aboutsummaryrefslogtreecommitdiffstats
path: root/benchmarks/CHStone/gsm/lpc.c
blob: d70ab0e3eabb736fafc8016dbdc2e1057db2037e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
/*
+--------------------------------------------------------------------------+
| CHStone : a suite of benchmark programs for C-based High-Level Synthesis |
| ======================================================================== |
|                                                                          |
| * Collected and Modified : Y. Hara, H. Tomiyama, S. Honda,               |
|                            H. Takada and K. Ishii                        |
|                            Nagoya University, Japan                      |
|                                                                          |
| * Remark :                                                               |
|    1. This source code is modified to unify the formats of the benchmark |
|       programs in CHStone.                                               |
|    2. Test vectors are added for CHStone.                                |
|    3. If "main_result" is 0 at the end of the program, the program is    |
|       correctly executed.                                                |
|    4. Please follow the copyright of each benchmark program.             |
+--------------------------------------------------------------------------+
*/
/*
 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
 * Universitaet Berlin.  See the accompanying file "COPYRIGHT" for
 * details.  THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
 */

/* $Header: /home/kbs/jutta/src/gsm/gsm-1.0/src/RCS/lpc.c,v 1.5 1994/12/30 23:14:54 jutta Exp $ */

#include "private.h"
#include "add.c"


/*
 *  4.2.4 .. 4.2.7 LPC ANALYSIS SECTION
 */

/* 4.2.4 */


void
Autocorrelation (word * s /* [0..159]     IN/OUT  */ ,
		 longword * L_ACF /* [0..8]       OUT     */ )
/*
 *  The goal is to compute the array L_ACF[k].  The signal s[i] must
 *  be scaled in order to avoid an overflow situation.
 */
{
  register int k, i;

  word temp;
  word smax;
  word scalauto, n;
  word *sp;
  word sl;

  /*  Search for the maximum.
   */
  smax = 0;
  for (k = 0; k <= 159; k++)
    {
      temp = GSM_ABS (s[k]);
      if (temp > smax)
	smax = temp;
    }

  /*  Computation of the scaling factor.
   */
  if (smax == 0)
    scalauto = 0;
  else
    scalauto = 4 - gsm_norm ((longword) smax << 16);	/* sub(4,..) */

  if (scalauto > 0 && scalauto <= 4)
    {
      n = scalauto;
      for (k = 0; k <= 159; k++)
	s[k] = GSM_MULT_R (s[k], 16384 >> (n - 1));
    }

  /*  Compute the L_ACF[..].
   */
  {
    sp = s;
    sl = *sp;

#define STEP(k)	 L_ACF[k] += ((longword)sl * sp[ -(k) ]);

#define NEXTI	 sl = *++sp
    for (k = 8; k >= 0; k--)
      L_ACF[k] = 0;

    STEP (0);
    NEXTI;
    STEP (0);
    STEP (1);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    STEP (3);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    STEP (3);
    STEP (4);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    STEP (3);
    STEP (4);
    STEP (5);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    STEP (3);
    STEP (4);
    STEP (5);
    STEP (6);
    NEXTI;
    STEP (0);
    STEP (1);
    STEP (2);
    STEP (3);
    STEP (4);
    STEP (5);
    STEP (6);
    STEP (7);

    for (i = 8; i <= 159; i++)
      {

	NEXTI;

	STEP (0);
	STEP (1);
	STEP (2);
	STEP (3);
	STEP (4);
	STEP (5);
	STEP (6);
	STEP (7);
	STEP (8);
      }

    for (k = 8; k >= 0; k--)
      L_ACF[k] <<= 1;

  }
  /*   Rescaling of the array s[0..159]
   */
  if (scalauto > 0)
    for (k = 159; k >= 0; k--)
      *s++ <<= scalauto;
}

/* 4.2.5 */

void
Reflection_coefficients (longword * L_ACF /* 0...8        IN      */ ,
			 register word * r /* 0...7        OUT     */ )
{
  register int i, m, n;
  register word temp;
  word ACF[9];			/* 0..8 */
  word P[9];			/* 0..8 */
  word K[9];			/* 2..8 */

  /*  Schur recursion with 16 bits arithmetic.
   */

  if (L_ACF[0] == 0)
    {
      for (i = 8; i > 0; i--)
	*r++ = 0;
      return;
    }

  temp = gsm_norm (L_ACF[0]);
  for (i = 0; i <= 8; i++)
    ACF[i] = SASR (L_ACF[i] << temp, 16);

  /*   Initialize array P[..] and K[..] for the recursion.
   */

  for (i = 1; i <= 7; i++)
    K[i] = ACF[i];
  for (i = 0; i <= 8; i++)
    P[i] = ACF[i];

  /*   Compute reflection coefficients
   */
  for (n = 1; n <= 8; n++, r++)
    {

      temp = P[1];
      temp = GSM_ABS (temp);
      if (P[0] < temp)
	{
	  for (i = n; i <= 8; i++)
	    *r++ = 0;
	  return;
	}

      *r = gsm_div (temp, P[0]);

      if (P[1] > 0)
	*r = -*r;		/* r[n] = sub(0, r[n]) */
      if (n == 8)
	return;

      /*  Schur recursion
       */
      temp = GSM_MULT_R (P[1], *r);
      P[0] = GSM_ADD (P[0], temp);

      for (m = 1; m <= 8 - n; m++)
	{
	  temp = GSM_MULT_R (K[m], *r);
	  P[m] = GSM_ADD (P[m + 1], temp);

	  temp = GSM_MULT_R (P[m + 1], *r);
	  K[m] = GSM_ADD (K[m], temp);
	}
    }
}

/* 4.2.6 */

void
Transformation_to_Log_Area_Ratios (register word * r /* 0..7    IN/OUT */ )
/*
 *  The following scaling for r[..] and LAR[..] has been used:
 *
 *  r[..]   = integer( real_r[..]*32768. ); -1 <= real_r < 1.
 *  LAR[..] = integer( real_LAR[..] * 16384 );
 *  with -1.625 <= real_LAR <= 1.625
 */
{
  register word temp;
  register int i;


  /* Computation of the LAR[0..7] from the r[0..7]
   */
  for (i = 1; i <= 8; i++, r++)
    {

      temp = *r;
      temp = GSM_ABS (temp);

      if (temp < 22118)
	{
	  temp >>= 1;
	}
      else if (temp < 31130)
	{
	  temp -= 11059;
	}
      else
	{
	  temp -= 26112;
	  temp <<= 2;
	}

      *r = *r < 0 ? -temp : temp;
    }
}

/* 4.2.7 */

void
Quantization_and_coding (register word * LAR /* [0..7]       IN/OUT  */ )
{
  register word temp;


  /*  This procedure needs four tables; the following equations
   *  give the optimum scaling for the constants:
   *  
   *  A[0..7] = integer( real_A[0..7] * 1024 )
   *  B[0..7] = integer( real_B[0..7] *  512 )
   *  MAC[0..7] = maximum of the LARc[0..7]
   *  MIC[0..7] = minimum of the LARc[0..7]
   */

#	undef STEP
#	define	STEP( A, B, MAC, MIC )		\
		temp = GSM_MULT( A,   *LAR );	\
		temp = GSM_ADD(  temp,   B );	\
		temp = GSM_ADD(  temp, 256 );	\
		temp = SASR(     temp,   9 );	\
		*LAR  =  temp>MAC ? MAC - MIC : (temp<MIC ? 0 : temp - MIC); \
		LAR++;

  STEP (20480, 0, 31, -32);
  STEP (20480, 0, 31, -32);
  STEP (20480, 2048, 15, -16);
  STEP (20480, -2560, 15, -16);

  STEP (13964, 94, 7, -8);
  STEP (15360, -1792, 7, -8);
  STEP (8534, -341, 3, -4);
  STEP (9036, -1144, 3, -4);

#	undef	STEP
}

void
Gsm_LPC_Analysis (word * s /* 0..159 signals       IN/OUT  */ ,
		  word * LARc /* 0..7   LARc's        OUT     */ )
{
  longword L_ACF[9];

  Autocorrelation (s, L_ACF);
  Reflection_coefficients (L_ACF, LARc);
  Transformation_to_Log_Area_Ratios (LARc);
  Quantization_and_coding (LARc);
}