aboutsummaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorYann Herklotz <git@yannherklotz.com>2021-01-12 20:27:47 +0000
committerYann Herklotz <git@yannherklotz.com>2021-01-12 20:27:47 +0000
commitd7e934152de933cceb925bf698f72828bcfebc26 (patch)
treeae5c8c8ce419eedb3bd4d05ebe0909dd8421f26f
parent412feb34507aa96457339495f88d68118846567d (diff)
downloadvericert-kvx-d7e934152de933cceb925bf698f72828bcfebc26.tar.gz
vericert-kvx-d7e934152de933cceb925bf698f72828bcfebc26.zip
Add conversion from RTLPar to HTL
-rw-r--r--src/hls/HTLPargen.v633
1 files changed, 633 insertions, 0 deletions
diff --git a/src/hls/HTLPargen.v b/src/hls/HTLPargen.v
new file mode 100644
index 0000000..16b0942
--- /dev/null
+++ b/src/hls/HTLPargen.v
@@ -0,0 +1,633 @@
+(*
+ * Vericert: Verified high-level synthesis.
+ * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *)
+
+From compcert Require Errors Globalenvs Integers.
+From compcert Require Import Maps AST.
+From vericert Require Import Verilog RTLPar HTL Vericertlib AssocMap ValueInt Statemonad.
+
+Hint Resolve AssocMap.gempty : htlh.
+Hint Resolve AssocMap.gso : htlh.
+Hint Resolve AssocMap.gss : htlh.
+Hint Resolve Ple_refl : htlh.
+Hint Resolve Ple_succ : htlh.
+
+Record state: Type := mkstate {
+ st_st : reg;
+ st_freshreg: reg;
+ st_freshstate: node;
+ st_scldecls: AssocMap.t (option io * scl_decl);
+ st_arrdecls: AssocMap.t (option io * arr_decl);
+ st_datapath: datapath;
+ st_controllogic: controllogic;
+}.
+
+Definition init_state (st : reg) : state :=
+ mkstate st
+ 1%positive
+ 1%positive
+ (AssocMap.empty (option io * scl_decl))
+ (AssocMap.empty (option io * arr_decl))
+ (AssocMap.empty stmnt)
+ (AssocMap.empty stmnt).
+
+Module HTLState <: State.
+
+ Definition st := state.
+
+ Inductive st_incr: state -> state -> Prop :=
+ state_incr_intro:
+ forall (s1 s2: state),
+ st_st s1 = st_st s2 ->
+ Ple s1.(st_freshreg) s2.(st_freshreg) ->
+ Ple s1.(st_freshstate) s2.(st_freshstate) ->
+ (forall n,
+ s1.(st_datapath)!n = None \/ s2.(st_datapath)!n = s1.(st_datapath)!n) ->
+ (forall n,
+ s1.(st_controllogic)!n = None
+ \/ s2.(st_controllogic)!n = s1.(st_controllogic)!n) ->
+ st_incr s1 s2.
+ Hint Constructors st_incr : htlh.
+
+ Definition st_prop := st_incr.
+ Hint Unfold st_prop : htlh.
+
+ Lemma st_refl : forall s, st_prop s s. Proof. auto with htlh. Qed.
+
+ Lemma st_trans :
+ forall s1 s2 s3, st_prop s1 s2 -> st_prop s2 s3 -> st_prop s1 s3.
+ Proof.
+ intros. inv H. inv H0. apply state_incr_intro; eauto using Ple_trans; intros; try congruence.
+ - destruct H4 with n; destruct H8 with n; intuition congruence.
+ - destruct H5 with n; destruct H9 with n; intuition congruence.
+ Qed.
+
+End HTLState.
+Export HTLState.
+
+Module HTLMonad := Statemonad(HTLState).
+Export HTLMonad.
+
+Module HTLMonadExtra := Monad.MonadExtra(HTLMonad).
+Import HTLMonadExtra.
+Export MonadNotation.
+
+Definition state_goto (st : reg) (n : node) : stmnt :=
+ Vnonblock (Vvar st) (Vlit (posToValue n)).
+
+Definition state_cond (st : reg) (c : expr) (n1 n2 : node) : stmnt :=
+ Vnonblock (Vvar st) (Vternary c (posToExpr n1) (posToExpr n2)).
+
+Definition check_empty_node_datapath:
+ forall (s: state) (n: node), { s.(st_datapath)!n = None } + { True }.
+Proof.
+ intros. case (s.(st_datapath)!n); tauto.
+Defined.
+
+Definition check_empty_node_controllogic:
+ forall (s: state) (n: node), { s.(st_controllogic)!n = None } + { True }.
+Proof.
+ intros. case (s.(st_controllogic)!n); tauto.
+Defined.
+
+Lemma add_instr_state_incr :
+ forall s n n' st,
+ (st_datapath s)!n = None ->
+ (st_controllogic s)!n = None ->
+ st_incr s
+ (mkstate
+ s.(st_st)
+ s.(st_freshreg)
+ (st_freshstate s)
+ s.(st_scldecls)
+ s.(st_arrdecls)
+ (AssocMap.set n st s.(st_datapath))
+ (AssocMap.set n (state_goto s.(st_st) n') s.(st_controllogic))).
+Proof.
+ constructor; intros;
+ try (simpl; destruct (peq n n0); subst);
+ auto with htlh.
+Qed.
+
+Lemma declare_reg_state_incr :
+ forall i s r sz,
+ st_incr s
+ (mkstate
+ s.(st_st)
+ s.(st_freshreg)
+ s.(st_freshstate)
+ (AssocMap.set r (i, VScalar sz) s.(st_scldecls))
+ s.(st_arrdecls)
+ s.(st_datapath)
+ s.(st_controllogic)).
+Proof. auto with htlh. Qed.
+
+Definition declare_reg (i : option io) (r : reg) (sz : nat) : mon unit :=
+ fun s => OK tt (mkstate
+ s.(st_st)
+ s.(st_freshreg)
+ s.(st_freshstate)
+ (AssocMap.set r (i, VScalar sz) s.(st_scldecls))
+ s.(st_arrdecls)
+ s.(st_datapath)
+ s.(st_controllogic))
+ (declare_reg_state_incr i s r sz).
+
+Definition add_instr (n : node) (n' : node) (st : stmnt) : mon unit :=
+ fun s =>
+ match check_empty_node_datapath s n, check_empty_node_controllogic s n with
+ | left STM, left TRANS =>
+ OK tt (mkstate
+ s.(st_st)
+ s.(st_freshreg)
+ (st_freshstate s)
+ s.(st_scldecls)
+ s.(st_arrdecls)
+ (AssocMap.set n st s.(st_datapath))
+ (AssocMap.set n (state_goto s.(st_st) n') s.(st_controllogic)))
+ (add_instr_state_incr s n n' st STM TRANS)
+ | _, _ => Error (Errors.msg "HTL.add_instr")
+ end.
+
+Lemma add_instr_skip_state_incr :
+ forall s n st,
+ (st_datapath s)!n = None ->
+ (st_controllogic s)!n = None ->
+ st_incr s
+ (mkstate
+ s.(st_st)
+ s.(st_freshreg)
+ (st_freshstate s)
+ s.(st_scldecls)
+ s.(st_arrdecls)
+ (AssocMap.set n st s.(st_datapath))
+ (AssocMap.set n Vskip s.(st_controllogic))).
+Proof.
+ constructor; intros;
+ try (simpl; destruct (peq n n0); subst);
+ auto with htlh.
+Qed.
+
+Definition add_instr_skip (n : node) (st : stmnt) : mon unit :=
+ fun s =>
+ match check_empty_node_datapath s n, check_empty_node_controllogic s n with
+ | left STM, left TRANS =>
+ OK tt (mkstate
+ s.(st_st)
+ s.(st_freshreg)
+ (st_freshstate s)
+ s.(st_scldecls)
+ s.(st_arrdecls)
+ (AssocMap.set n st s.(st_datapath))
+ (AssocMap.set n Vskip s.(st_controllogic)))
+ (add_instr_skip_state_incr s n st STM TRANS)
+ | _, _ => Error (Errors.msg "HTL.add_instr")
+ end.
+
+Lemma add_node_skip_state_incr :
+ forall s n st,
+ (st_datapath s)!n = None ->
+ (st_controllogic s)!n = None ->
+ st_incr s
+ (mkstate
+ s.(st_st)
+ s.(st_freshreg)
+ (st_freshstate s)
+ s.(st_scldecls)
+ s.(st_arrdecls)
+ (AssocMap.set n Vskip s.(st_datapath))
+ (AssocMap.set n st s.(st_controllogic))).
+Proof.
+ constructor; intros;
+ try (simpl; destruct (peq n n0); subst);
+ auto with htlh.
+Qed.
+
+Definition add_node_skip (n : node) (st : stmnt) : mon unit :=
+ fun s =>
+ match check_empty_node_datapath s n, check_empty_node_controllogic s n with
+ | left STM, left TRANS =>
+ OK tt (mkstate
+ s.(st_st)
+ s.(st_freshreg)
+ (st_freshstate s)
+ s.(st_scldecls)
+ s.(st_arrdecls)
+ (AssocMap.set n Vskip s.(st_datapath))
+ (AssocMap.set n st s.(st_controllogic)))
+ (add_node_skip_state_incr s n st STM TRANS)
+ | _, _ => Error (Errors.msg "HTL.add_instr")
+ end.
+
+Definition nonblock (dst : reg) (e : expr) := Vnonblock (Vvar dst) e.
+Definition block (dst : reg) (e : expr) := Vblock (Vvar dst) e.
+
+Definition bop (op : binop) (r1 r2 : reg) : expr :=
+ Vbinop op (Vvar r1) (Vvar r2).
+
+Definition boplit (op : binop) (r : reg) (l : Integers.int) : expr :=
+ Vbinop op (Vvar r) (Vlit (intToValue l)).
+
+Definition boplitz (op: binop) (r: reg) (l: Z) : expr :=
+ Vbinop op (Vvar r) (Vlit (ZToValue l)).
+
+Definition translate_comparison (c : Integers.comparison) (args : list reg) : mon expr :=
+ match c, args with
+ | Integers.Ceq, r1::r2::nil => ret (bop Veq r1 r2)
+ | Integers.Cne, r1::r2::nil => ret (bop Vne r1 r2)
+ | Integers.Clt, r1::r2::nil => ret (bop Vlt r1 r2)
+ | Integers.Cgt, r1::r2::nil => ret (bop Vgt r1 r2)
+ | Integers.Cle, r1::r2::nil => ret (bop Vle r1 r2)
+ | Integers.Cge, r1::r2::nil => ret (bop Vge r1 r2)
+ | _, _ => error (Errors.msg "Htlgen: comparison instruction not implemented: other")
+ end.
+
+Definition translate_comparison_imm (c : Integers.comparison) (args : list reg) (i: Integers.int)
+ : mon expr :=
+ match c, args with
+ | Integers.Ceq, r1::nil => ret (boplit Veq r1 i)
+ | Integers.Cne, r1::nil => ret (boplit Vne r1 i)
+ | Integers.Clt, r1::nil => ret (boplit Vlt r1 i)
+ | Integers.Cgt, r1::nil => ret (boplit Vgt r1 i)
+ | Integers.Cle, r1::nil => ret (boplit Vle r1 i)
+ | Integers.Cge, r1::nil => ret (boplit Vge r1 i)
+ | _, _ => error (Errors.msg "Htlgen: comparison_imm instruction not implemented: other")
+ end.
+
+Definition translate_comparisonu (c : Integers.comparison) (args : list reg) : mon expr :=
+ match c, args with
+ | Integers.Clt, r1::r2::nil => ret (bop Vltu r1 r2)
+ | Integers.Cgt, r1::r2::nil => ret (bop Vgtu r1 r2)
+ | Integers.Cle, r1::r2::nil => ret (bop Vleu r1 r2)
+ | Integers.Cge, r1::r2::nil => ret (bop Vgeu r1 r2)
+ | _, _ => error (Errors.msg "Htlgen: comparison instruction not implemented: other")
+ end.
+
+Definition translate_comparison_immu (c : Integers.comparison) (args : list reg) (i: Integers.int)
+ : mon expr :=
+ match c, args with
+ | Integers.Clt, r1::nil => ret (boplit Vltu r1 i)
+ | Integers.Cgt, r1::nil => ret (boplit Vgtu r1 i)
+ | Integers.Cle, r1::nil => ret (boplit Vleu r1 i)
+ | Integers.Cge, r1::nil => ret (boplit Vgeu r1 i)
+ | _, _ => error (Errors.msg "Htlgen: comparison_imm instruction not implemented: other")
+ end.
+
+Definition translate_condition (c : Op.condition) (args : list reg) : mon expr :=
+ match c, args with
+ | Op.Ccomp c, _ => translate_comparison c args
+ | Op.Ccompu c, _ => translate_comparisonu c args
+ | Op.Ccompimm c i, _ => translate_comparison_imm c args i
+ | Op.Ccompuimm c i, _ => translate_comparison_immu c args i
+ | Op.Cmaskzero n, _ => error (Errors.msg "Htlgen: condition instruction not implemented: Cmaskzero")
+ | Op.Cmasknotzero n, _ => error (Errors.msg "Htlgen: condition instruction not implemented: Cmasknotzero")
+ | _, _ => error (Errors.msg "Htlgen: condition instruction not implemented: other")
+ end.
+
+Definition check_address_parameter_signed (p : Z) : bool :=
+ Z.leb Integers.Ptrofs.min_signed p
+ && Z.leb p Integers.Ptrofs.max_signed.
+
+Definition check_address_parameter_unsigned (p : Z) : bool :=
+ Z.leb p Integers.Ptrofs.max_unsigned.
+
+Definition translate_eff_addressing (a: Op.addressing) (args: list reg) : mon expr :=
+ match a, args with (* TODO: We should be more methodical here; what are the possibilities?*)
+ | Op.Aindexed off, r1::nil =>
+ if (check_address_parameter_signed off)
+ then ret (boplitz Vadd r1 off)
+ else error (Errors.msg "Veriloggen: translate_eff_addressing (Aindexed): address out of bounds")
+ | Op.Ascaled scale offset, r1::nil =>
+ if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
+ then ret (Vbinop Vadd (boplitz Vmul r1 scale) (Vlit (ZToValue offset)))
+ else error (Errors.msg "Veriloggen: translate_eff_addressing (Ascaled): address out of bounds")
+ | Op.Aindexed2 offset, r1::r2::nil =>
+ if (check_address_parameter_signed offset)
+ then ret (Vbinop Vadd (bop Vadd r1 r2) (Vlit (ZToValue offset)))
+ else error (Errors.msg "Veriloggen: translate_eff_addressing (Aindexed2): address out of bounds")
+ | Op.Aindexed2scaled scale offset, r1::r2::nil => (* Typical for dynamic array addressing *)
+ if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
+ then ret (Vbinop Vadd (Vvar r1) (Vbinop Vadd (boplitz Vmul r2 scale) (Vlit (ZToValue offset))))
+ else error (Errors.msg "Veriloggen: translate_eff_addressing (Aindexed2scaled): address out of bounds")
+ | Op.Ainstack a, nil => (* We need to be sure that the base address is aligned *)
+ let a := Integers.Ptrofs.unsigned a in
+ if (check_address_parameter_unsigned a)
+ then ret (Vlit (ZToValue a))
+ else error (Errors.msg "Veriloggen: translate_eff_addressing (Ainstack): address out of bounds")
+ | _, _ => error (Errors.msg "Veriloggen: translate_eff_addressing unsuported addressing")
+ end.
+
+(** Translate an instruction to a statement. FIX mulhs mulhu *)
+Definition translate_instr (op : Op.operation) (args : list reg) : mon expr :=
+ match op, args with
+ | Op.Omove, r::nil => ret (Vvar r)
+ | Op.Ointconst n, _ => ret (Vlit (intToValue n))
+ | Op.Oneg, r::nil => ret (Vunop Vneg (Vvar r))
+ | Op.Osub, r1::r2::nil => ret (bop Vsub r1 r2)
+ | Op.Omul, r1::r2::nil => ret (bop Vmul r1 r2)
+ | Op.Omulimm n, r::nil => ret (boplit Vmul r n)
+ | Op.Omulhs, r1::r2::nil => error (Errors.msg "Htlgen: Instruction not implemented: mulhs")
+ | Op.Omulhu, r1::r2::nil => error (Errors.msg "Htlgen: Instruction not implemented: mulhu")
+ | Op.Odiv, r1::r2::nil => ret (bop Vdiv r1 r2)
+ | Op.Odivu, r1::r2::nil => ret (bop Vdivu r1 r2)
+ | Op.Omod, r1::r2::nil => ret (bop Vmod r1 r2)
+ | Op.Omodu, r1::r2::nil => ret (bop Vmodu r1 r2)
+ | Op.Oand, r1::r2::nil => ret (bop Vand r1 r2)
+ | Op.Oandimm n, r::nil => ret (boplit Vand r n)
+ | Op.Oor, r1::r2::nil => ret (bop Vor r1 r2)
+ | Op.Oorimm n, r::nil => ret (boplit Vor r n)
+ | Op.Oxor, r1::r2::nil => ret (bop Vxor r1 r2)
+ | Op.Oxorimm n, r::nil => ret (boplit Vxor r n)
+ | Op.Onot, r::nil => ret (Vunop Vnot (Vvar r))
+ | Op.Oshl, r1::r2::nil => ret (bop Vshl r1 r2)
+ | Op.Oshlimm n, r::nil => ret (boplit Vshl r n)
+ | Op.Oshr, r1::r2::nil => ret (bop Vshr r1 r2)
+ | Op.Oshrimm n, r::nil => ret (boplit Vshr r n)
+ | Op.Oshrximm n, r::nil =>
+ ret (Vternary (Vbinop Vlt (Vvar r) (Vlit (ZToValue 0)))
+ (Vunop Vneg (Vbinop Vshru (Vunop Vneg (Vvar r)) (Vlit n)))
+ (Vbinop Vshru (Vvar r) (Vlit n)))
+ | Op.Oshru, r1::r2::nil => ret (bop Vshru r1 r2)
+ | Op.Oshruimm n, r::nil => ret (boplit Vshru r n)
+ | Op.Ororimm n, r::nil => error (Errors.msg "Htlgen: Instruction not implemented: Ororimm")
+ (*ret (Vbinop Vor (boplit Vshru r (Integers.Int.modu n (Integers.Int.repr 32)))
+ (boplit Vshl r (Integers.Int.sub (Integers.Int.repr 32) (Integers.Int.modu n (Integers.Int.repr 32)))))*)
+ | Op.Oshldimm n, r::nil => ret (Vbinop Vor (boplit Vshl r n) (boplit Vshr r (Integers.Int.sub (Integers.Int.repr 32) n)))
+ | Op.Ocmp c, _ => translate_condition c args
+ | Op.Osel c AST.Tint, r1::r2::rl =>
+ do tc <- translate_condition c rl;
+ ret (Vternary tc (Vvar r1) (Vvar r2))
+ | Op.Olea a, _ => translate_eff_addressing a args
+ | _, _ => error (Errors.msg "Htlgen: Instruction not implemented: other")
+ end.
+
+Lemma add_branch_instr_state_incr:
+ forall s e n n1 n2,
+ (st_datapath s) ! n = None ->
+ (st_controllogic s) ! n = None ->
+ st_incr s (mkstate
+ s.(st_st)
+ (st_freshreg s)
+ (st_freshstate s)
+ s.(st_scldecls)
+ s.(st_arrdecls)
+ (AssocMap.set n Vskip (st_datapath s))
+ (AssocMap.set n (state_cond s.(st_st) e n1 n2) (st_controllogic s))).
+Proof.
+ intros. apply state_incr_intro; simpl;
+ try (intros; destruct (peq n0 n); subst);
+ auto with htlh.
+Qed.
+
+Definition add_branch_instr (e: expr) (n n1 n2: node) : mon unit :=
+ fun s =>
+ match check_empty_node_datapath s n, check_empty_node_controllogic s n with
+ | left NSTM, left NTRANS =>
+ OK tt (mkstate
+ s.(st_st)
+ (st_freshreg s)
+ (st_freshstate s)
+ s.(st_scldecls)
+ s.(st_arrdecls)
+ (AssocMap.set n Vskip (st_datapath s))
+ (AssocMap.set n (state_cond s.(st_st) e n1 n2) (st_controllogic s)))
+ (add_branch_instr_state_incr s e n n1 n2 NSTM NTRANS)
+ | _, _ => Error (Errors.msg "Htlgen: add_branch_instr")
+ end.
+
+Definition translate_arr_access (mem : AST.memory_chunk) (addr : Op.addressing)
+ (args : list reg) (stack : reg) : mon expr :=
+ match mem, addr, args with (* TODO: We should be more methodical here; what are the possibilities?*)
+ | Mint32, Op.Aindexed off, r1::nil =>
+ if (check_address_parameter_signed off)
+ then ret (Vvari stack (Vbinop Vdivu (boplitz Vadd r1 off) (Vlit (ZToValue 4))))
+ else error (Errors.msg "HTLgen: translate_arr_access address out of bounds")
+ | Mint32, Op.Aindexed2scaled scale offset, r1::r2::nil => (* Typical for dynamic array addressing *)
+ if (check_address_parameter_signed scale) && (check_address_parameter_signed offset)
+ then ret (Vvari stack
+ (Vbinop Vdivu
+ (Vbinop Vadd (boplitz Vadd r1 offset) (boplitz Vmul r2 scale))
+ (Vlit (ZToValue 4))))
+ else error (Errors.msg "HTLgen: translate_arr_access address out of bounds")
+ | Mint32, Op.Ainstack a, nil => (* We need to be sure that the base address is aligned *)
+ let a := Integers.Ptrofs.unsigned a in
+ if (check_address_parameter_unsigned a)
+ then ret (Vvari stack (Vlit (ZToValue (a / 4))))
+ else error (Errors.msg "HTLgen: eff_addressing out of bounds stack offset")
+ | _, _, _ => error (Errors.msg "HTLgen: translate_arr_access unsuported addressing")
+ end.
+
+Fixpoint enumerate (i : nat) (ns : list node) {struct ns} : list (nat * node) :=
+ match ns with
+ | n :: ns' => (i, n) :: enumerate (i+1) ns'
+ | nil => nil
+ end.
+
+Definition tbl_to_case_expr (st : reg) (ns : list node) : list (expr * stmnt) :=
+ List.map (fun a => match a with
+ (i, n) => (Vlit (natToValue i), Vnonblock (Vvar st) (Vlit (posToValue n)))
+ end)
+ (enumerate 0 ns).
+
+Definition stack_correct (sz : Z) : bool :=
+ (0 <=? sz) && (sz <? Integers.Ptrofs.modulus) && (Z.modulo sz 4 =? 0).
+
+Lemma create_reg_state_incr:
+ forall s sz i,
+ st_incr s (mkstate
+ s.(st_st)
+ (Pos.succ (st_freshreg s))
+ (st_freshstate s)
+ (AssocMap.set s.(st_freshreg) (i, VScalar sz) s.(st_scldecls))
+ s.(st_arrdecls)
+ (st_datapath s)
+ (st_controllogic s)).
+Proof. constructor; simpl; auto with htlh. Qed.
+
+Definition create_reg (i : option io) (sz : nat) : mon reg :=
+ fun s => let r := s.(st_freshreg) in
+ OK r (mkstate
+ s.(st_st)
+ (Pos.succ r)
+ (st_freshstate s)
+ (AssocMap.set s.(st_freshreg) (i, VScalar sz) s.(st_scldecls))
+ (st_arrdecls s)
+ (st_datapath s)
+ (st_controllogic s))
+ (create_reg_state_incr s sz i).
+
+Lemma create_arr_state_incr:
+ forall s sz ln i,
+ st_incr s (mkstate
+ s.(st_st)
+ (Pos.succ (st_freshreg s))
+ (st_freshstate s)
+ s.(st_scldecls)
+ (AssocMap.set s.(st_freshreg) (i, VArray sz ln) s.(st_arrdecls))
+ (st_datapath s)
+ (st_controllogic s)).
+Proof. constructor; simpl; auto with htlh. Qed.
+
+Definition create_arr (i : option io) (sz : nat) (ln : nat) : mon (reg * nat) :=
+ fun s => let r := s.(st_freshreg) in
+ OK (r, ln) (mkstate
+ s.(st_st)
+ (Pos.succ r)
+ (st_freshstate s)
+ s.(st_scldecls)
+ (AssocMap.set s.(st_freshreg) (i, VArray sz ln) s.(st_arrdecls))
+ (st_datapath s)
+ (st_controllogic s))
+ (create_arr_state_incr s sz ln i).
+
+Definition max_pc_map (m : Maps.PTree.t stmnt) :=
+ PTree.fold (fun m pc i => Pos.max m pc) m 1%positive.
+
+Lemma max_pc_map_sound:
+ forall m pc i, m!pc = Some i -> Ple pc (max_pc_map m).
+Proof.
+ intros until i. unfold max_pc_function.
+ apply PTree_Properties.fold_rec with (P := fun c m => c!pc = Some i -> Ple pc m).
+ (* extensionality *)
+ intros. apply H0. rewrite H; auto.
+ (* base case *)
+ rewrite PTree.gempty. congruence.
+ (* inductive case *)
+ intros. rewrite PTree.gsspec in H2. destruct (peq pc k).
+ inv H2. xomega.
+ apply Ple_trans with a. auto. xomega.
+Qed.
+
+Lemma max_pc_wf :
+ forall m, Z.pos (max_pc_map m) <= Integers.Int.max_unsigned ->
+ map_well_formed m.
+Proof.
+ unfold map_well_formed. intros.
+ exploit list_in_map_inv. eassumption. intros [x [A B]]. destruct x.
+ apply Maps.PTree.elements_complete in B. apply max_pc_map_sound in B.
+ unfold Ple in B. apply Pos2Z.pos_le_pos in B. subst.
+ simplify. transitivity (Z.pos (max_pc_map m)); eauto.
+Qed.
+
+Definition Poslength {A : Type} (l : list A) : positive :=
+ match Zlength l with
+ | Z.pos p => p
+ | _ => 1
+ end.
+
+Fixpoint Penumerate {A : Type} (p : positive) (l : list A) {struct l} : list (positive * A) :=
+ match l with
+ | x :: xs => (p, x) :: Penumerate (Pos.succ p) xs
+ | nil => nil
+ end.
+
+Parameter translate_inst_list : reg -> reg -> reg -> node * list instruction -> mon unit.
+
+Definition translate_cfi (fin rtrn stack : reg) (ni : node * control_flow_inst) : mon unit :=
+ let (n, cfi) := ni in
+ match cfi with
+ | RPgoto n' =>
+ do st <- get;
+ add_node_skip n (state_goto st.(st_st) n')
+ | RPcond c args n1 n2 =>
+ do e <- translate_condition c args;
+ add_branch_instr e n n1 n2
+ | RPreturn r =>
+ match r with
+ | Some r' =>
+ add_instr_skip n (Vseq (block fin (Vlit (ZToValue 1%Z))) (block rtrn (Vvar r')))
+ | None =>
+ add_instr_skip n (Vseq (block fin (Vlit (ZToValue 1%Z))) (block rtrn (Vlit (ZToValue 0%Z))))
+ end
+ | RPjumptable r ln => error (Errors.msg "HTLPargen: RPjumptable not supported.")
+ | RPcall sig ri rl r n => error (Errors.msg "HTLPargen: RPcall not supported.")
+ | RPtailcall sig ri lr => error (Errors.msg "HTLPargen: RPtailcall not supported.")
+ | RPbuiltin e lb b n => error (Errors.msg "HTLPargen: RPbuildin not supported.")
+ end.
+
+Definition transf_bblock (fin rtrn stack : reg) (ni : node * bblock) : mon unit :=
+ let (n, bb) := ni in
+ do _ <- collectlist (translate_inst_list fin rtrn stack) (Penumerate n bb.(bb_body));
+ match bb.(bb_exit) with
+ | Some e => translate_cfi fin rtrn stack ((n + Poslength bb.(bb_body))%positive, e)
+ | None => ret tt
+ end.
+
+Definition transf_module (f: function) : mon module :=
+ if stack_correct f.(fn_stacksize) then
+ do fin <- create_reg (Some Voutput) 1;
+ do rtrn <- create_reg (Some Voutput) 32;
+ do (stack, stack_len) <- create_arr None 32 (Z.to_nat (f.(fn_stacksize) / 4));
+ do _ <- collectlist (transf_bblock fin rtrn stack) (Maps.PTree.elements f.(RTLPar.fn_code));
+ do _ <- collectlist (fun r => declare_reg (Some Vinput) r 32) f.(RTLPar.fn_params);
+ do start <- create_reg (Some Vinput) 1;
+ do rst <- create_reg (Some Vinput) 1;
+ do clk <- create_reg (Some Vinput) 1;
+ do current_state <- get;
+ match zle (Z.pos (max_pc_map current_state.(st_datapath))) Integers.Int.max_unsigned,
+ zle (Z.pos (max_pc_map current_state.(st_controllogic))) Integers.Int.max_unsigned with
+ | left LEDATA, left LECTRL =>
+ ret (mkmodule
+ f.(RTLPar.fn_params)
+ current_state.(st_datapath)
+ current_state.(st_controllogic)
+ f.(fn_entrypoint)
+ current_state.(st_st)
+ stack
+ stack_len
+ fin
+ rtrn
+ start
+ rst
+ clk
+ current_state.(st_scldecls)
+ current_state.(st_arrdecls)
+ (conj (max_pc_wf _ LECTRL) (max_pc_wf _ LEDATA)))
+ | _, _ => error (Errors.msg "More than 2^32 states.")
+ end
+ else error (Errors.msg "Stack size misalignment.").
+
+Definition max_state (f: function) : state :=
+ let st := Pos.succ (max_reg_function f) in
+ mkstate st
+ (Pos.succ st)
+ (Pos.succ (max_pc_function f))
+ (AssocMap.set st (None, VScalar 32) (st_scldecls (init_state st)))
+ (st_arrdecls (init_state st))
+ (st_datapath (init_state st))
+ (st_controllogic (init_state st)).
+
+Definition transl_module (f : function) : Errors.res module :=
+ run_mon (max_state f) (transf_module f).
+
+Definition transl_fundef := transf_partial_fundef transl_module.
+
+Definition main_is_internal (p : RTLPar.program) : bool :=
+ let ge := Globalenvs.Genv.globalenv p in
+ match Globalenvs.Genv.find_symbol ge p.(AST.prog_main) with
+ | Some b =>
+ match Globalenvs.Genv.find_funct_ptr ge b with
+ | Some (AST.Internal _) => true
+ | _ => false
+ end
+ | _ => false
+ end.
+
+Definition transl_program (p : RTLPar.program) : Errors.res HTL.program :=
+ if main_is_internal p
+ then transform_partial_program transl_fundef p
+ else Errors.Error (Errors.msg "Main function is not Internal.").