summaryrefslogtreecommitdiffstats
path: root/algorithm.tex
diff options
context:
space:
mode:
Diffstat (limited to 'algorithm.tex')
-rw-r--r--algorithm.tex4
1 files changed, 2 insertions, 2 deletions
diff --git a/algorithm.tex b/algorithm.tex
index b9012ce..9db0262 100644
--- a/algorithm.tex
+++ b/algorithm.tex
@@ -17,7 +17,7 @@
\node[language] at (4,-2) (dfgstmd) {HTL};
\node[language] at (7,-2) (verilog) {Verilog};
\node at (0,1) {CompCert};
- \node at (0,-2) {CoqUp};
+ \node at (0,-2) {Vericert};
\draw[->] (clight) -- (cminor);
\draw[->,dashed] (cminor) -- (rtl);
\draw[->] (rtl) -- (ltl);
@@ -33,7 +33,7 @@ This section covers the main architecture of the HLS tool, and the way in which
CompCert is made up of 11 intermediate languages in between the Clight input and the assembly output. These intermediate languages each serve a different purpose and contain various different optimisations. When designing a new backend for CompCert, it is therefore crucial to know where to branch off and start the hardware generation. Many of the optimisations that the CompCert backend performs are not necessary when generating custom hardware and not relying on a CPU anymore, such as register allocation or even scheduling. It is therefore important to find the right intermediate language so that the HLS tool still benefits from many of the generic optimisations that CompCert performs, but does not receive the code transformations that are specific to CPU architectures.
-Existing HLS compilers usually use LLVM IR as an intermediate representation when performing HLS specific optimisations, as each instruction can be mapped quite well to hardware which performs the same behaviour. CompCert's register transfer language (RTL) is the intermediate language that resembles LLVM IR the most, as it also has an infinite number of pseudo-registers and each instruction maps well to hardware. \JP{Perhaps this needs some further qualification? RTL uses the operations from the target architecture, and indeed performs architecture specific optimisations prior to RTL gen, so (for sake of example) switching from x86 RTL to RISC-V RTL could have a significant impact on performance.}\YH{Yes will definitely include those, just have to think about where. I think this could be something that could be mentioned in the RTL section instead.} In addition to that, many optimisations that are also useful for HLS are performed in RTL, which means that if it is supported as the input language, the HLS algorithm benefits from the same optimisations. It is therefore a good candidate to be chosen as the input language to the HLS backend. The complete flow that CoqUp takes is show in figure~\ref{fig:rtlbranch}.
+Existing HLS compilers usually use LLVM IR as an intermediate representation when performing HLS specific optimisations, as each instruction can be mapped quite well to hardware which performs the same behaviour. CompCert's register transfer language (RTL) is the intermediate language that resembles LLVM IR the most, as it also has an infinite number of pseudo-registers and each instruction maps well to hardware. \JP{Perhaps this needs some further qualification? RTL uses the operations from the target architecture, and indeed performs architecture specific optimisations prior to RTL gen, so (for sake of example) switching from x86 RTL to RISC-V RTL could have a significant impact on performance.}\YH{Yes will definitely include those, just have to think about where. I think this could be something that could be mentioned in the RTL section instead.} In addition to that, many optimisations that are also useful for HLS are performed in RTL, which means that if it is supported as the input language, the HLS algorithm benefits from the same optimisations. It is therefore a good candidate to be chosen as the input language to the HLS backend. The complete flow that Vericert takes is show in figure~\ref{fig:rtlbranch}.
%%TODO: Maybe add why LTL and the other smaller languages are not that well suited