aboutsummaryrefslogtreecommitdiffstats
path: root/src/translation/Veriloggenspec.v
blob: 67e2cad09f712cf8489eed830291bd47d6d41125 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
From Coq Require Import FSets.FMapPositive.
From compcert Require RTL Op Maps.
From coqup Require Import Coquplib Verilog Veriloggen Value.

(** * Relational specification of the translation *)

(** We now define inductive predicates that characterise the fact that the
statemachine that is created by the translation contains the correct
translations for each of the elements *)

Inductive tr_op : Op.operation -> list reg -> expr -> Prop :=
| tr_op_Omove : forall r, tr_op Op.Omove (r::nil) (Vvar r)
| tr_op_Ointconst : forall n l, tr_op (Op.Ointconst n) l (Vlit (intToValue n))
| tr_op_Oneg : forall r, tr_op Op.Oneg (r::nil) (Vunop Vneg (Vvar r))
| tr_op_Osub : forall r1 r2, tr_op Op.Osub (r1::r2::nil) (bop Vsub r1 r2)
| tr_op_Omul : forall r1 r2, tr_op Op.Omul (r1::r2::nil) (bop Vmul r1 r2)
| tr_op_Omulimm : forall r n, tr_op (Op.Omulimm n) (r::nil) (boplit Vmul r n)
| tr_op_Odiv : forall r1 r2, tr_op Op.Odiv (r1::r2::nil) (bop Vdiv r1 r2)
| tr_op_Odivu : forall r1 r2, tr_op Op.Odivu (r1::r2::nil) (bop Vdivu r1 r2)
| tr_op_Omod : forall r1 r2, tr_op Op.Omod (r1::r2::nil) (bop Vmod r1 r2)
| tr_op_Omodu : forall r1 r2, tr_op Op.Omodu (r1::r2::nil) (bop Vmodu r1 r2)
| tr_op_Oand : forall r1 r2, tr_op Op.Oand (r1::r2::nil) (bop Vand r1 r2)
| tr_op_Oandimm : forall n r, tr_op (Op.Oandimm n) (r::nil) (boplit Vand r n)
| tr_op_Oor : forall r1 r2, tr_op Op.Oor (r1::r2::nil) (bop Vor r1 r2)
| tr_op_Oorimm : forall n r, tr_op (Op.Oorimm n) (r::nil) (boplit Vor r n)
| tr_op_Oxor : forall r1 r2, tr_op Op.Oxor (r1::r2::nil) (bop Vxor r1 r2)
| tr_op_Oxorimm : forall n r, tr_op (Op.Oxorimm n) (r::nil) (boplit Vxor r n)
| tr_op_Onot : forall r, tr_op Op.Onot (r::nil) (Vunop Vnot (Vvar r))
| tr_op_Oshl : forall r1 r2, tr_op Op.Oshl (r1::r2::nil) (bop Vshl r1 r2)
| tr_op_Oshlimm : forall n r, tr_op (Op.Oshlimm n) (r::nil) (boplit Vshl r n)
| tr_op_Oshr : forall r1 r2, tr_op Op.Oshr (r1::r2::nil) (bop Vshr r1 r2)
| tr_op_Oshrimm : forall n r, tr_op (Op.Oshrimm n) (r::nil) (boplit Vshr r n)
| tr_op_Ocmp : forall c l e s s' i, translate_condition c l s = OK e s' i -> tr_op (Op.Ocmp c) l e
| tr_op_Olea : forall a l e s s' i, translate_eff_addressing a l s = OK e s' i -> tr_op (Op.Olea a) l e.

Inductive tr_instr (fin rtrn st : reg) : RTL.instruction -> stmnt -> stmnt -> Prop :=
| tr_instr_Inop :
    forall n,
      tr_instr fin rtrn st (RTL.Inop n) Vskip (state_goto st n)
| tr_instr_Iop :
    forall n op args e dst,
      tr_op op args e ->
      tr_instr fin rtrn st (RTL.Iop op args dst n) (Vnonblock (Vvar dst) e) (state_goto st n)
| tr_instr_Icond :
    forall n1 n2 cond args s s' i c,
      translate_condition cond args s = OK c s' i ->
      tr_instr fin rtrn st (RTL.Icond cond args n1 n2) Vskip (state_cond st c n1 n2)
| tr_instr_Ireturn_None :
      tr_instr fin rtrn st (RTL.Ireturn None) (block fin (Vlit (ZToValue 1%nat 1%Z))) Vskip
| tr_instr_Ireturn_Some :
    forall r,
      tr_instr fin rtrn st (RTL.Ireturn (Some r))
               (Vseq (block fin (Vlit (ZToValue 1%nat 1%Z))) (block rtrn (Vvar r))) Vskip.

Inductive tr_code (c : RTL.code) (stmnts trans : PositiveMap.t stmnt)
          (fin rtrn st : reg) : Prop :=
| tr_code_intro :
    forall i s t n,
      Maps.PTree.get n c = Some i ->
      stmnts!n = Some s ->
      trans!n = Some t ->
      tr_instr fin rtrn st i s t ->
      tr_code c stmnts trans fin rtrn st.

(** [tr_module_items start clk st rst s mis] holds if the state is correctly
translated to actual Verilog, meaning it is correctly implemented as a state
machine in Verilog.  Currently it does not seem that useful because it models
the [make_module_items] nearly exactly.  Therefore it might have to be changed
to make up for that. *)

Inductive tr_module_items : node -> reg -> reg -> reg -> state -> list module_item -> Prop :=
  tr_module_items_intro :
    forall start clk st rst s mis,
      Valways_ff (Vposedge clk)
                 (Vcond (Vbinop Veq (Vinputvar rst) (Vlit (ZToValue 1 1)))
                        (nonblock st (posToExpr 32 start))
                        (make_statetrans st s.(st_statetrans)))
      :: Valways_ff (Vposedge clk) (make_stm st s.(st_stm))
      :: List.map allocate_reg (PositiveMap.elements s.(st_decl)) = mis ->
      tr_module_items start clk st rst s mis.

(** [tr_module function module] Holds if the [module] is the correct translation
of the [function] that it was given. *)

Inductive tr_module : RTL.function -> module -> Prop :=
  tr_module_intro :
    forall f mi st rtrn fin clk rst start s0 s1 s2 s3 s4 s5 s6 i1 i2 i3 i4 i5 i6,
      decl_io 1 s0 = OK fin s1 i1 ->
      decl_io 32 s1 = OK rtrn s2 i2 ->
      decl_io 1 s2 = OK start s3 i3 ->
      decl_io 1 s3 = OK rst s4 i4 ->
      decl_io 1 s4 = OK clk s5 i5 ->
      decl_fresh_reg 32 s5 = OK st s6 i6 ->
      tr_code f.(RTL.fn_code) s6.(st_stm)
                                   (PositiveMap.map (statetrans_transl (fst st)) s6.(st_statetrans))
                                   (fst fin) (fst rtrn) (fst st) ->
      tr_module_items f.(RTL.fn_entrypoint) (fst clk) (fst st) (fst rst) s6 mi ->
      tr_module f (mkmodule
                     start
                     rst
                     clk
                     fin
                     rtrn
                     st
                     (List.map set_int_size f.(RTL.fn_params))
                     mi).

Lemma tr_module_correct:
  forall f m,
  transl_module f = Errors.OK m ->
  tr_module f m.
Admitted.