                                    | Some p ->
                                                      let (p2, i1) = p in
                                                      let (ti3, te3) = p2 in
                                                      if if if Typ.eqb ti ti3
                                                            then Typ.eqb te
                                                                   te3
                                                            else false
                                                         then if if if 
                                                                    eqb0 i1 i
                                                                    then 
                                                                    eqb0 j1 j
                                                                    else false
                                                                 then 
                                                                   eqb0 j2 j
                                                                 else false
                                                              then true
                                                              else if 
                                                                    if 
                                                                    eqb0 i1 j
                                                                    then 
                                                                    eqb0 j1 i
                                                                    else false
                                                                   then 
                                                                    eqb0 j2 i
                                                                   else false
                                                         else false
                                                      then cl
                                                      else C._true
                                                    | None -> C._true))
                                           else C._true
                                         | _ -> C._true)
                                      | _ -> C._true)
                                   | _ -> C._true)
                                | _ -> C._true)
                             | _ -> C._true)
                          | _ -> C._true)
                       | _ -> C._true)
                    | _ -> C._true)
                 | _ -> C._true)
              | _ -> C._true)
        else C._true
      | Cons (_, _) -> C._true))

(** val eq_sel_sym :
    Atom.atom array -> Typ.coq_type -> Typ.coq_type -> Uint63.t -> Uint63.t
    -> Uint63.t -> Uint63.t -> bool **)

let eq_sel_sym t_atom ti te a b sela selb =
  match get t_atom sela with
  | Atom.Abop (b0, a', d1) ->
    (match b0 with
     | Atom.BO_select (ti1, te1) ->
       (match get t_atom selb with
        | Atom.Abop (b1, b', d2) ->
          (match b1 with
           | Atom.BO_select (ti2, te2) ->
             if if if if if if if Typ.eqb ti ti1
                               then Typ.eqb ti ti2
                               else false
                            then Typ.eqb te te1
                            else false
                         then Typ.eqb te te2
                         else false
                      then eqb0 a a'
                      else false
                   then eqb0 b b'
                   else false
                then eqb0 d1 d2
                else false
             then (match get t_atom d1 with
                   | Atom.Abop (b2, a3, b3) ->
                     (match b2 with
                      | Atom.BO_diffarray (ti3, te3) ->
                        if if if Typ.eqb ti ti3 then Typ.eqb te te3 else false
                           then eqb0 a3 a
                           else false
                        then eqb0 b3 b
                        else false
                      | _ -> false)
                   | _ -> false)
             else false
           | _ -> false)
        | _ -> false)
     | _ -> false)
  | _ -> false

(** val check_ext : Form.form array -> Atom.atom array -> Uint63.t -> C.t **)

let check_ext t_form t_atom lres =
  if Lit.is_pos lres
  then (match get t_form (Lit.blit lres) with
        | Form.For args ->
          if eqb0 (length0 args) (Uint63.of_int (2))
          then let l1 = get args (Uint63.of_int (0)) in
               let l2 = get args (Uint63.of_int (1)) in
               if if Lit.is_pos l1 then negb (Lit.is_pos l2) else false
               then (match get t_form (Lit.blit l1) with
                     | Form.Fatom eqa ->
                       (match get t_form (Lit.blit l2) with
                        | Form.Fatom eqsel ->
                          (match get t_atom eqa with
                           | Atom.Abop (b0, a, b) ->
                             (match b0 with
                              | Atom.BO_eq t0 ->
                                (match t0 with
                                 | Typ.TFArray (ti, te) ->
                                   (match get t_atom eqsel with
                                    | Atom.Abop (b1, sela, selb) ->
                                      (match b1 with
                                       | Atom.BO_eq te' ->
                                         if if Typ.eqb te te'
                                            then if eq_sel_sym t_atom ti te a
                                                      b sela selb
                                                 then true
                                                 else eq_sel_sym t_atom ti te
                                                        b a sela selb
                                            else false
                                         then Cons (lres, Nil)
                                         else C._true
                                       | _ -> C._true)
                                    | _ -> C._true)
                                 | _ -> C._true)
                              | _ -> C._true)
                           | _ -> C._true)
                        | _ -> C._true)
                     | _ -> C._true)
               else C._true
          else C._true
        | _ -> C._true)
  else C._true

type 'step _trace_ = 'step list * 'step

(** val _checker_ :
    (S.t -> 'a1 -> S.t) -> (C.t -> bool) -> S.t -> 'a1 _trace_ -> Uint63.t ->
    bool **)

let _checker_ check_step is_false0 s t0 confl =
  let s' = fold_left check_step (fst t0) s in is_false0 (S.get s' confl)

module Euf_Checker =
 struct
  (** val add_roots :
      S.t -> Uint63.t array -> Uint63.t array option -> S.t **)

  let add_roots s d = function
  | Some ur ->
    foldi (fun i s0 ->
      let c =
        if ltb0 (get ur i) (length0 d)
        then Cons ((get d (get ur i)), Nil)
        else C._true
      in
      S.set_clause s0 i c) (Uint63.of_int (0)) (length0 ur) s
  | None ->
    foldi (fun i s0 -> S.set_clause s0 i (Cons ((get d i), Nil)))
      (Uint63.of_int (0)) (length0 d) s
 end

module Checker_Ext =
 struct
  type step =
  | Res of Uint63.t * Uint63.t array
  | Weaken of Uint63.t * Uint63.t * Uint63.t list
  | ImmFlatten of Uint63.t * Uint63.t * Uint63.t
  | CTrue of Uint63.t
  | CFalse of Uint63.t
  | BuildDef of Uint63.t * Uint63.t
  | BuildDef2 of Uint63.t * Uint63.t
  | BuildProj of Uint63.t * Uint63.t * Uint63.t
  | ImmBuildDef of Uint63.t * Uint63.t
  | ImmBuildDef2 of Uint63.t * Uint63.t
  | ImmBuildProj of Uint63.t * Uint63.t * Uint63.t
  | EqTr of Uint63.t * Uint63.t * Uint63.t list
  | EqCgr of Uint63.t * Uint63.t * Uint63.t option list
  | EqCgrP of Uint63.t * Uint63.t * Uint63.t * Uint63.t option list
  | LiaMicromega of Uint63.t * Uint63.t list * zArithProof list
  | LiaDiseq of Uint63.t * Uint63.t
  | SplArith of Uint63.t * Uint63.t * Uint63.t * zArithProof list
  | SplDistinctElim of Uint63.t * Uint63.t * Uint63.t
  | BBVar of Uint63.t * Uint63.t
  | BBConst of Uint63.t * Uint63.t
  | BBOp of Uint63.t * Uint63.t * Uint63.t * Uint63.t
  | BBNot of Uint63.t * Uint63.t * Uint63.t
  | BBNeg of Uint63.t * Uint63.t * Uint63.t
  | BBAdd of Uint63.t * Uint63.t * Uint63.t * Uint63.t
  | BBConcat of Uint63.t * Uint63.t * Uint63.t * Uint63.t
  | BBMul of Uint63.t * Uint63.t * Uint63.t * Uint63.t
  | BBUlt of Uint63.t * Uint63.t * Uint63.t * Uint63.t
  | BBSlt of Uint63.t * Uint63.t * Uint63.t * Uint63.t
  | BBEq of Uint63.t * Uint63.t * Uint63.t * Uint63.t
  | BBDiseq of Uint63.t * Uint63.t
  | BBExtract of Uint63.t * Uint63.t * Uint63.t
  | BBZextend of Uint63.t * Uint63.t * Uint63.t
  | BBSextend of Uint63.t * Uint63.t * Uint63.t
  | BBShl of Uint63.t * Uint63.t * Uint63.t * Uint63.t
  | BBShr of Uint63.t * Uint63.t * Uint63.t * Uint63.t
  | RowEq of Uint63.t * Uint63.t
  | RowNeq of Uint63.t * C.t
  | Ext of Uint63.t * Uint63.t

  (** val step_checker :
      Atom.atom array -> Form.form array -> S.t -> step -> S.t **)

  let step_checker t_atom t_form s = function
  | Res (pos, res) -> S.set_resolve s pos res
  | Weaken (pos, cid, cl) -> S.set_weaken s pos cid cl
  | ImmFlatten (pos, cid, lf) ->
    S.set_clause s pos
      (check_flatten t_form (check_hatom t_atom) (check_neg_hatom t_atom) s
        cid lf)
  | CTrue pos -> S.set_clause s pos check_True
  | CFalse pos -> S.set_clause s pos check_False
  | BuildDef (pos, l) -> S.set_clause s pos (check_BuildDef t_form l)
  | BuildDef2 (pos, l) -> S.set_clause s pos (check_BuildDef2 t_form l)
  | BuildProj (pos, l, i) -> S.set_clause s pos (check_BuildProj t_form l i)
  | ImmBuildDef (pos, cid) ->
    S.set_clause s pos (check_ImmBuildDef t_form s cid)
  | ImmBuildDef2 (pos, cid) ->
    S.set_clause s pos (check_ImmBuildDef2 t_form s cid)
  | ImmBuildProj (pos, cid, i) ->
    S.set_clause s pos (check_ImmBuildProj t_form s cid i)
  | EqTr (pos, l, fl) -> S.set_clause s pos (check_trans t_form t_atom l fl)
  | EqCgr (pos, l, fl) -> S.set_clause s pos (check_congr t_form t_atom l fl)
  | EqCgrP (pos, l1, l2, fl) ->
    S.set_clause s pos (check_congr_pred t_form t_atom l1 l2 fl)
  | LiaMicromega (pos, cl, c) ->
    S.set_clause s pos (check_micromega t_form t_atom cl c)
  | LiaDiseq (pos, l) -> S.set_clause s pos (check_diseq t_form t_atom l)
  | SplArith (pos, orig, res, l) ->
    S.set_clause s pos (check_spl_arith t_form t_atom (S.get s orig) res l)
  | SplDistinctElim (pos, orig, res) ->
    S.set_clause s pos (check_distinct_elim t_form t_atom (S.get s orig) res)
  | BBVar (pos, res) -> S.set_clause s pos (check_bbVar t_atom t_form res)
  | BBConst (pos, res) -> S.set_clause s pos (check_bbConst t_atom t_form res)
  | BBOp (pos, orig1, orig2, res) ->
    S.set_clause s pos (check_bbOp t_atom t_form s orig1 orig2 res)
  | BBNot (pos, orig, res) ->
    S.set_clause s pos (check_bbNot t_atom t_form s orig res)
  | BBNeg (pos, orig, res) ->
    S.set_clause s pos (check_bbNeg t_atom t_form s orig res)
  | BBAdd (pos, orig1, orig2, res) ->
    S.set_clause s pos (check_bbAdd t_atom t_form s orig1 orig2 res)
  | BBConcat (pos, orig1, orig2, res) ->
    S.set_clause s pos (check_bbConcat t_atom t_form s orig1 orig2 res)
  | BBMul (pos, orig1, orig2, res) ->
    S.set_clause s pos (check_bbMult t_atom t_form s orig1 orig2 res)
  | BBUlt (pos, orig1, orig2, res) ->
    S.set_clause s pos (check_bbUlt t_atom t_form s orig1 orig2 res)
  | BBSlt (pos, orig1, orig2, res) ->
    S.set_clause s pos (check_bbSlt t_atom t_form s orig1 orig2 res)
  | BBEq (pos, orig1, orig2, res) ->
    S.set_clause s pos (check_bbEq t_atom t_form s orig1 orig2 res)
  | BBDiseq (pos, res) -> S.set_clause s pos (check_bbDiseq t_atom t_form res)
  | BBExtract (pos, orig, res) ->
    S.set_clause s pos (check_bbExtract t_atom t_form s orig res)
  | BBZextend (pos, orig, res) ->
    S.set_clause s pos (check_bbZextend t_atom t_form s orig res)
  | BBSextend (pos, orig, res) ->
    S.set_clause s pos (check_bbSextend t_atom t_form s orig res)
  | BBShl (pos, orig1, orig2, res) ->
    S.set_clause s pos (check_bbShl t_atom t_form s orig1 orig2 res)
  | BBShr (pos, orig1, orig2, res) ->
    S.set_clause s pos (check_bbShr t_atom t_form s orig1 orig2 res)
  | RowEq (pos, res) -> S.set_clause s pos (check_roweq t_form t_atom res)
  | RowNeq (pos, cl) -> S.set_clause s pos (check_rowneq t_form t_atom cl)
  | Ext (pos, res) -> S.set_clause s pos (check_ext t_form t_atom res)

  (** val checker :
      Atom.atom array -> Form.form array -> (C.t -> bool) -> S.t -> step
      _trace_ -> Uint63.t -> bool **)

  let checker t_atom t_form s t0 =
    _checker_ (step_checker t_atom t_form) s t0

  type certif =
  | Certif of Uint63.t * step _trace_ * Uint63.t

  (** val checker_ext :
      Atom.atom array -> Form.form array -> Uint63.t array -> Uint63.t array
      option -> certif -> bool **)

  let checker_ext t_atom t_form d used_roots = function
  | Certif (nclauses, t0, confl) ->
    if if Form.check_form t_form then Atom.check_atom t_atom else false
    then checker t_atom t_form C.is_false
           (Euf_Checker.add_roots (S.make nclauses) d used_roots) t0 confl
    else false
 end