summaryrefslogtreecommitdiffstats
path: root/algorithm.tex
diff options
context:
space:
mode:
Diffstat (limited to 'algorithm.tex')
-rw-r--r--algorithm.tex6
1 files changed, 5 insertions, 1 deletions
diff --git a/algorithm.tex b/algorithm.tex
index fb70bee..4c4c7d4 100644
--- a/algorithm.tex
+++ b/algorithm.tex
@@ -4,6 +4,10 @@
This section covers the main architecture of the HLS tool, and the way in which the back end was added to \compcert{}. This section will also cover an example of converting a simple C program into hardware, expressed in the Verilog language.
+First of all, the choice of C for the input language of \vericert{} is because it is the most widely supported language for HLS, and most major HLS tools also use it as an input. As a lot of existing code is also written in C for HLS, supporting C as an input language compared to a custom domain-specific language means that \vericert{} is more practical. Next, Verilog~\cite{06_ieee_stand_veril_hardw_descr_languag} is a hardware description language commonly used to design hardware. A Verilog design can then be synthesised into logic gates which describes how different gates connect to each other, called a netlist. This representation can then be mapped onto either a field-programmable gate array (FPGA) or turned into an application-specific integrated circuit (ASIC) to implement the design that was described in Verilog. Verilog was chosen as the output language for \vericert{} because it is one of the most popular hardware description languages and there already exist a few formal semantics for it that could be used as a target~\cite{loow19_verif_compil_verif_proces,meredith10_veril}.
+
+The framework that was chosen for the frontend was \compcert{}, as it is a mature framework for simulation proofs about intermediate languages, in addition to already providing a validated parser~\cite{jourdan12_valid_lr_parser} from C into the internal representation of Clight. Other frameworks were also considered, such as Vellvm~\cite{zhao12_formal_llvm_inter_repres_verif_progr_trans}, as LLVM IR in particular is often used by HLS tools anyways, however, these would require more work to support a higher level language such as C as input, or even providing a parser for LLVM IR.\@
+
\begin{figure}
\centering
\resizebox{0.47\textwidth}{!}{
@@ -40,7 +44,7 @@ The main work flow of \vericert{} is shown in Figure~\ref{fig:rtlbranch}, which
\compcert{} is made up of 11 intermediate languages in between the Clight input and the assembly output. These intermediate languages each serve a different purpose and contain various optimisations. When designing a new back end for \compcert{}, it is crucial to know where to branch off, so as to benefit from all the useful optimisations that \compcert{} performs, but not performing optimisations that are not useful, which include optimisations that are specific to the target CPU architecture or. These optimisations include register allocation, as there is not a fixed number of registers that need to be targeted.
-To choose where to branch off at, each intermediate language in \compcert{} can be evaluated to see if it is suitable to be transformed into hardware. Existing HLS compilers often use LLVM IR as an intermediate representation when performing HLS-specific optimisations, as each instruction can be mapped quite well to hardware that performs the same behaviour. Looking at the intermediate languages in \compcert{} shown in Figure~\ref{fig:rtlbranch}, there are many languages to choose from. Clight and CminorSel are an abstract syntax tree (AST) representation of the C code, which does not correspond to a more assembly like language similar to LLVM IR.\@ In addition to that, looking at the languages from LTL to PPC, even though these languages do contain basic blocks, which are desirable when doing HLS, starting from LTL the number of registers is limited
+To choose where to branch off at, each intermediate language in \compcert{} can be evaluated to see if it is suitable to be transformed into hardware. Existing HLS compilers often use LLVM IR as an intermediate representation when performing HLS-specific optimisations, as each instruction can be mapped quite well to hardware that performs the same behaviour. Looking at the intermediate languages in \compcert{} shown in Figure~\ref{fig:rtlbranch}, there are many languages to choose from. Clight and CminorSel are an abstract syntax tree (AST) representation of the C code, which does not correspond to a more assembly like language similar to LLVM IR.\@ In addition to that, looking at the languages from LTL to PPC, even though these languages do contain basic blocks, which are desirable when doing HLS, starting from LTL the number of registers is limited. Register allocation limits the number of registers when translating 3AC into LTL, and stores variables on the stack if that is required. This is not needed when performing HLS, as there are many more registers available, and it is preferable to use these instead of RAM whenever possible.
\compcert{}'s three-address code (3AC)\footnote{Three-address code (3AC) is also known as register transfer language (RTL) in the \compcert{} literature, however, 3AC is used in this paper instead so as not to confuse it with register-transfer level (RTL), which is another name for the final hardware target of the HLS tool.} is the intermediate language that resembles LLVM IR the most, as it also has an infinite number of pseudo-registers and each instruction maps well to hardware. 3AC is represented as a control flow graph (CFG) in CompCert. Each instruction is a node in the graph and links to the instructions that follow it. This CFG then describes how the computation should proceed, and is a good representation for performing optimisations on as well as local transformations. However, one difference between LLVM IR and 3AC is that 3AC uses operations of the target architecture and performs architecture specific optimisations as well, which is not the case in LLVM IR where all the instructions are quite abstract. This can be mitigated by making \compcert{} target a specific architecture such as x86\_32, where most operations translate quite well into hardware. In addition to that, many optimisations that are also useful for HLS are performed in 3AC, which means that if it is supported as the input language, the HLS algorithm benefits from the same optimisations. It is therefore a good candidate to be chosen as the input language to the HLS back end. The complete flow that \vericert{} takes is show in figure~\ref{fig:rtlbranch}.