aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/RTLPargen.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/hls/RTLPargen.v')
-rw-r--r--src/hls/RTLPargen.v1413
1 files changed, 1259 insertions, 154 deletions
diff --git a/src/hls/RTLPargen.v b/src/hls/RTLPargen.v
index 5ad3f90..2f24a42 100644
--- a/src/hls/RTLPargen.v
+++ b/src/hls/RTLPargen.v
@@ -19,7 +19,7 @@
Require Import compcert.backend.Registers.
Require Import compcert.common.AST.
Require Import compcert.common.Globalenvs.
-Require compcert.common.Memory.
+Require Import compcert.common.Memory.
Require Import compcert.common.Values.
Require Import compcert.lib.Floats.
Require Import compcert.lib.Integers.
@@ -31,6 +31,9 @@ Require Import vericert.hls.RTLBlock.
Require Import vericert.hls.RTLPar.
Require Import vericert.hls.RTLBlockInstr.
+#[local]
+Open Scope positive.
+
(*|
Schedule Oracle
===============
@@ -44,6 +47,7 @@ Definition reg := positive.
Inductive resource : Set :=
| Reg : reg -> resource
+| Pred : reg -> resource
| Mem : resource.
(*|
@@ -53,7 +57,7 @@ optimised heavily if written manually, as their proofs are not needed.
Lemma resource_eq : forall (r1 r2 : resource), {r1 = r2} + {r1 <> r2}.
Proof.
- decide equality. apply Pos.eq_dec.
+ decide equality; apply Pos.eq_dec.
Defined.
Lemma comparison_eq: forall (x y : comparison), {x = y} + {x <> y}.
@@ -181,7 +185,8 @@ Module R_indexed.
Definition t := resource.
Definition index (rs: resource) : positive :=
match rs with
- | Reg r => xO r
+ | Reg r => xO (xO r)
+ | Pred r => xI (xI r)
| Mem => 1%positive
end.
@@ -205,14 +210,230 @@ Then, to make recursion over expressions easier, expression_list is also defined
that enables mutual recursive definitions over the datatypes.
|*)
-Inductive expression : Set :=
+Definition unsat p := forall a, sat_predicate p a = false.
+Definition sat p := exists a, sat_predicate p a = true.
+
+Inductive expression : Type :=
| Ebase : resource -> expression
-| Eop : Op.operation -> expression_list -> expression
+| Eop : Op.operation -> expression_list -> expression -> expression
| Eload : AST.memory_chunk -> Op.addressing -> expression_list -> expression -> expression
| Estore : expression -> AST.memory_chunk -> Op.addressing -> expression_list -> expression -> expression
-with expression_list : Set :=
+| Esetpred : Op.condition -> expression_list -> expression -> expression
+with expression_list : Type :=
| Enil : expression_list
-| Econs : expression -> expression_list -> expression_list.
+| Econs : expression -> expression_list -> expression_list
+.
+
+(*Inductive pred_expr : Type :=
+| PEsingleton : option pred_op -> expression -> pred_expr
+| PEcons : option pred_op -> expression -> pred_expr -> pred_expr.*)
+
+Module NonEmpty.
+
+Inductive non_empty (A: Type) :=
+| singleton : A -> non_empty A
+| cons : A -> non_empty A -> non_empty A
+.
+
+Arguments singleton [A].
+Arguments cons [A].
+
+Declare Scope non_empty_scope.
+Delimit Scope non_empty_scope with non_empty.
+
+Module NonEmptyNotation.
+Infix "::|" := cons (at level 60, right associativity) : non_empty_scope.
+End NonEmptyNotation.
+Import NonEmptyNotation.
+
+#[local] Open Scope non_empty_scope.
+
+Fixpoint map {A B} (f: A -> B) (l: non_empty A): non_empty B :=
+ match l with
+ | singleton a => singleton (f a)
+ | a ::| b => f a ::| map f b
+ end.
+
+Fixpoint to_list {A} (l: non_empty A): list A :=
+ match l with
+ | singleton a => a::nil
+ | a ::| b => a :: to_list b
+ end.
+
+Fixpoint app {A} (l1 l2: non_empty A) :=
+ match l1 with
+ | singleton a => a ::| l2
+ | a ::| b => a ::| app b l2
+ end.
+
+Fixpoint non_empty_prod {A B} (l: non_empty A) (l': non_empty B) :=
+ match l with
+ | singleton a => map (fun x => (a, x)) l'
+ | a ::| b => app (map (fun x => (a, x)) l') (non_empty_prod b l')
+ end.
+
+Fixpoint of_list {A} (l: list A): option (non_empty A) :=
+ match l with
+ | a::b =>
+ match of_list b with
+ | Some b' => Some (a ::| b')
+ | _ => None
+ end
+ | nil => None
+ end.
+
+End NonEmpty.
+
+Module NE := NonEmpty.
+Import NE.NonEmptyNotation.
+
+#[local] Open Scope non_empty_scope.
+
+Definition predicated A := NE.non_empty (option pred_op * A).
+
+Definition pred_expr := predicated expression.
+
+Definition pred_list_wf l : Prop :=
+ forall a b, In (Some a) l -> In (Some b) l -> a <> b -> unsat (Pand a b).
+
+Definition pred_list_wf_ep (l: pred_expr) : Prop :=
+ pred_list_wf (NE.to_list (NE.map fst l)).
+
+Lemma unsat_correct1 :
+ forall a b c,
+ unsat (Pand a b) ->
+ sat_predicate a c = true ->
+ sat_predicate b c = false.
+Proof.
+ unfold unsat in *. intros.
+ simplify. specialize (H c).
+ apply andb_false_iff in H. inv H. rewrite H0 in H1. discriminate.
+ auto.
+Qed.
+
+Lemma unsat_correct2 :
+ forall a b c,
+ unsat (Pand a b) ->
+ sat_predicate b c = true ->
+ sat_predicate a c = false.
+Proof.
+ unfold unsat in *. intros.
+ simplify. specialize (H c).
+ apply andb_false_iff in H. inv H. auto. rewrite H0 in H1. discriminate.
+Qed.
+
+Lemma unsat_not a: unsat (Pand a (Pnot a)).
+Proof. unfold unsat; simplify; auto with bool. Qed.
+
+Lemma unsat_commut a b: unsat (Pand a b) -> unsat (Pand b a).
+Proof. unfold unsat; simplify; eauto with bool. Qed.
+
+Lemma sat_dec a n b: sat_pred n a = Some b -> {sat a} + {unsat a}.
+Proof.
+ unfold sat, unsat. destruct b.
+ intros. left. destruct s.
+ exists (Sat.interp_alist x). auto.
+ intros. tauto.
+Qed.
+
+Lemma sat_equiv :
+ forall a b,
+ unsat (Por (Pand a (Pnot b)) (Pand (Pnot a) b)) ->
+ forall c, sat_predicate a c = sat_predicate b c.
+Proof.
+ unfold unsat. intros. specialize (H c); simplify.
+ destruct (sat_predicate b c) eqn:X;
+ destruct (sat_predicate a c) eqn:X2;
+ crush.
+Qed.
+
+(*Parameter op_le : Op.operation -> Op.operation -> bool.
+Parameter chunk_le : AST.memory_chunk -> AST.memory_chunk -> bool.
+Parameter addr_le : Op.addressing -> Op.addressing -> bool.
+Parameter cond_le : Op.condition -> Op.condition -> bool.
+
+Fixpoint pred_le (p1 p2: pred_op) : bool :=
+ match p1, p2 with
+ | Pvar i, Pvar j => (i <=? j)%positive
+ | Pnot p1, Pnot p2 => pred_le p1 p2
+ | Pand p1 p1', Pand p2 p2' => if pred_le p1 p2 then true else pred_le p1' p2'
+ | Por p1 p1', Por p2 p2' => if pred_le p1 p2 then true else pred_le p1' p2'
+ | Pvar _, _ => true
+ | Pnot _, Pvar _ => false
+ | Pnot _, _ => true
+ | Pand _ _, Pvar _ => false
+ | Pand _ _, Pnot _ => false
+ | Pand _ _, _ => true
+ | Por _ _, _ => false
+ end.
+
+Import Lia.
+
+Lemma pred_le_trans :
+ forall p1 p2 p3 b, pred_le p1 p2 = b -> pred_le p2 p3 = b -> pred_le p1 p3 = b.
+Proof.
+ induction p1; destruct p2; destruct p3; crush.
+ destruct b. rewrite Pos.leb_le in *. lia. rewrite Pos.leb_gt in *. lia.
+ firstorder.
+ destruct (pred_le p1_1 p2_1) eqn:?. subst. destruct (pred_le p2_1 p3_1) eqn:?.
+ apply IHp1_1 in Heqb. rewrite Heqb. auto. auto.
+
+
+Fixpoint expr_le (e1 e2: expression) {struct e2}: bool :=
+ match e1, e2 with
+ | Ebase r1, Ebase r2 => (R_indexed.index r1 <=? R_indexed.index r2)%positive
+ | Ebase _, _ => true
+ | Eop op1 elist1 m1, Eop op2 elist2 m2 =>
+ if op_le op1 op2 then true
+ else if elist_le elist1 elist2 then true
+ else expr_le m1 m2
+ | Eop _ _ _, Ebase _ => false
+ | Eop _ _ _, _ => true
+ | Eload chunk1 addr1 elist1 expr1, Eload chunk2 addr2 elist2 expr2 =>
+ if chunk_le chunk1 chunk2 then true
+ else if addr_le addr1 addr2 then true
+ else if elist_le elist1 elist2 then true
+ else expr_le expr1 expr2
+ | Eload _ _ _ _, Ebase _ => false
+ | Eload _ _ _ _, Eop _ _ _ => false
+ | Eload _ _ _ _, _ => true
+ | Estore m1 chunk1 addr1 elist1 expr1, Estore m2 chunk2 addr2 elist2 expr2 =>
+ if expr_le m1 m2 then true
+ else if chunk_le chunk1 chunk2 then true
+ else if addr_le addr1 addr2 then true
+ else if elist_le elist1 elist2 then true
+ else expr_le expr1 expr2
+ | Estore _ _ _ _ _, Ebase _ => false
+ | Estore _ _ _ _ _, Eop _ _ _ => false
+ | Estore _ _ _ _ _, Eload _ _ _ _ => false
+ | Estore _ _ _ _ _, _ => true
+ | Esetpred p1 cond1 elist1 m1, Esetpred p2 cond2 elist2 m2 =>
+ if (p1 <=? p2)%positive then true
+ else if cond_le cond1 cond2 then true
+ else if elist_le elist1 elist2 then true
+ else expr_le m1 m2
+ | Esetpred _ _ _ _, Econd _ => true
+ | Esetpred _ _ _ _, _ => false
+ | Econd eplist1, Econd eplist2 => eplist_le eplist1 eplist2
+ | Econd eplist1, _ => false
+ end
+with elist_le (e1 e2: expression_list) : bool :=
+ match e1, e2 with
+ | Enil, Enil => true
+ | Econs a1 b1, Econs a2 b2 => if expr_le a1 a2 then true else elist_le b1 b2
+ | Enil, _ => true
+ | _, Enil => false
+ end
+with eplist_le (e1 e2: expr_pred_list) : bool :=
+ match e1, e2 with
+ | EPnil, EPnil => true
+ | EPcons p1 a1 b1, EPcons p2 a2 b2 =>
+ if pred_le p1 p2 then true
+ else if expr_le a1 a2 then true else eplist_le b1 b2
+ | EPnil, _ => true
+ | _, EPnil => false
+ end
+.*)
(*|
Using IMap we can create a map from resources to any other type, as resources can be uniquely
@@ -221,23 +442,29 @@ identified as positive numbers.
Module Rtree := ITree(R_indexed).
-Definition forest : Type := Rtree.t expression.
+Definition forest : Type := Rtree.t pred_expr.
-Definition regset := Registers.Regmap.t val.
-
-Definition get_forest v f :=
+Definition get_forest v (f: forest) :=
match Rtree.get v f with
- | None => Ebase v
+ | None => NE.singleton (None, (Ebase v))
| Some v' => v'
end.
Notation "a # b" := (get_forest b a) (at level 1).
Notation "a # b <- c" := (Rtree.set b c a) (at level 1, b at next level).
-Record sem_state := mk_sem_state {
- sem_state_regset : regset;
- sem_state_memory : Memory.mem
- }.
+Definition maybe {A: Type} (vo: A) (pr: predset) p (v: A) :=
+ match p with
+ | Some p' => if eval_predf pr p' then v else vo
+ | None => v
+ end.
+
+Definition get_pr i := match i with mk_instr_state a b c => b end.
+
+Definition get_m i := match i with mk_instr_state a b c => c end.
+
+Definition eval_predf_opt pr p :=
+ match p with Some p' => eval_predf pr p' | None => true end.
(*|
Finally we want to define the semantics of execution for the expressions with symbolic values, so
@@ -246,82 +473,142 @@ the result of executing the expressions will be an expressions.
Section SEMANTICS.
-Context (A : Set) (genv : Genv.t A unit).
+Context {A : Type} (genv : Genv.t A unit).
Inductive sem_value :
- val -> sem_state -> expression -> val -> Prop :=
- | Sbase_reg:
- forall sp st r,
- sem_value sp st (Ebase (Reg r)) (Registers.Regmap.get r (sem_state_regset st))
- | Sop:
- forall st op args v lv sp,
- sem_val_list sp st args lv ->
- Op.eval_operation genv sp op lv (sem_state_memory st) = Some v ->
- sem_value sp st (Eop op args) v
- | Sload :
- forall st mem_exp addr chunk args a v m' lv sp,
- sem_mem sp st mem_exp m' ->
- sem_val_list sp st args lv ->
- Op.eval_addressing genv sp addr lv = Some a ->
- Memory.Mem.loadv chunk m' a = Some v ->
- sem_value sp st (Eload chunk addr args mem_exp) v
+ val -> instr_state -> expression -> val -> Prop :=
+| Sbase_reg:
+ forall sp rs r m pr,
+ sem_value sp (mk_instr_state rs pr m) (Ebase (Reg r)) (rs !! r)
+| Sop:
+ forall rs m op args v lv sp m' mem_exp pr,
+ sem_mem sp (mk_instr_state rs pr m) mem_exp m' ->
+ sem_val_list sp (mk_instr_state rs pr m) args lv ->
+ Op.eval_operation genv sp op lv m' = Some v ->
+ sem_value sp (mk_instr_state rs pr m) (Eop op args mem_exp) v
+| Sload :
+ forall st mem_exp addr chunk args a v m' lv sp,
+ sem_mem sp st mem_exp m' ->
+ sem_val_list sp st args lv ->
+ Op.eval_addressing genv sp addr lv = Some a ->
+ Memory.Mem.loadv chunk m' a = Some v ->
+ sem_value sp st (Eload chunk addr args mem_exp) v
+with sem_pred :
+ val -> instr_state -> expression -> bool -> Prop :=
+| Spred:
+ forall st mem_exp args c lv m' v sp,
+ sem_mem sp st mem_exp m' ->
+ sem_val_list sp st args lv ->
+ Op.eval_condition c lv m' = Some v ->
+ sem_pred sp st (Esetpred c args mem_exp) v
+| Sbase_pred:
+ forall rs pr m p sp,
+ sem_pred sp (mk_instr_state rs pr m) (Ebase (Pred p)) (pr !! p)
with sem_mem :
- val -> sem_state -> expression -> Memory.mem -> Prop :=
- | Sstore :
- forall st mem_exp val_exp m'' addr v a m' chunk args lv sp,
- sem_mem sp st mem_exp m' ->
- sem_value sp st val_exp v ->
- sem_val_list sp st args lv ->
- Op.eval_addressing genv sp addr lv = Some a ->
- Memory.Mem.storev chunk m' a v = Some m'' ->
- sem_mem sp st (Estore mem_exp chunk addr args val_exp) m''
- | Sbase_mem :
- forall st m sp,
- sem_mem sp st (Ebase Mem) m
+ val -> instr_state -> expression -> Memory.mem -> Prop :=
+| Sstore :
+ forall st mem_exp val_exp m'' addr v a m' chunk args lv sp,
+ sem_mem sp st mem_exp m' ->
+ sem_value sp st val_exp v ->
+ sem_val_list sp st args lv ->
+ Op.eval_addressing genv sp addr lv = Some a ->
+ Memory.Mem.storev chunk m' a v = Some m'' ->
+ sem_mem sp st (Estore val_exp chunk addr args mem_exp) m''
+| Sbase_mem :
+ forall rs m sp pr,
+ sem_mem sp (mk_instr_state rs pr m) (Ebase Mem) m
with sem_val_list :
- val -> sem_state -> expression_list -> list val -> Prop :=
- | Snil :
- forall st sp,
- sem_val_list sp st Enil nil
- | Scons :
- forall st e v l lv sp,
- sem_value sp st e v ->
- sem_val_list sp st l lv ->
- sem_val_list sp st (Econs e l) (v :: lv).
+ val -> instr_state -> expression_list -> list val -> Prop :=
+| Snil :
+ forall st sp,
+ sem_val_list sp st Enil nil
+| Scons :
+ forall st e v l lv sp,
+ sem_value sp st e v ->
+ sem_val_list sp st l lv ->
+ sem_val_list sp st (Econs e l) (v :: lv)
+.
+
+Inductive sem_pred_expr {A: Type} (sem: val -> instr_state -> expression -> A -> Prop):
+ val -> instr_state -> pred_expr -> A -> Prop :=
+| sem_pred_expr_base :
+ forall sp st e v,
+ sem sp st e v ->
+ sem_pred_expr sem sp st (NE.singleton (None, e)) v
+| sem_pred_expr_p :
+ forall sp st e p v,
+ eval_predf (instr_st_predset st) p = true ->
+ sem sp st e v ->
+ sem_pred_expr sem sp st (NE.singleton (Some p, e)) v
+| sem_pred_expr_cons_true :
+ forall sp st e pr p' v,
+ eval_predf (instr_st_predset st) pr = true ->
+ sem sp st e v ->
+ sem_pred_expr sem sp st ((Some pr, e)::|p') v
+| sem_pred_expr_cons_false :
+ forall sp st e pr p' v,
+ eval_predf (instr_st_predset st) pr = false ->
+ sem_pred_expr sem sp st p' v ->
+ sem_pred_expr sem sp st ((Some pr, e)::|p') v
+| sem_pred_expr_cons_None :
+ forall sp st e p' v,
+ sem sp st e v ->
+ sem_pred_expr sem sp st ((None, e)::|p') v
+.
+
+Definition collapse_pe (p: pred_expr) : option expression :=
+ match p with
+ | NE.singleton (None, p) => Some p
+ | _ => None
+ end.
+
+Inductive sem_predset :
+ val -> instr_state -> forest -> predset -> Prop :=
+| Spredset:
+ forall st f sp rs',
+ (forall pe x,
+ collapse_pe (f # (Pred x)) = Some pe ->
+ sem_pred sp st pe (rs' !! x)) ->
+ sem_predset sp st f rs'.
Inductive sem_regset :
- val -> sem_state -> forest -> regset -> Prop :=
- | Sregset:
- forall st f rs' sp,
- (forall x, sem_value sp st (f # (Reg x)) (Registers.Regmap.get x rs')) ->
- sem_regset sp st f rs'.
+ val -> instr_state -> forest -> regset -> Prop :=
+| Sregset:
+ forall st f sp rs',
+ (forall x, sem_pred_expr sem_value sp st (f # (Reg x)) (rs' !! x)) ->
+ sem_regset sp st f rs'.
Inductive sem :
- val -> sem_state -> forest -> sem_state -> Prop :=
- | Sem:
- forall st rs' m' f sp,
- sem_regset sp st f rs' ->
- sem_mem sp st (f # Mem) m' ->
- sem sp st f (mk_sem_state rs' m').
+ val -> instr_state -> forest -> instr_state -> Prop :=
+| Sem:
+ forall st rs' m' f sp pr',
+ sem_regset sp st f rs' ->
+ sem_predset sp st f pr' ->
+ sem_pred_expr sem_mem sp st (f # Mem) m' ->
+ sem sp st f (mk_instr_state rs' pr' m').
End SEMANTICS.
Fixpoint beq_expression (e1 e2: expression) {struct e1}: bool :=
match e1, e2 with
| Ebase r1, Ebase r2 => if resource_eq r1 r2 then true else false
- | Eop op1 el1, Eop op2 el2 =>
- if operation_eq op1 op2 then beq_expression_list el1 el2 else false
+ | Eop op1 el1 exp1, Eop op2 el2 exp2 =>
+ if operation_eq op1 op2 then
+ beq_expression_list el1 el2 else false
| Eload chk1 addr1 el1 e1, Eload chk2 addr2 el2 e2 =>
- if memory_chunk_eq chk1 chk2
- then if addressing_eq addr1 addr2
- then if beq_expression_list el1 el2
- then beq_expression e1 e2 else false else false else false
- | Estore m1 chk1 addr1 el1 e1, Estore m2 chk2 addr2 el2 e2=>
- if memory_chunk_eq chk1 chk2
- then if addressing_eq addr1 addr2
- then if beq_expression_list el1 el2
- then if beq_expression m1 m2
- then beq_expression e1 e2 else false else false else false else false
+ if memory_chunk_eq chk1 chk2
+ then if addressing_eq addr1 addr2
+ then if beq_expression_list el1 el2
+ then beq_expression e1 e2 else false else false else false
+ | Estore e1 chk1 addr1 el1 m1, Estore e2 chk2 addr2 el2 m2 =>
+ if memory_chunk_eq chk1 chk2
+ then if addressing_eq addr1 addr2
+ then if beq_expression_list el1 el2
+ then if beq_expression m1 m2
+ then beq_expression e1 e2 else false else false else false else false
+ | Esetpred c1 el1 m1, Esetpred c2 el2 m2 =>
+ if condition_eq c1 c2
+ then beq_expression_list el1 el2 else false
| _, _ => false
end
with beq_expression_list (el1 el2: expression_list) {struct el1} : bool :=
@@ -329,10 +616,12 @@ with beq_expression_list (el1 el2: expression_list) {struct el1} : bool :=
| Enil, Enil => true
| Econs e1 t1, Econs e2 t2 => beq_expression e1 e2 && beq_expression_list t1 t2
| _, _ => false
- end.
+ end
+.
Scheme expression_ind2 := Induction for expression Sort Prop
- with expression_list_ind2 := Induction for expression_list Sort Prop.
+ with expression_list_ind2 := Induction for expression_list Sort Prop
+.
Lemma beq_expression_correct:
forall e1 e2, beq_expression e1 e2 = true -> e1 = e2.
@@ -342,35 +631,127 @@ Proof.
(P := fun (e1 : expression) =>
forall e2, beq_expression e1 e2 = true -> e1 = e2)
(P0 := fun (e1 : expression_list) =>
- forall e2, beq_expression_list e1 e2 = true -> e1 = e2); simplify;
- repeat match goal with
- | [ H : context[match ?x with _ => _ end] |- _ ] => destruct x eqn:?
- | [ H : context[if ?x then _ else _] |- _ ] => destruct x eqn:?
- end; subst; f_equal; crush.
-Qed.
+ forall e2, beq_expression_list e1 e2 = true -> e1 = e2);
+ try solve [repeat match goal with
+ | [ H : context[match ?x with _ => _ end] |- _ ] => destruct x eqn:?
+ | [ H : context[if ?x then _ else _] |- _ ] => destruct x eqn:?
+ end; subst; f_equal; crush; eauto using Peqb_true_eq].
+ destruct e2; try discriminate. eauto.
+Abort.
+
+Definition hash_tree := PTree.t expression.
+
+Definition find_tree (el: expression) (h: hash_tree) : option positive :=
+ match filter (fun x => beq_expression el (snd x)) (PTree.elements h) with
+ | (p, _) :: nil => Some p
+ | _ => None
+ end.
+
+Definition combine_option {A} (a b: option A) : option A :=
+ match a, b with
+ | Some a', _ => Some a'
+ | _, Some b' => Some b'
+ | _, _ => None
+ end.
+
+Definition max_key {A} (t: PTree.t A) :=
+ fold_right Pos.max 1%positive (map fst (PTree.elements t)).
+
+Definition hash_expr (max: predicate) (e: expression) (h: hash_tree): predicate * hash_tree :=
+ match find_tree e h with
+ | Some p => (p, h)
+ | None =>
+ let nkey := Pos.max max (max_key h) + 1 in
+ (nkey, PTree.set nkey e h)
+ end.
+
+Fixpoint encode_expression (max: predicate) (pe: pred_expr) (h: hash_tree): pred_op * hash_tree :=
+ match pe with
+ | NE.singleton (None, e) =>
+ let (p, h') := hash_expr max e h in
+ (Pvar p, h')
+ | NE.singleton (Some p, e) =>
+ let (p', h') := hash_expr max e h in
+ (Por (Pnot p) (Pvar p'), h')
+ | (Some p, e)::|pe' =>
+ let (p', h') := hash_expr max e h in
+ let (p'', h'') := encode_expression max pe' h' in
+ (Pand (Por (Pnot p) (Pvar p')) p'', h'')
+ | (None, e)::|pe' =>
+ let (p', h') := hash_expr max e h in
+ let (p'', h'') := encode_expression max pe' h' in
+ (Pand (Pvar p') p'', h'')
+ end.
+
+Fixpoint max_predicate (p: pred_op) : positive :=
+ match p with
+ | Pvar p => p
+ | Pand a b => Pos.max (max_predicate a) (max_predicate b)
+ | Por a b => Pos.max (max_predicate a) (max_predicate b)
+ | Pnot a => max_predicate a
+ end.
+
+Fixpoint max_pred_expr (pe: pred_expr) : positive :=
+ match pe with
+ | NE.singleton (None, _) => 1
+ | NE.singleton (Some p, _) => max_predicate p
+ | (Some p, _) ::| pe' => Pos.max (max_predicate p) (max_pred_expr pe')
+ | (None, _) ::| pe' => (max_pred_expr pe')
+ end.
+
+Definition beq_pred_expr (bound: nat) (pe1 pe2: pred_expr) : bool :=
+ match pe1, pe2 with
+ (*| PEsingleton None e1, PEsingleton None e2 => beq_expression e1 e2
+ | PEsingleton (Some p1) e1, PEsingleton (Some p2) e2 =>
+ if beq_expression e1 e2
+ then match sat_pred_simple bound (Por (Pand p1 (Pnot p2)) (Pand p2 (Pnot p1))) with
+ | Some None => true
+ | _ => false
+ end
+ else false
+ | PEsingleton (Some p) e1, PEsingleton None e2
+ | PEsingleton None e1, PEsingleton (Some p) e2 =>
+ if beq_expression e1 e2
+ then match sat_pred_simple bound (Pnot p) with
+ | Some None => true
+ | _ => false
+ end
+ else false*)
+ | pe1, pe2 =>
+ let max := Pos.max (max_pred_expr pe1) (max_pred_expr pe2) in
+ let (p1, h) := encode_expression max pe1 (PTree.empty _) in
+ let (p2, h') := encode_expression max pe2 h in
+ match sat_pred_simple bound (Por (Pand p1 (Pnot p2)) (Pand p2 (Pnot p1))) with
+ | Some None => true
+ | _ => false
+ end
+ end.
Definition empty : forest := Rtree.empty _.
-(*|
-This function checks if all the elements in [fa] are in [fb], but not the other way round.
-|*)
+Definition check := Rtree.beq (beq_pred_expr 10000).
-Definition check := Rtree.beq beq_expression.
+Compute (check (empty # (Reg 2) <-
+ (((Some (Pand (Pvar 4) (Pnot (Pvar 4)))), (Ebase (Reg 9))) ::|
+ (NE.singleton ((Some (Pvar 2)), (Ebase (Reg 3))))))
+ (empty # (Reg 2) <- (NE.singleton ((Some (Por (Pvar 2) (Pand (Pvar 3) (Pnot (Pvar 3))))),
+ (Ebase (Reg 3)))))).
-Lemma check_correct: forall (fa fb : forest) (x : resource),
+Lemma check_correct: forall (fa fb : forest),
check fa fb = true -> (forall x, fa # x = fb # x).
Proof.
- unfold check, get_forest; intros;
+ (*unfold check, get_forest; intros;
pose proof beq_expression_correct;
match goal with
[ Hbeq : context[Rtree.beq], y : Rtree.elt |- _ ] =>
apply (Rtree.beq_sound beq_expression fa fb) with (x := y) in Hbeq
end;
repeat destruct_match; crush.
-Qed.
+Qed.*)
+ Abort.
Lemma get_empty:
- forall r, empty#r = Ebase r.
+ forall r, empty#r = NE.singleton (None, Ebase r).
Proof.
intros; unfold get_forest;
destruct_match; auto; [ ];
@@ -422,16 +803,11 @@ Proof.
apply IHm1_2. intros; apply (H (xI x)).
Qed.
-Lemma map0:
- forall r,
- empty # r = Ebase r.
-Proof. intros; eapply get_empty. Qed.
-
Lemma map1:
forall w dst dst',
dst <> dst' ->
- (empty # dst <- w) # dst' = Ebase dst'.
-Proof. intros; unfold get_forest; rewrite Rtree.gso; auto; apply map0. Qed.
+ (empty # dst <- w) # dst' = NE.singleton (None, Ebase dst').
+Proof. intros; unfold get_forest; rewrite Rtree.gso; auto; apply get_empty. Qed.
Lemma genmap1:
forall (f : forest) w dst dst',
@@ -440,7 +816,7 @@ Lemma genmap1:
Proof. intros; unfold get_forest; rewrite Rtree.gso; auto. Qed.
Lemma map2:
- forall (v : expression) x rs,
+ forall (v : pred_expr) x rs,
(rs # x <- v) # x = v.
Proof. intros; unfold get_forest; rewrite Rtree.gss; trivial. Qed.
@@ -450,8 +826,8 @@ Lemma tri1:
Proof. crush. Qed.
Definition ge_preserved {A B C D: Type} (ge: Genv.t A B) (tge: Genv.t C D) : Prop :=
- (forall sp op vl, Op.eval_operation ge sp op vl =
- Op.eval_operation tge sp op vl)
+ (forall sp op vl m, Op.eval_operation ge sp op vl m =
+ Op.eval_operation tge sp op vl m)
/\ (forall sp addr vl, Op.eval_addressing ge sp addr vl =
Op.eval_addressing tge sp addr vl).
@@ -460,39 +836,50 @@ Lemma ge_preserved_same:
Proof. unfold ge_preserved; auto. Qed.
Hint Resolve ge_preserved_same : rtlpar.
-Inductive sem_state_ld : sem_state -> sem_state -> Prop :=
-| sem_state_ld_intro:
- forall rs rs' m m',
- regs_lessdef rs rs' ->
+Ltac rtlpar_crush := crush; eauto with rtlpar.
+
+Inductive match_states : instr_state -> instr_state -> Prop :=
+| match_states_intro:
+ forall ps ps' rs rs' m m',
+ (forall x, rs !! x = rs' !! x) ->
+ (forall x, ps !! x = ps' !! x) ->
m = m' ->
- sem_state_ld (mk_sem_state rs m) (mk_sem_state rs' m').
+ match_states (mk_instr_state rs ps m) (mk_instr_state rs' ps' m').
+
+Inductive match_states_ld : instr_state -> instr_state -> Prop :=
+| match_states_ld_intro:
+ forall ps ps' rs rs' m m',
+ regs_lessdef rs rs' ->
+ (forall x, ps !! x = ps' !! x) ->
+ Mem.extends m m' ->
+ match_states_ld (mk_instr_state rs ps m) (mk_instr_state rs' ps' m').
Lemma sems_det:
forall A ge tge sp st f,
ge_preserved ge tge ->
forall v v' mv mv',
- (sem_value A ge sp st f v /\ sem_value A tge sp st f v' -> v = v') /\
- (sem_mem A ge sp st f mv /\ sem_mem A tge sp st f mv' -> mv = mv').
+ (@sem_value A ge sp st f v /\ @sem_value A tge sp st f v' -> v = v') /\
+ (@sem_mem A ge sp st f mv /\ @sem_mem A tge sp st f mv' -> mv = mv').
Proof. Abort.
(*Lemma sem_value_det:
forall A ge tge sp st f v v',
ge_preserved ge tge ->
- sem_value A ge sp st f v ->
- sem_value A tge sp st f v' ->
+ @sem_value A ge sp st f v ->
+ @sem_value A tge sp st f v' ->
v = v'.
Proof.
- intros;
- generalize (sems_det A ge tge sp st f H v v'
- st.(sem_state_memory) st.(sem_state_memory));
+ intros. destruct st.
+ generalize (sems_det A ge tge sp (mk_instr_state rs m) f H v v'
+ m m);
crush.
Qed.
Hint Resolve sem_value_det : rtlpar.
Lemma sem_value_det':
forall FF ge sp s f v v',
- sem_value FF ge sp s f v ->
- sem_value FF ge sp s f v' ->
+ @sem_value FF ge sp s f v ->
+ @sem_value FF ge sp s f v' ->
v = v'.
Proof.
simplify; eauto with rtlpar.
@@ -501,20 +888,20 @@ Qed.
Lemma sem_mem_det:
forall A ge tge sp st f m m',
ge_preserved ge tge ->
- sem_mem A ge sp st f m ->
- sem_mem A tge sp st f m' ->
+ @sem_mem A ge sp st f m ->
+ @sem_mem A tge sp st f m' ->
m = m'.
Proof.
- intros;
- generalize (sems_det A ge tge sp st f H sp sp m m');
+ intros. destruct st.
+ generalize (sems_det A ge tge sp (mk_instr_state rs m0) f H sp sp m m');
crush.
Qed.
Hint Resolve sem_mem_det : rtlpar.
Lemma sem_mem_det':
forall FF ge sp s f m m',
- sem_mem FF ge sp s f m ->
- sem_mem FF ge sp s f m' ->
+ @sem_mem FF ge sp s f m ->
+ @sem_mem FF ge sp s f m' ->
m = m'.
Proof.
simplify; eauto with rtlpar.
@@ -525,9 +912,9 @@ Hint Resolve Val.lessdef_same : rtlpar.
Lemma sem_regset_det:
forall FF ge tge sp st f v v',
ge_preserved ge tge ->
- sem_regset FF ge sp st f v ->
- sem_regset FF tge sp st f v' ->
- regs_lessdef v v'.
+ @sem_regset FF ge sp st f v ->
+ @sem_regset FF tge sp st f v' ->
+ (forall x, v !! x = v' !! x).
Proof.
intros; unfold regs_lessdef.
inv H0; inv H1;
@@ -538,9 +925,9 @@ Hint Resolve sem_regset_det : rtlpar.
Lemma sem_det:
forall FF ge tge sp st f st' st'',
ge_preserved ge tge ->
- sem FF ge sp st f st' ->
- sem FF tge sp st f st'' ->
- sem_state_ld st' st''.
+ @sem FF ge sp st f st' ->
+ @sem FF tge sp st f st'' ->
+ match_states st' st''.
Proof.
intros.
destruct st; destruct st'; destruct st''.
@@ -551,30 +938,86 @@ Hint Resolve sem_det : rtlpar.
Lemma sem_det':
forall FF ge sp st f st' st'',
- sem FF ge sp st f st' ->
- sem FF ge sp st f st'' ->
- sem_state_ld st' st''.
+ @sem FF ge sp st f st' ->
+ @sem FF ge sp st f st'' ->
+ match_states st' st''.
Proof. eauto with rtlpar. Qed.
(*|
Update functions.
|*)
+*)
-Fixpoint list_translation (l : list reg) (f : forest) {struct l} : expression_list :=
+Fixpoint list_translation (l : list reg) (f : forest) {struct l} : list pred_expr :=
match l with
- | nil => Enil
- | i :: l => Econs (f # (Reg i)) (list_translation l f)
+ | nil => nil
+ | i :: l => (f # (Reg i)) :: (list_translation l f)
+ end.
+
+Fixpoint replicate {A} (n: nat) (l: A) :=
+ match n with
+ | O => nil
+ | S n => l :: replicate n l
end.
+Definition merge''' x y :=
+ match x, y with
+ | Some p1, Some p2 => Some (Pand p1 p2)
+ | Some p, None | None, Some p => Some p
+ | None, None => None
+ end.
+
+Definition merge'' x :=
+ match x with
+ | ((a, e), (b, el)) => (merge''' a b, Econs e el)
+ end.
+
+(*map (fun x => (fst x, Econs (snd x) Enil)) pel*)
+Fixpoint merge' (pel: pred_expr) (tpel: predicated expression_list) :=
+ NE.map merge'' (NE.non_empty_prod pel tpel).
+
+Fixpoint merge (pel: list pred_expr): predicated expression_list :=
+ match pel with
+ | nil => NE.singleton (None, Enil)
+ | a :: b => merge' a (merge b)
+ end.
+
+Definition map_pred_op {A B} (pf: option pred_op * (A -> B)) (pa: option pred_op * A): option pred_op * B :=
+ match pa, pf with
+ | (p, a), (p', f) => (merge''' p p', f a)
+ end.
+
+Definition map_predicated {A B} (pf: predicated (A -> B)) (pa: predicated A): predicated B :=
+ NE.map (fun x => match x with ((p1, f), (p2, a)) => (merge''' p1 p2, f a) end) (NE.non_empty_prod pf pa).
+
+Definition apply1_predicated {A B} (pf: predicated (A -> B)) (pa: A): predicated B :=
+ NE.map (fun x => (fst x, (snd x) pa)) pf.
+
+Definition apply2_predicated {A B C} (pf: predicated (A -> B -> C)) (pa: A) (pb: B): predicated C :=
+ NE.map (fun x => (fst x, (snd x) pa pb)) pf.
+
+Definition apply3_predicated {A B C D} (pf: predicated (A -> B -> C -> D)) (pa: A) (pb: B) (pc: C): predicated D :=
+ NE.map (fun x => (fst x, (snd x) pa pb pc)) pf.
+
+(*Compute merge (((Some (Pvar 2), Ebase (Reg 4))::nil)::((Some (Pvar 3), Ebase (Reg 3))::(Some (Pvar 1), Ebase (Reg 3))::nil)::nil).*)
+
Definition update (f : forest) (i : instr) : forest :=
match i with
| RBnop => f
| RBop p op rl r =>
- f # (Reg r) <- (Eop op (list_translation rl f))
+ f # (Reg r) <-
+ (map_predicated (map_predicated (NE.singleton (p, Eop op)) (merge (list_translation rl f))) (f # Mem))
| RBload p chunk addr rl r =>
- f # (Reg r) <- (Eload chunk addr (list_translation rl f) (f # Mem))
+ f # (Reg r) <-
+ (map_predicated
+ (map_predicated (NE.singleton (p, Eload chunk addr)) (merge (list_translation rl f)))
+ (f # Mem))
| RBstore p chunk addr rl r =>
- f # Mem <- (Estore (f # Mem) chunk addr (list_translation rl f) (f # (Reg r)))
+ f # Mem <-
+ (map_predicated
+ (map_predicated
+ (apply2_predicated (map_predicated (NE.singleton (p, Estore)) (f # (Reg r))) chunk addr)
+ (merge (list_translation rl f))) (f # Mem))
| RBsetpred c addr p => f
end.
@@ -588,7 +1031,7 @@ Get a sequence from the basic block.
Fixpoint abstract_sequence (f : forest) (b : list instr) : forest :=
match b with
| nil => f
- | i :: l => update (abstract_sequence f l) i
+ | i :: l => abstract_sequence (update f i) l
end.
(*|
@@ -650,14 +1093,685 @@ Abstract computations
=====================
|*)
+(*Definition is_regs i := match i with mk_instr_state rs _ => rs end.
+Definition is_mem i := match i with mk_instr_state _ m => m end.
+
+Inductive state_lessdef : instr_state -> instr_state -> Prop :=
+ state_lessdef_intro :
+ forall rs1 rs2 m1,
+ (forall x, rs1 !! x = rs2 !! x) ->
+ state_lessdef (mk_instr_state rs1 m1) (mk_instr_state rs2 m1).
+
+(*|
+RTLBlock to abstract translation
+--------------------------------
+
+Correctness of translation from RTLBlock to the abstract interpretation language.
+|*)
+
+Lemma match_states_refl x : match_states x x.
+Proof. destruct x; constructor; crush. Qed.
+
+Lemma match_states_commut x y : match_states x y -> match_states y x.
+Proof. inversion 1; constructor; crush. Qed.
+
+Lemma match_states_trans x y z :
+ match_states x y -> match_states y z -> match_states x z.
+Proof. repeat inversion 1; constructor; crush. Qed.
+
+Ltac inv_simp :=
+ repeat match goal with
+ | H: exists _, _ |- _ => inv H
+ end; simplify.
+
+Lemma abstract_interp_empty A ge sp st : @sem A ge sp st empty st.
+Proof. destruct st; repeat constructor. Qed.
+
+Lemma abstract_interp_empty3 :
+ forall A ge sp st st',
+ @sem A ge sp st empty st' ->
+ match_states st st'.
+Proof.
+ inversion 1; subst; simplify.
+ destruct st. inv H1. simplify.
+ constructor. unfold regs_lessdef.
+ intros. inv H0. specialize (H1 x). inv H1; auto.
+ auto.
+Qed.*)
+
+Definition check_dest i r' :=
+ match i with
+ | RBop p op rl r => (r =? r')%positive
+ | RBload p chunk addr rl r => (r =? r')%positive
+ | _ => false
+ end.
+
+Lemma check_dest_dec i r : {check_dest i r = true} + {check_dest i r = false}.
+Proof. destruct (check_dest i r); tauto. Qed.
+
+Fixpoint check_dest_l l r :=
+ match l with
+ | nil => false
+ | a :: b => check_dest a r || check_dest_l b r
+ end.
+
+Lemma check_dest_l_forall :
+ forall l r,
+ check_dest_l l r = false ->
+ Forall (fun x => check_dest x r = false) l.
+Proof. induction l; crush. Qed.
+
+(*Lemma check_dest_l_ex :
+ forall l r,
+ check_dest_l l r = true ->
+ exists a, In a l /\ check_dest a r = true.
+Proof.
+ induction l; crush.
+ destruct (check_dest a r) eqn:?; try solve [econstructor; crush].
+ simplify.
+ exploit IHl. apply H. inv_simp. econstructor. simplify. right. eassumption.
+ auto.
+Qed.
+
+Lemma check_dest_l_dec i r : {check_dest_l i r = true} + {check_dest_l i r = false}.
+Proof. destruct (check_dest_l i r); tauto. Qed.
+
+Lemma check_dest_l_dec2 l r :
+ {Forall (fun x => check_dest x r = false) l}
+ + {exists a, In a l /\ check_dest a r = true}.
+Proof.
+ destruct (check_dest_l_dec l r); [right | left];
+ auto using check_dest_l_ex, check_dest_l_forall.
+Qed.
+
+Lemma check_dest_l_forall2 :
+ forall l r,
+ Forall (fun x => check_dest x r = false) l ->
+ check_dest_l l r = false.
+Proof.
+ induction l; crush.
+ inv H. apply orb_false_intro; crush.
+Qed.
+
+Lemma check_dest_l_ex2 :
+ forall l r,
+ (exists a, In a l /\ check_dest a r = true) ->
+ check_dest_l l r = true.
+Proof.
+ induction l; crush.
+ specialize (IHl r). inv H.
+ apply orb_true_intro; crush.
+ apply orb_true_intro; crush.
+ right. apply IHl. exists x. auto.
+Qed.
+
+Lemma check_dest_update :
+ forall f i r,
+ check_dest i r = false ->
+ (update f i) # (Reg r) = f # (Reg r).
+Proof.
+ destruct i; crush; try apply Pos.eqb_neq in H; apply genmap1; crush.
+Qed.
+
+Lemma check_dest_update2 :
+ forall f r rl op p,
+ (update f (RBop p op rl r)) # (Reg r) = Eop op (list_translation rl f) (f # Mem).
+Proof. crush; rewrite map2; auto. Qed.
+
+Lemma check_dest_update3 :
+ forall f r rl p addr chunk,
+ (update f (RBload p chunk addr rl r)) # (Reg r) = Eload chunk addr (list_translation rl f) (f # Mem).
+Proof. crush; rewrite map2; auto. Qed.
+
+Lemma abstr_comp :
+ forall l i f x x0,
+ abstract_sequence f (l ++ i :: nil) = x ->
+ abstract_sequence f l = x0 ->
+ x = update x0 i.
+Proof. induction l; intros; crush; eapply IHl; eauto. Qed.
+
+Lemma abstract_seq :
+ forall l f i,
+ abstract_sequence f (l ++ i :: nil) = update (abstract_sequence f l) i.
+Proof. induction l; crush. Qed.
+
+Lemma check_list_l_false :
+ forall l x r,
+ check_dest_l (l ++ x :: nil) r = false ->
+ check_dest_l l r = false /\ check_dest x r = false.
+Proof.
+ simplify.
+ apply check_dest_l_forall in H. apply Forall_app in H.
+ simplify. apply check_dest_l_forall2; auto.
+ apply check_dest_l_forall in H. apply Forall_app in H.
+ simplify. inv H1. auto.
+Qed.
+
+Lemma check_list_l_true :
+ forall l x r,
+ check_dest_l (l ++ x :: nil) r = true ->
+ check_dest_l l r = true \/ check_dest x r = true.
+Proof.
+ simplify.
+ apply check_dest_l_ex in H; inv_simp.
+ apply in_app_or in H. inv H. left.
+ apply check_dest_l_ex2. exists x0. auto.
+ inv H0; auto.
+Qed.
+
+Lemma abstract_sequence_update :
+ forall l r f,
+ check_dest_l l r = false ->
+ (abstract_sequence f l) # (Reg r) = f # (Reg r).
+Proof.
+ induction l using rev_ind; crush.
+ rewrite abstract_seq. rewrite check_dest_update. apply IHl.
+ apply check_list_l_false in H. tauto.
+ apply check_list_l_false in H. tauto.
+Qed.
+
+Lemma rtlblock_trans_correct' :
+ forall bb ge sp st x st'',
+ RTLBlock.step_instr_list ge sp st (bb ++ x :: nil) st'' ->
+ exists st', RTLBlock.step_instr_list ge sp st bb st'
+ /\ step_instr ge sp st' x st''.
+Proof.
+ induction bb.
+ crush. exists st.
+ split. constructor. inv H. inv H6. auto.
+ crush. inv H. exploit IHbb. eassumption. inv_simp.
+ econstructor. split.
+ econstructor; eauto. eauto.
+Qed.
+
+Lemma sem_update_RBnop :
+ forall A ge sp st f st',
+ @sem A ge sp st f st' -> sem ge sp st (update f RBnop) st'.
+Proof. crush. Qed.
+
+Lemma gen_list_base:
+ forall FF ge sp l rs exps st1,
+ (forall x, @sem_value FF ge sp st1 (exps # (Reg x)) (rs !! x)) ->
+ sem_val_list ge sp st1 (list_translation l exps) rs ## l.
+Proof.
+ induction l.
+ intros. simpl. constructor.
+ intros. simpl. eapply Scons; eauto.
+Qed.
+
+Lemma abstract_seq_correct_aux:
+ forall FF ge sp i st1 st2 st3 f,
+ @step_instr FF ge sp st3 i st2 ->
+ sem ge sp st1 f st3 ->
+ sem ge sp st1 (update f i) st2.
+Proof.
+ intros; inv H; simplify.
+ { simplify; eauto. } (*apply match_states_refl. }*)
+ { inv H0. inv H6. destruct st1. econstructor. simplify.
+ constructor. intros.
+ destruct (resource_eq (Reg res) (Reg x)). inv e.
+ rewrite map2. econstructor. eassumption. apply gen_list_base; eauto.
+ rewrite Regmap.gss. eauto.
+ assert (res <> x). { unfold not in *. intros. apply n. rewrite H0. auto. }
+ rewrite Regmap.gso by auto.
+ rewrite genmap1 by auto. auto.
+
+ rewrite genmap1; crush. }
+ { inv H0. inv H7. constructor. constructor. intros.
+ destruct (Pos.eq_dec dst x); subst.
+ rewrite map2. econstructor; eauto.
+ apply gen_list_base. auto. rewrite Regmap.gss. auto.
+ rewrite genmap1. rewrite Regmap.gso by auto. auto.
+ unfold not in *; intros. inv H0. auto.
+ rewrite genmap1; crush.
+ }
+ { inv H0. inv H7. constructor. constructor; intros.
+ rewrite genmap1; crush.
+ rewrite map2. econstructor; eauto.
+ apply gen_list_base; auto.
+ }
+Qed.
+
+Lemma regmap_list_equiv :
+ forall A (rs1: Regmap.t A) rs2,
+ (forall x, rs1 !! x = rs2 !! x) ->
+ forall rl, rs1##rl = rs2##rl.
+Proof. induction rl; crush. Qed.
+
+Lemma sem_update_Op :
+ forall A ge sp st f st' r l o0 o m rs v,
+ @sem A ge sp st f st' ->
+ Op.eval_operation ge sp o0 rs ## l m = Some v ->
+ match_states st' (mk_instr_state rs m) ->
+ exists tst,
+ sem ge sp st (update f (RBop o o0 l r)) tst /\ match_states (mk_instr_state (Regmap.set r v rs) m) tst.
+Proof.
+ intros. inv H1. simplify.
+ destruct st.
+ econstructor. simplify.
+ { constructor.
+ { constructor. intros. destruct (Pos.eq_dec x r); subst.
+ { pose proof (H5 r). rewrite map2. pose proof H. inv H. econstructor; eauto.
+ { inv H9. eapply gen_list_base; eauto. }
+ { instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. erewrite regmap_list_equiv; eauto. } }
+ { rewrite Regmap.gso by auto. rewrite genmap1; crush. inv H. inv H7; eauto. } }
+ { inv H. rewrite genmap1; crush. eauto. } }
+ { constructor; eauto. intros.
+ destruct (Pos.eq_dec r x);
+ subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
+Qed.
+
+Lemma sem_update_load :
+ forall A ge sp st f st' r o m a l m0 rs v a0,
+ @sem A ge sp st f st' ->
+ Op.eval_addressing ge sp a rs ## l = Some a0 ->
+ Mem.loadv m m0 a0 = Some v ->
+ match_states st' (mk_instr_state rs m0) ->
+ exists tst : instr_state,
+ sem ge sp st (update f (RBload o m a l r)) tst
+ /\ match_states (mk_instr_state (Regmap.set r v rs) m0) tst.
+Proof.
+ intros. inv H2. pose proof H. inv H. inv H9.
+ destruct st.
+ econstructor; simplify.
+ { constructor.
+ { constructor. intros.
+ destruct (Pos.eq_dec x r); subst.
+ { rewrite map2. econstructor; eauto. eapply gen_list_base. intros.
+ rewrite <- H6. eauto.
+ instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. auto. }
+ { rewrite Regmap.gso by auto. rewrite genmap1; crush. } }
+ { rewrite genmap1; crush. eauto. } }
+ { constructor; auto; intros. destruct (Pos.eq_dec r x);
+ subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
+Qed.
+
+Lemma sem_update_store :
+ forall A ge sp a0 m a l r o f st m' rs m0 st',
+ @sem A ge sp st f st' ->
+ Op.eval_addressing ge sp a rs ## l = Some a0 ->
+ Mem.storev m m0 a0 rs !! r = Some m' ->
+ match_states st' (mk_instr_state rs m0) ->
+ exists tst, sem ge sp st (update f (RBstore o m a l r)) tst
+ /\ match_states (mk_instr_state rs m') tst.
+Proof.
+ intros. inv H2. pose proof H. inv H. inv H9.
+ destruct st.
+ econstructor; simplify.
+ { econstructor.
+ { econstructor; intros. rewrite genmap1; crush. }
+ { rewrite map2. econstructor; eauto. eapply gen_list_base. intros. rewrite <- H6.
+ eauto. specialize (H6 r). rewrite H6. eauto. } }
+ { econstructor; eauto. }
+Qed.
+
+Lemma sem_update :
+ forall A ge sp st x st' st'' st''' f,
+ sem ge sp st f st' ->
+ match_states st' st''' ->
+ @step_instr A ge sp st''' x st'' ->
+ exists tst, sem ge sp st (update f x) tst /\ match_states st'' tst.
+Proof.
+ intros. destruct x; inv H1.
+ { econstructor. split.
+ apply sem_update_RBnop. eassumption.
+ apply match_states_commut. auto. }
+ { eapply sem_update_Op; eauto. }
+ { eapply sem_update_load; eauto. }
+ { eapply sem_update_store; eauto. }
+Qed.
+
+Lemma sem_update2_Op :
+ forall A ge sp st f r l o0 o m rs v,
+ @sem A ge sp st f (mk_instr_state rs m) ->
+ Op.eval_operation ge sp o0 rs ## l m = Some v ->
+ sem ge sp st (update f (RBop o o0 l r)) (mk_instr_state (Regmap.set r v rs) m).
+Proof.
+ intros. destruct st. constructor.
+ inv H. inv H6.
+ { constructor; intros. simplify.
+ destruct (Pos.eq_dec r x); subst.
+ { rewrite map2. econstructor. eauto.
+ apply gen_list_base. eauto.
+ rewrite Regmap.gss. auto. }
+ { rewrite genmap1; crush. rewrite Regmap.gso; auto. } }
+ { simplify. rewrite genmap1; crush. inv H. eauto. }
+Qed.
+
+Lemma sem_update2_load :
+ forall A ge sp st f r o m a l m0 rs v a0,
+ @sem A ge sp st f (mk_instr_state rs m0) ->
+ Op.eval_addressing ge sp a rs ## l = Some a0 ->
+ Mem.loadv m m0 a0 = Some v ->
+ sem ge sp st (update f (RBload o m a l r)) (mk_instr_state (Regmap.set r v rs) m0).
+Proof.
+ intros. simplify. inv H. inv H7. constructor.
+ { constructor; intros. destruct (Pos.eq_dec r x); subst.
+ { rewrite map2. rewrite Regmap.gss. econstructor; eauto.
+ apply gen_list_base; eauto. }
+ { rewrite genmap1; crush. rewrite Regmap.gso; eauto. }
+ }
+ { simplify. rewrite genmap1; crush. }
+Qed.
+
+Lemma sem_update2_store :
+ forall A ge sp a0 m a l r o f st m' rs m0,
+ @sem A ge sp st f (mk_instr_state rs m0) ->
+ Op.eval_addressing ge sp a rs ## l = Some a0 ->
+ Mem.storev m m0 a0 rs !! r = Some m' ->
+ sem ge sp st (update f (RBstore o m a l r)) (mk_instr_state rs m').
+Proof.
+ intros. simplify. inv H. inv H7. constructor; simplify.
+ { econstructor; intros. rewrite genmap1; crush. }
+ { rewrite map2. econstructor; eauto. apply gen_list_base; eauto. }
+Qed.
+
+Lemma sem_update2 :
+ forall A ge sp st x st' st'' f,
+ sem ge sp st f st' ->
+ @step_instr A ge sp st' x st'' ->
+ sem ge sp st (update f x) st''.
+Proof.
+ intros.
+ destruct x; inv H0;
+ eauto using sem_update_RBnop, sem_update2_Op, sem_update2_load, sem_update2_store.
+Qed.
+
+Lemma rtlblock_trans_correct :
+ forall bb ge sp st st',
+ RTLBlock.step_instr_list ge sp st bb st' ->
+ forall tst,
+ match_states st tst ->
+ exists tst', sem ge sp tst (abstract_sequence empty bb) tst'
+ /\ match_states st' tst'.
+Proof.
+ induction bb using rev_ind; simplify.
+ { econstructor. simplify. apply abstract_interp_empty.
+ inv H. auto. }
+ { apply rtlblock_trans_correct' in H. inv_simp.
+ rewrite abstract_seq.
+ exploit IHbb; try eassumption; []; inv_simp.
+ exploit sem_update. apply H1. apply match_states_commut; eassumption.
+ eauto. inv_simp. econstructor. split. apply H3.
+ auto. }
+Qed.
+
+Lemma abstr_sem_val_mem :
+ forall A B ge tge st tst sp a,
+ ge_preserved ge tge ->
+ forall v m,
+ (@sem_mem A ge sp st a m /\ match_states st tst -> @sem_mem B tge sp tst a m) /\
+ (@sem_value A ge sp st a v /\ match_states st tst -> @sem_value B tge sp tst a v).
+Proof.
+ intros * H.
+ apply expression_ind2 with
+
+ (P := fun (e1: expression) =>
+ forall v m,
+ (@sem_mem A ge sp st e1 m /\ match_states st tst -> @sem_mem B tge sp tst e1 m) /\
+ (@sem_value A ge sp st e1 v /\ match_states st tst -> @sem_value B tge sp tst e1 v))
+
+ (P0 := fun (e1: expression_list) =>
+ forall lv, @sem_val_list A ge sp st e1 lv /\ match_states st tst -> @sem_val_list B tge sp tst e1 lv);
+ simplify; intros; simplify.
+ { inv H1. inv H2. constructor. }
+ { inv H2. inv H1. rewrite H0. constructor. }
+ { inv H3. }
+ { inv H3. inv H4. econstructor. apply H1; auto. simplify. eauto. constructor. auto. auto.
+ apply H0; simplify; eauto. constructor; eauto.
+ unfold ge_preserved in *. simplify. rewrite <- H2. auto.
+ }
+ { inv H3. }
+ { inv H3. inv H4. econstructor. apply H1; eauto; simplify; eauto. constructor; eauto.
+ apply H0; simplify; eauto. constructor; eauto.
+ inv H. rewrite <- H4. eauto.
+ auto.
+ }
+ { inv H4. inv H5. econstructor. apply H0; eauto. simplify; eauto. constructor; eauto.
+ apply H2; eauto. simplify; eauto. constructor; eauto.
+ apply H1; eauto. simplify; eauto. constructor; eauto.
+ inv H. rewrite <- H5. eauto. auto.
+ }
+ { inv H4. }
+ { inv H1. constructor. }
+ { inv H3. constructor; auto. apply H0; eauto. apply Mem.empty. }
+Qed.
+
+Lemma abstr_sem_value :
+ forall a A B ge tge sp st tst v,
+ @sem_value A ge sp st a v ->
+ ge_preserved ge tge ->
+ match_states st tst ->
+ @sem_value B tge sp tst a v.
+Proof. intros; eapply abstr_sem_val_mem; eauto; apply Mem.empty. Qed.
+
+Lemma abstr_sem_mem :
+ forall a A B ge tge sp st tst v,
+ @sem_mem A ge sp st a v ->
+ ge_preserved ge tge ->
+ match_states st tst ->
+ @sem_mem B tge sp tst a v.
+Proof. intros; eapply abstr_sem_val_mem; eauto. Qed.
+
+Lemma abstr_sem_regset :
+ forall a a' A B ge tge sp st tst rs,
+ @sem_regset A ge sp st a rs ->
+ ge_preserved ge tge ->
+ (forall x, a # x = a' # x) ->
+ match_states st tst ->
+ exists rs', @sem_regset B tge sp tst a' rs' /\ (forall x, rs !! x = rs' !! x).
+Proof.
+ inversion 1; intros.
+ inv H7.
+ econstructor. simplify. econstructor. intros.
+ eapply abstr_sem_value; eauto. rewrite <- H6.
+ eapply H0. constructor; eauto.
+ auto.
+Qed.
+
+Lemma abstr_sem :
+ forall a a' A B ge tge sp st tst st',
+ @sem A ge sp st a st' ->
+ ge_preserved ge tge ->
+ (forall x, a # x = a' # x) ->
+ match_states st tst ->
+ exists tst', @sem B tge sp tst a' tst' /\ match_states st' tst'.
+Proof.
+ inversion 1; subst; intros.
+ inversion H4; subst.
+ exploit abstr_sem_regset; eauto; inv_simp.
+ do 3 econstructor; eauto.
+ rewrite <- H3.
+ eapply abstr_sem_mem; eauto.
+Qed.
+
+Lemma abstract_execution_correct':
+ forall A B ge tge sp st' a a' st tst,
+ @sem A ge sp st a st' ->
+ ge_preserved ge tge ->
+ check a a' = true ->
+ match_states st tst ->
+ exists tst', @sem B tge sp tst a' tst' /\ match_states st' tst'.
+Proof.
+ intros;
+ pose proof (check_correct a a' H1);
+ eapply abstr_sem; eauto.
+Qed.
+
+Lemma states_match :
+ forall st1 st2 st3 st4,
+ match_states st1 st2 ->
+ match_states st2 st3 ->
+ match_states st3 st4 ->
+ match_states st1 st4.
+Proof.
+ intros * H1 H2 H3; destruct st1; destruct st2; destruct st3; destruct st4.
+ inv H1. inv H2. inv H3; constructor.
+ unfold regs_lessdef in *. intros.
+ repeat match goal with
+ | H: forall _, _, r : positive |- _ => specialize (H r)
+ end.
+ congruence.
+ auto.
+Qed.
+
+Lemma step_instr_block_same :
+ forall ge sp st st',
+ step_instr_block ge sp st nil st' ->
+ st = st'.
+Proof. inversion 1; auto. Qed.
+
+Lemma step_instr_seq_same :
+ forall ge sp st st',
+ step_instr_seq ge sp st nil st' ->
+ st = st'.
+Proof. inversion 1; auto. Qed.
+
+Lemma match_states_list :
+ forall A (rs: Regmap.t A) rs',
+ (forall r, rs !! r = rs' !! r) ->
+ forall l, rs ## l = rs' ## l.
+Proof. induction l; crush. Qed.
+
+Lemma PTree_matches :
+ forall A (v: A) res rs rs',
+ (forall r, rs !! r = rs' !! r) ->
+ forall x, (Regmap.set res v rs) !! x = (Regmap.set res v rs') !! x.
+Proof.
+ intros; destruct (Pos.eq_dec x res); subst;
+ [ repeat rewrite Regmap.gss by auto
+ | repeat rewrite Regmap.gso by auto ]; auto.
+Qed.
+
+Lemma step_instr_matches :
+ forall A a ge sp st st',
+ @step_instr A ge sp st a st' ->
+ forall tst, match_states st tst ->
+ exists tst', step_instr ge sp tst a tst'
+ /\ match_states st' tst'.
+Proof.
+ induction 1; simplify;
+ match goal with H: match_states _ _ |- _ => inv H end;
+ repeat econstructor; try erewrite match_states_list;
+ try apply PTree_matches; eauto;
+ match goal with
+ H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
+ end.
+Qed.
+
+Lemma step_instr_list_matches :
+ forall a ge sp st st',
+ step_instr_list ge sp st a st' ->
+ forall tst, match_states st tst ->
+ exists tst', step_instr_list ge sp tst a tst'
+ /\ match_states st' tst'.
+Proof.
+ induction a; intros; inv H;
+ try (exploit step_instr_matches; eauto; []; inv_simp;
+ exploit IHa; eauto; []; inv_simp); repeat econstructor; eauto.
+Qed.
+
+Lemma step_instr_seq_matches :
+ forall a ge sp st st',
+ step_instr_seq ge sp st a st' ->
+ forall tst, match_states st tst ->
+ exists tst', step_instr_seq ge sp tst a tst'
+ /\ match_states st' tst'.
+Proof.
+ induction a; intros; inv H;
+ try (exploit step_instr_list_matches; eauto; []; inv_simp;
+ exploit IHa; eauto; []; inv_simp); repeat econstructor; eauto.
+Qed.
+
+Lemma step_instr_block_matches :
+ forall bb ge sp st st',
+ step_instr_block ge sp st bb st' ->
+ forall tst, match_states st tst ->
+ exists tst', step_instr_block ge sp tst bb tst'
+ /\ match_states st' tst'.
+Proof.
+ induction bb; intros; inv H;
+ try (exploit step_instr_seq_matches; eauto; []; inv_simp;
+ exploit IHbb; eauto; []; inv_simp); repeat econstructor; eauto.
+Qed.
+
+Lemma sem_update' :
+ forall A ge sp st a x st',
+ sem ge sp st (update (abstract_sequence empty a) x) st' ->
+ exists st'',
+ @step_instr A ge sp st'' x st' /\
+ sem ge sp st (abstract_sequence empty a) st''.
+Proof.
+ Admitted.
+
+Lemma sem_separate :
+ forall A (ge: @RTLBlockInstr.genv A) b a sp st st',
+ sem ge sp st (abstract_sequence empty (a ++ b)) st' ->
+ exists st'',
+ sem ge sp st (abstract_sequence empty a) st''
+ /\ sem ge sp st'' (abstract_sequence empty b) st'.
+Proof.
+ induction b using rev_ind; simplify.
+ { econstructor. simplify. rewrite app_nil_r in H. eauto. apply abstract_interp_empty. }
+ { simplify. rewrite app_assoc in H. rewrite abstract_seq in H.
+ exploit sem_update'; eauto; inv_simp.
+ exploit IHb; eauto; inv_simp.
+ econstructor; split; eauto.
+ rewrite abstract_seq.
+ eapply sem_update2; eauto.
+ }
+Qed.
+
+Lemma rtlpar_trans_correct :
+ forall bb ge sp sem_st' sem_st st,
+ sem ge sp sem_st (abstract_sequence empty (concat (concat bb))) sem_st' ->
+ match_states sem_st st ->
+ exists st', RTLPar.step_instr_block ge sp st bb st'
+ /\ match_states sem_st' st'.
+Proof.
+ induction bb using rev_ind.
+ { repeat econstructor. eapply abstract_interp_empty3 in H.
+ inv H. inv H0. constructor; congruence. }
+ { simplify. inv H0. repeat rewrite concat_app in H. simplify.
+ rewrite app_nil_r in H.
+ exploit sem_separate; eauto; inv_simp.
+ repeat econstructor. admit. admit.
+ }
+Admitted.
+
Lemma abstract_execution_correct:
- forall bb bb' cfi ge tge sp rs m rs' m',
+ forall bb bb' cfi ge tge sp st st' tst,
+ RTLBlock.step_instr_list ge sp st bb st' ->
ge_preserved ge tge ->
schedule_oracle (mk_bblock bb cfi) (mk_bblock bb' cfi) = true ->
- RTLBlock.step_instr_list ge sp (InstrState rs m) bb (InstrState rs' m') ->
- exists rs'', RTLPar.step_instr_block tge sp (InstrState rs m) bb' (InstrState rs'' m')
- /\ regs_lessdef rs' rs''.
-Proof. Abort.
+ match_states st tst ->
+ exists tst', RTLPar.step_instr_block tge sp tst bb' tst'
+ /\ match_states st' tst'.
+Proof.
+ intros.
+ unfold schedule_oracle in *. simplify.
+ exploit rtlblock_trans_correct; try eassumption; []; inv_simp.
+ exploit abstract_execution_correct';
+ try solve [eassumption | apply state_lessdef_match_sem; eassumption].
+ apply match_states_commut. eauto. inv_simp.
+ exploit rtlpar_trans_correct; try eassumption; []; inv_simp.
+ exploit step_instr_block_matches; eauto. apply match_states_commut; eauto. inv_simp.
+ repeat match goal with | H: match_states _ _ |- _ => inv H end.
+ do 2 econstructor; eauto.
+ econstructor; congruence.
+Qed.
+
+(*Lemma abstract_execution_correct_ld:
+ forall bb bb' cfi ge tge sp st st' tst,
+ RTLBlock.step_instr_list ge sp st bb st' ->
+ ge_preserved ge tge ->
+ schedule_oracle (mk_bblock bb cfi) (mk_bblock bb' cfi) = true ->
+ match_states_ld st tst ->
+ exists tst', RTLPar.step_instr_block tge sp tst bb' tst'
+ /\ match_states st' tst'.
+Proof.
+ intros.*)
+*)
(*|
Top-level functions
@@ -677,16 +1791,7 @@ Definition transl_function (f: RTLBlock.function) : Errors.res RTLPar.function :
else
Errors.Error (Errors.msg "RTLPargen: Could not prove the blocks equivalent.").
-Definition transl_function_temp (f: RTLBlock.function) : Errors.res RTLPar.function :=
- let tfcode := fn_code (schedule f) in
- Errors.OK (mkfunction f.(fn_sig)
- f.(fn_params)
- f.(fn_stacksize)
- tfcode
- f.(fn_entrypoint)).
-
-Definition transl_fundef := transf_partial_fundef transl_function_temp.
+Definition transl_fundef := transf_partial_fundef transl_function.
Definition transl_program (p : RTLBlock.program) : Errors.res RTLPar.program :=
transform_partial_program transl_fundef p.
-*)