summaryrefslogtreecommitdiffstats
path: root/verilog_notes.tex
blob: 99f7e249ba8655b6b0a86f9f8bd52a5ccb07f642 (plain)
1
2
3
4
5
6
7
8
\JW{stmtntrun has four parameters, and if I read the rules correctly, it looks like the fourth parameter is uniquely determined by the first three. So, you could consider presenting stmntrun simply as a recursive definition, e.g. `stmntrun f s Vskip = s', `stmntrun f s0 (Vseq st1 st2) = stmntrun f (stmntrun f s0 st1) st2', and so on. That might (\emph{might}) be easier to read than the inference rule format.}

\YH{It works well for Seq and Skip, but I think that CaseMatch and CaseNoMatch, or even if statements will be a bit clunky? We would have to use case statements in the function to do different things
based on what they evaluate to. For case I think that would end up being a three way choice. I'll try it out though and see how nice it is.}

\JP{I suppose this would essentially be an ``interpreter'' style semantics but we can prove equivalence pretty easily.}

\YH{To add to that, I used to have both in the Coq code, but commented the recursive definition out, and now only have the inductive definition, which is basically what I copy pasted here.} \JW{Fair enough. Whatever you think ends up being the easiest to read and understand, really. There's something to be said for staying close to the Coq definitions anyway.} \YH{I have added more rules, we can always switch from one to the other now.  One more thing I noticed though is that recursive definitions will need an \texttt{option} type.} \JW{Oh, then my suggestion of `stmntrun f s0 (Vseq st1 st2) = stmntrun f (stmntrun f s0 st1) st2' is a bit ill-typed then, unless the second parameter becomes option-typed too. Maybe the inference rules are better overall then.} \YH{Ah yes, I actually didn't even notice that, it would need the do notation, just like the implementation in Coq, so it may be easier to just use the inference rules.}