aboutsummaryrefslogtreecommitdiffstats
path: root/src/versions/standard/Array/PArray_standard.v
blob: 4ebcd63663a0a6e1ef8134d17a9c694a89181c99 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
(**************************************************************************)
(*                                                                        *)
(*     SMTCoq                                                             *)
(*     Copyright (C) 2011 - 2022                                          *)
(*                                                                        *)
(*     See file "AUTHORS" for the list of authors                         *)
(*                                                                        *)
(*   This file is distributed under the terms of the CeCILL-C licence     *)
(*                                                                        *)
(**************************************************************************)


(* Software implementation of arrays, based on finite maps using AVL
   trees *)


Require Import Int31.
Require Export Int63.
Require FMapAVL.

Local Open Scope int63_scope.


Module Map := FMapAVL.Make(IntOrderedType).

(* An array is represented as a tuple of a finite map, the default
   element, and the length *)
Definition array (A:Type) : Type :=
  (Map.t A * A * int)%type.

Definition make {A:Type} (l:int) (d:A) : array A := (Map.empty A, d, l).

Definition get {A:Type} (t:array A) (i:int) : A :=
  let (td,_) := t in
  let (t,d) := td in
  match Map.find i t with
    | Some x => x
    | None => d
  end.

Definition default {A:Type} (t:array A) : A :=
  let (td,_) := t in let (_,d) := td in d.

Definition set {A:Type} (t:array A) (i:int) (a:A) : array A :=
  let (td,l) := t in
  if l <= i then
    t
  else
    let (t,d) := td in
    (Map.add i a t, d, l).

Definition length {A:Type} (t:array A) : int :=
  let (_,l) := t in l.

Definition copy {A:Type} (t:array A) : array A := t.

Definition reroot : forall {A:Type}, array A -> array A := @copy.

Definition init {A:Type} (l:int) (f:int -> A) (d:A) : array A :=
  let r :=
      if l == 0 then
        Map.empty A
      else
        foldi (fun j m => Map.add j (f j) m) 0 (l-1) (Map.empty A) in
  (r, d, l).

Definition map {A B:Type} (f:A -> B) (t:array A) : array B :=
  let (td,l) := t in
  let (t,d) := td in
  (Map.map f t, f d, l).

Module Export PArrayNotations.
Delimit Scope array_scope with array.
Notation "t '.[' i ']'" := (get t i) (at level 50) : array_scope.
Notation "t '.[' i '<-' a ']'" := (set t i a) (at level 50) : array_scope.
End PArrayNotations.

Local Open Scope array_scope.

Definition max_array_length := 4194302%int31.

(** Axioms *)
Axiom get_outofbound : forall A (t:array A) i, (i < length t) = false -> t.[i] = default t.

Axiom get_set_same : forall A t i (a:A), (i < length t) = true -> t.[i<-a].[i] = a.
Axiom get_set_other : forall A t i j (a:A), i <> j -> t.[i<-a].[j] = t.[j].
Axiom default_set : forall A t i (a:A), default (t.[i<-a]) = default t.


Axiom get_make : forall A (a:A) size i, (make size a).[i] = a.
Axiom default_make : forall A (a:A) size, (default (make size a)) = a.

Axiom ltb_length : forall A (t:array A), length t <= max_array_length = true.

Axiom length_make : forall A size (a:A),
  length (make size a) = if size <= max_array_length then size else max_array_length.
Axiom length_set : forall A t i (a:A),
  length (t.[i<-a]) = length t.

Axiom get_copy : forall A (t:array A) i, (copy t).[i] = t.[i].
Axiom length_copy : forall A (t:array A), length (copy t) = length t.

Axiom get_reroot : forall A (t:array A) i, (reroot t).[i] = t.[i].
Axiom length_reroot : forall A (t:array A), length (reroot t) = length t.


Axiom length_init : forall A f size (def:A),
  length (init size f def) = if size <= max_array_length then size else max_array_length.

Axiom get_init : forall A f size (def:A) i,
  (init size f def).[i] = if i < length (init size f def) then f i else def.

Axiom default_init : forall A f size (def:A), default (init size f def) = def.

(* Not true in this implementation (see #71, many thanks to Andres Erbsen) *)
(*
Axiom get_ext : forall A (t1 t2:array A),
  length t1 = length t2 ->
  (forall i, i < length t1 = true -> t1.[i] = t2.[i]) ->
  default t1 = default t2 ->
  t1 = t2.
*)

(* Definition *)
Definition to_list {A:Type} (t:array A) :=
  let len := length t in
  if 0 == len then nil
  else foldi_down (fun i l => t.[i] :: l)%list (len - 1) 0 nil.

Definition forallbi {A:Type} (f:int-> A->bool) (t:array A) :=
  let len := length t in
  if 0 == len then true
  else forallb (fun i => f i (t.[i])) 0 (len - 1).

Definition forallb {A:Type} (f: A->bool) (t:array A) :=
  let len := length t in
  if 0 == len then true
  else forallb (fun i => f (t.[i])) 0 (len - 1).

Definition existsbi {A:Type} (f:int->A->bool) (t:array A) :=
  let len := length t in
  if 0 == len then false
  else existsb (fun i => f i (t.[i])) 0 (len - 1).

Definition existsb {A:Type} (f:A->bool) (t:array A) :=
  let len := length t in
  if 0 == len then false
  else existsb (fun i => f (t.[i])) 0 (len - 1).

(* TODO : We should add init as native and add it *)
Definition mapi {A B:Type} (f:int->A->B) (t:array A) :=
  let size := length t in
  let def := f size (default t) in
  let tb := make size def in
  if size == 0 then tb
  else foldi (fun i tb => tb.[i<- f i (t.[i])]) 0 (size - 1) tb.

Definition foldi_left {A B:Type} (f:int -> A -> B -> A) a (t:array B) :=
  let len := length t in
  if 0 == len then a
  else foldi (fun i a => f i a (t.[i])) 0 (len - 1) a.

Definition fold_left {A B:Type} (f: A -> B -> A) a (t:array B) :=
  let len := length t in
  if 0 == len then a
  else foldi (fun i a => f a (t.[i])) 0 (length t - 1) a.

Definition foldi_right {A B:Type} (f:int -> A -> B -> B) (t:array A) b :=
  let len := length t in
  if 0 == len then b
  else foldi_down (fun i b => f i (t.[i]) b) (len - 1) 0 b.

Definition fold_right {A B:Type} (f: A -> B -> B) (t:array A) b :=
  let len := length t in
  if 0 == len then b
  else foldi_down (fun i b => f (t.[i]) b) (len - 1) 0 b.

(* Lemmas *)

Lemma default_copy : forall A (t:array A), default (copy t) = default t.
Proof.
 intros A t;assert (length t < length t = false).
  apply Bool.not_true_is_false; apply leb_not_gtb; apply leb_refl.
 rewrite <- (get_outofbound _ (copy t) (length t)), <- (get_outofbound _ t (length t)), get_copy;trivial.
Qed.

Lemma reroot_default : forall A (t:array A), default (reroot t) = default t.
Proof.
 intros A t;assert (length t < length t = false).
  apply Bool.not_true_is_false; apply leb_not_gtb; apply leb_refl.
 rewrite <- (get_outofbound _ (reroot t) (length t)), <- (get_outofbound _ t (length t)), get_reroot;trivial.
Qed.

Lemma get_set_same_default :
   forall (A : Type) (t : array A) (i : int) ,
       (t .[ i <- default t]) .[ i] = default t.
Proof.
 intros A t i;case_eq (i < (length t));intros.
 rewrite get_set_same;trivial.
 rewrite get_outofbound, default_set;trivial.
 rewrite length_set;trivial.
Qed.

Lemma get_not_default_lt : forall A (t:array A) x,
 t.[x] <> default t -> x < length t = true.
Proof.
 intros A t x Hd.
 case_eq (x < length t);intros Heq;[trivial | ].
 elim Hd;rewrite get_outofbound;trivial.
Qed.

Lemma foldi_left_Ind :
     forall A B (P : int -> A -> Prop) (f : int -> A -> B -> A) (t:array B),
     (forall a i, i < length t = true -> P i a -> P (i+1) (f i a (t.[i]))) ->
     forall a, P 0 a ->
     P (length t) (foldi_left f a t).
Proof.
 intros;unfold foldi_left.
 destruct (reflect_eqb 0 (length t)).
  rewrite <- e;trivial.
 assert ((length t - 1) + 1 = length t) by ring.
 rewrite <- H1 at 1;apply foldi_Ind;auto.
 assert (W:= leb_max_int (length t));rewrite leb_spec in W.
 rewrite ltb_spec, to_Z_sub_1_diff;auto with zarith.
 intros Hlt;elim (ltb_0 _ Hlt).
 intros;apply H;trivial. rewrite ltb_leb_sub1;auto.
Qed.

Lemma fold_left_Ind :
     forall A B (P : int -> A -> Prop) (f : A -> B -> A) (t:array B),
     (forall a i, i < length t = true -> P i a -> P (i+1) (f a (t.[i]))) ->
     forall a, P 0 a ->
     P (length t) (fold_left f a t).
Proof.
 intros.
 apply (foldi_left_Ind A B P (fun i => f));trivial.
Qed.

Lemma fold_left_ind :
     forall A B (P : A -> Prop) (f : A -> B -> A) (t:array B),
     (forall a i, i < length t = true -> P a -> P (f a (t.[i]))) ->
     forall a, P a ->
     P (fold_left f a t).
Proof.
 intros;apply (fold_left_Ind A B (fun _ => P));trivial.
Qed.

Lemma foldi_right_Ind :
     forall A B (P : int -> A -> Prop) (f : int -> B -> A -> A) (t:array B),
     (forall a i, i < length t = true -> P (i+1) a -> P i (f i (t.[i]) a)) ->
     forall a, P (length t) a ->
     P 0 (foldi_right f t a).
Proof.
 intros;unfold foldi_right.
 destruct (reflect_eqb 0 (length t)).
  rewrite e;trivial.
 set (P' z a := (*-1 <= z < [|length t|] ->*) P (of_Z (z + 1)) a).
 assert (P' ([|0|] - 1)%Z (foldi_down (fun (i : int) (b : A) => f i (t .[ i]) b) (length t - 1) 0 a)).
 apply foldi_down_ZInd;unfold P'.
 intros Hlt;elim (ltb_0 _ Hlt).
 rewrite to_Z_sub_1_diff;auto.
 ring_simplify ([|length t|] - 1 + 1)%Z;rewrite of_to_Z;trivial.
 intros;ring_simplify ([|i|] - 1 + 1)%Z;rewrite of_to_Z;auto.
 assert (i < length t = true).
   rewrite ltb_leb_sub1;auto.
 apply H;trivial.
 exact H1.
Qed.

Lemma fold_right_Ind :
     forall A B (P : int -> A -> Prop) (f : B -> A -> A) (t:array B),
     (forall a i, i < length t = true -> P (i+1) a -> P i (f (t.[i]) a)) ->
     forall a, P (length t) a ->
     P 0 (fold_right f t a).
Proof.
 intros;apply (foldi_right_Ind A B P (fun i => f));trivial.
Qed.

Lemma fold_right_ind :
     forall A B (P : A -> Prop) (f : B -> A -> A) (t:array B),
     (forall a i, i < length t = true -> P a -> P (f (t.[i]) a)) ->
     forall a, P a ->
     P (fold_right f t a).
Proof.
 intros;apply (fold_right_Ind A B (fun i => P));trivial.
Qed.

Lemma forallbi_spec : forall A (f : int -> A -> bool) t,
  forallbi f t = true <-> forall i, i < length t = true -> f i (t.[i]) = true.
Proof.
 unfold forallbi;intros A f t.
 destruct (reflect_eqb 0 (length t)).
 split;[intros | trivial].
 elim (ltb_0 i);rewrite e;trivial.
 rewrite forallb_spec;split;intros Hi i;intros;apply Hi.
 apply leb_0. rewrite <- ltb_leb_sub1;auto. rewrite ltb_leb_sub1;auto.
Qed.

Lemma forallb_spec : forall A (f : A -> bool) t,
  forallb f t = true <-> forall i, i < length t = true -> f (t.[i]) = true.
Proof.
 intros A f;apply (forallbi_spec A (fun i => f)).
Qed.

Lemma existsbi_spec : forall A (f : int -> A -> bool) t,
  existsbi f t = true <-> exists i, i < length t = true /\ f i (t.[i]) = true.
Proof.
 unfold existsbi;intros A f t.
 destruct (reflect_eqb 0 (length t)).
 split;[discriminate | intros [i [Hi _]];rewrite <- e in Hi;elim (ltb_0 _ Hi)].
 rewrite existsb_spec. repeat setoid_rewrite Bool.andb_true_iff.
 split;intros [i H];decompose [and] H;clear H;exists i;repeat split;trivial.
 rewrite ltb_leb_sub1;auto. apply leb_0. rewrite <- ltb_leb_sub1;auto.
Qed.

Lemma existsb_spec : forall A (f : A -> bool) t,
  existsb f t = true <-> exists i, i < length t = true /\ f (t.[i]) = true.
Proof.
 intros A f;apply (existsbi_spec A (fun i => f)).
Qed.

Local Open Scope list_scope.

Definition to_list_ntr A (t:array A) :=
  let len := length t in
  if 0 == len then nil
  else foldi_ntr _ (fun i l => t.[i] :: l) 0 (len - 1) nil.

Lemma to_list_to_list_ntr : forall A (t:array A),
   to_list t = to_list_ntr _ t.
Proof.
 unfold to_list, to_list_ntr; intros A t.
 destruct (reflect_eqb 0 (length t));trivial.
 rewrite foldi_ntr_foldi_down;trivial.
 apply leb_ltb_trans with max_array_length;[ | trivial].
 apply leb_trans with (length t);[ | apply ltb_length].
 rewrite leb_spec, sub_spec.
 rewrite to_Z_1, Zmod_small;try omega.
 generalize (to_Z_bounded (length t)).
 assert (0%Z <> [|length t|]);[ | omega].
   intros Heq;elim n;apply to_Z_inj;trivial.
Qed.

Lemma fold_left_to_list : forall (A B:Type) (t:array A) (f: B -> A -> B) b,
   fold_left f b t = List.fold_left f (to_list t) b.
Proof.
  intros A B t f;rewrite to_list_to_list_ntr.
  unfold fold_left, to_list_ntr; destruct (reflect_eqb 0 (length t));[trivial | ].
  set (P1 := fun i => forall b,
      foldi (fun (i : int) (a : B) => f a (t .[ i])) i (length t - 1) b =
      List.fold_left f
        (foldi_ntr (list A) (fun (i : int) (l : list A) => t .[ i] :: l) i
           (length t - 1) nil) b).
  assert (W: P1 0);[ | trivial].
  apply int_ind_bounded with (max := length t - 1);unfold P1.
  apply leb_0.
  intros b;unfold foldi_ntr;rewrite foldi_eq, foldi_cont_eq;trivial.
  intros i _ Hlt Hrec b.
  unfold foldi_ntr;rewrite foldi_lt, foldi_cont_lt;trivial;simpl.
  apply Hrec.
Qed.

Require Import Bool.
Local Open Scope bool_scope.

Definition eqb {A:Type} (Aeqb: A->A->bool) (t1 t2:array A) :=
  (length t1 == length t2) &&
  Aeqb (default t1) (default t2) &&
  forallbi (fun i a1 => Aeqb a1 (t2.[i])) t1.

(*
Lemma reflect_eqb : forall (A:Type) (Aeqb:A->A->bool),
  (forall a1 a2, reflect (a1 = a2) (Aeqb a1 a2)) ->
  forall t1 t2, reflect (t1 = t2) (eqb Aeqb t1 t2).
Proof.
 intros A Aeqb HA t1 t2.
 case_eq (eqb Aeqb t1 t2);unfold eqb;intros H;constructor.
 rewrite !andb_true_iff in H;destruct H as [[H1 H2] H3].
 apply get_ext.
 rewrite (reflect_iff _ _ (reflect_eqb _ _));trivial.
 rewrite forallbi_spec in H3.
 intros i Hlt;rewrite (reflect_iff _ _ (HA _ _));auto.
 rewrite (reflect_iff _ _ (HA _ _));trivial.
 intros Heq;rewrite Heq in H;clear Heq.
 revert H; rewrite Int63Axioms.eqb_refl;simpl.
 case_eq (Aeqb (default t2) (default t2));simpl;intros H0 H1.
 rewrite <- not_true_iff_false, forallbi_spec in H1;apply H1.
 intros i _; rewrite <- (reflect_iff _ _ (HA _ _));trivial.
 rewrite <- not_true_iff_false, <- (reflect_iff _ _ (HA _ _)) in H0;apply H0;trivial.
Qed.
*)


(* 
   Local Variables:
   coq-load-path: ((rec "../../.." "SMTCoq"))
   End: 
*)