aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/GiblePargenproof.v
diff options
context:
space:
mode:
authorYann Herklotz <git@yannherklotz.com>2022-05-27 01:05:32 +0100
committerYann Herklotz <git@yannherklotz.com>2022-05-27 01:05:32 +0100
commit0a44da6a7037d9eb270386eeef4f929177c4ec0d (patch)
treeac08c768bbdedda7d791972ee0e2c4db1fb5ac14 /src/hls/GiblePargenproof.v
parent27714f85233e52978caebd67b550bde51e693d48 (diff)
downloadvericert-0a44da6a7037d9eb270386eeef4f929177c4ec0d.tar.gz
vericert-0a44da6a7037d9eb270386eeef4f929177c4ec0d.zip
Rewrite a lot fixing scheduling of Gible
Diffstat (limited to 'src/hls/GiblePargenproof.v')
-rw-r--r--src/hls/GiblePargenproof.v1148
1 files changed, 1148 insertions, 0 deletions
diff --git a/src/hls/GiblePargenproof.v b/src/hls/GiblePargenproof.v
new file mode 100644
index 0000000..2abbea4
--- /dev/null
+++ b/src/hls/GiblePargenproof.v
@@ -0,0 +1,1148 @@
+(*
+ * Vericert: Verified high-level synthesis.
+ * Copyright (C) 2020-2022 Yann Herklotz <yann@yannherklotz.com>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *)
+
+Require Import compcert.backend.Registers.
+Require Import compcert.common.AST.
+Require Import compcert.common.Errors.
+Require Import compcert.common.Linking.
+Require Import compcert.common.Globalenvs.
+Require Import compcert.common.Memory.
+Require Import compcert.common.Values.
+Require Import compcert.lib.Maps.
+
+Require Import vericert.common.Vericertlib.
+Require Import vericert.hls.GibleSeq.
+Require Import vericert.hls.GiblePar.
+Require Import vericert.hls.Gible.
+Require Import vericert.hls.GiblePargen.
+Require Import vericert.hls.Predicate.
+Require Import vericert.hls.Abstr.
+
+#[local] Open Scope positive.
+#[local] Open Scope forest.
+#[local] Open Scope pred_op.
+
+(*|
+==============
+RTLPargenproof
+==============
+
+RTLBlock to abstract translation
+================================
+
+Correctness of translation from RTLBlock to the abstract interpretation language.
+|*)
+
+(*Definition is_regs i := match i with mk_instr_state rs _ => rs end.
+Definition is_mem i := match i with mk_instr_state _ m => m end.
+
+Inductive state_lessdef : instr_state -> instr_state -> Prop :=
+ state_lessdef_intro :
+ forall rs1 rs2 m1,
+ (forall x, rs1 !! x = rs2 !! x) ->
+ state_lessdef (mk_instr_state rs1 m1) (mk_instr_state rs2 m1).
+
+Ltac inv_simp :=
+ repeat match goal with
+ | H: exists _, _ |- _ => inv H
+ end; simplify.
+
+*)
+
+Definition check_dest i r' :=
+ match i with
+ | RBop p op rl r => (r =? r')%positive
+ | RBload p chunk addr rl r => (r =? r')%positive
+ | _ => false
+ end.
+
+Lemma check_dest_dec i r : {check_dest i r = true} + {check_dest i r = false}.
+Proof. destruct (check_dest i r); tauto. Qed.
+
+Fixpoint check_dest_l l r :=
+ match l with
+ | nil => false
+ | a :: b => check_dest a r || check_dest_l b r
+ end.
+
+Lemma check_dest_l_forall :
+ forall l r,
+ check_dest_l l r = false ->
+ Forall (fun x => check_dest x r = false) l.
+Proof. induction l; crush. Qed.
+
+Lemma check_dest_l_dec i r : {check_dest_l i r = true} + {check_dest_l i r = false}.
+Proof. destruct (check_dest_l i r); tauto. Qed.
+
+(*Lemma check_dest_update :
+ forall f i r,
+ check_dest i r = false ->
+ (update f i) # (Reg r) = f # (Reg r).
+Proof.
+ destruct i; crush; try apply Pos.eqb_neq in H; apply genmap1; crush.
+Qed.
+
+Lemma check_dest_l_forall2 :
+ forall l r,
+ Forall (fun x => check_dest x r = false) l ->
+ check_dest_l l r = false.
+Proof.
+ induction l; crush.
+ inv H. apply orb_false_intro; crush.
+Qed.
+
+Lemma check_dest_l_ex2 :
+ forall l r,
+ (exists a, In a l /\ check_dest a r = true) ->
+ check_dest_l l r = true.
+Proof.
+ induction l; crush.
+ specialize (IHl r). inv H.
+ apply orb_true_intro; crush.
+ apply orb_true_intro; crush.
+ right. apply IHl. exists x. auto.
+Qed.
+
+Lemma check_list_l_false :
+ forall l x r,
+ check_dest_l (l ++ x :: nil) r = false ->
+ check_dest_l l r = false /\ check_dest x r = false.
+Proof.
+ simplify.
+ apply check_dest_l_forall in H. apply Forall_app in H.
+ simplify. apply check_dest_l_forall2; auto.
+ apply check_dest_l_forall in H. apply Forall_app in H.
+ simplify. inv H1. auto.
+Qed.
+
+Lemma check_dest_l_ex :
+ forall l r,
+ check_dest_l l r = true ->
+ exists a, In a l /\ check_dest a r = true.
+Proof.
+ induction l; crush.
+ destruct (check_dest a r) eqn:?; try solve [econstructor; crush].
+ simplify.
+ exploit IHl. apply H. simplify. econstructor. simplify. right. eassumption.
+ auto.
+Qed.
+
+Lemma check_list_l_true :
+ forall l x r,
+ check_dest_l (l ++ x :: nil) r = true ->
+ check_dest_l l r = true \/ check_dest x r = true.
+Proof.
+ simplify.
+ apply check_dest_l_ex in H; simplify.
+ apply in_app_or in H. inv H. left.
+ apply check_dest_l_ex2. exists x0. auto.
+ inv H0; auto.
+Qed.
+
+Lemma check_dest_l_dec2 l r :
+ {Forall (fun x => check_dest x r = false) l}
+ + {exists a, In a l /\ check_dest a r = true}.
+Proof.
+ destruct (check_dest_l_dec l r); [right | left];
+ auto using check_dest_l_ex, check_dest_l_forall.
+Qed.
+
+Lemma abstr_comp :
+ forall l i f x x0,
+ abstract_sequence f (l ++ i :: nil) = x ->
+ abstract_sequence f l = x0 ->
+ x = update x0 i.
+Proof. induction l; intros; crush; eapply IHl; eauto. Qed.
+
+(*
+
+Lemma gen_list_base:
+ forall FF ge sp l rs exps st1,
+ (forall x, @sem_value FF ge sp st1 (exps # (Reg x)) (rs !! x)) ->
+ sem_val_list ge sp st1 (list_translation l exps) rs ## l.
+Proof.
+ induction l.
+ intros. simpl. constructor.
+ intros. simpl. eapply Scons; eauto.
+Qed.
+
+Lemma check_dest_update2 :
+ forall f r rl op p,
+ (update f (RBop p op rl r)) # (Reg r) = Eop op (list_translation rl f) (f # Mem).
+Proof. crush; rewrite map2; auto. Qed.
+
+Lemma check_dest_update3 :
+ forall f r rl p addr chunk,
+ (update f (RBload p chunk addr rl r)) # (Reg r) = Eload chunk addr (list_translation rl f) (f # Mem).
+Proof. crush; rewrite map2; auto. Qed.
+
+Lemma abstract_seq_correct_aux:
+ forall FF ge sp i st1 st2 st3 f,
+ @step_instr FF ge sp st3 i st2 ->
+ sem ge sp st1 f st3 ->
+ sem ge sp st1 (update f i) st2.
+Proof.
+ intros; inv H; simplify.
+ { simplify; eauto. } (*apply match_states_refl. }*)
+ { inv H0. inv H6. destruct st1. econstructor. simplify.
+ constructor. intros.
+ destruct (resource_eq (Reg res) (Reg x)). inv e.
+ rewrite map2. econstructor. eassumption. apply gen_list_base; eauto.
+ rewrite Regmap.gss. eauto.
+ assert (res <> x). { unfold not in *. intros. apply n. rewrite H0. auto. }
+ rewrite Regmap.gso by auto.
+ rewrite genmap1 by auto. auto.
+
+ rewrite genmap1; crush. }
+ { inv H0. inv H7. constructor. constructor. intros.
+ destruct (Pos.eq_dec dst x); subst.
+ rewrite map2. econstructor; eauto.
+ apply gen_list_base. auto. rewrite Regmap.gss. auto.
+ rewrite genmap1. rewrite Regmap.gso by auto. auto.
+ unfold not in *; intros. inv H0. auto.
+ rewrite genmap1; crush.
+ }
+ { inv H0. inv H7. constructor. constructor; intros.
+ rewrite genmap1; crush.
+ rewrite map2. econstructor; eauto.
+ apply gen_list_base; auto.
+ }
+Qed.
+
+Lemma regmap_list_equiv :
+ forall A (rs1: Regmap.t A) rs2,
+ (forall x, rs1 !! x = rs2 !! x) ->
+ forall rl, rs1##rl = rs2##rl.
+Proof. induction rl; crush. Qed.
+
+Lemma sem_update_Op :
+ forall A ge sp st f st' r l o0 o m rs v,
+ @sem A ge sp st f st' ->
+ Op.eval_operation ge sp o0 rs ## l m = Some v ->
+ match_states st' (mk_instr_state rs m) ->
+ exists tst,
+ sem ge sp st (update f (RBop o o0 l r)) tst /\ match_states (mk_instr_state (Regmap.set r v rs) m) tst.
+Proof.
+ intros. inv H1. simplify.
+ destruct st.
+ econstructor. simplify.
+ { constructor.
+ { constructor. intros. destruct (Pos.eq_dec x r); subst.
+ { pose proof (H5 r). rewrite map2. pose proof H. inv H. econstructor; eauto.
+ { inv H9. eapply gen_list_base; eauto. }
+ { instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. erewrite regmap_list_equiv; eauto. } }
+ { rewrite Regmap.gso by auto. rewrite genmap1; crush. inv H. inv H7; eauto. } }
+ { inv H. rewrite genmap1; crush. eauto. } }
+ { constructor; eauto. intros.
+ destruct (Pos.eq_dec r x);
+ subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
+Qed.
+
+Lemma sem_update_load :
+ forall A ge sp st f st' r o m a l m0 rs v a0,
+ @sem A ge sp st f st' ->
+ Op.eval_addressing ge sp a rs ## l = Some a0 ->
+ Mem.loadv m m0 a0 = Some v ->
+ match_states st' (mk_instr_state rs m0) ->
+ exists tst : instr_state,
+ sem ge sp st (update f (RBload o m a l r)) tst
+ /\ match_states (mk_instr_state (Regmap.set r v rs) m0) tst.
+Proof.
+ intros. inv H2. pose proof H. inv H. inv H9.
+ destruct st.
+ econstructor; simplify.
+ { constructor.
+ { constructor. intros.
+ destruct (Pos.eq_dec x r); subst.
+ { rewrite map2. econstructor; eauto. eapply gen_list_base. intros.
+ rewrite <- H6. eauto.
+ instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. auto. }
+ { rewrite Regmap.gso by auto. rewrite genmap1; crush. } }
+ { rewrite genmap1; crush. eauto. } }
+ { constructor; auto; intros. destruct (Pos.eq_dec r x);
+ subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
+Qed.
+
+Lemma sem_update_store :
+ forall A ge sp a0 m a l r o f st m' rs m0 st',
+ @sem A ge sp st f st' ->
+ Op.eval_addressing ge sp a rs ## l = Some a0 ->
+ Mem.storev m m0 a0 rs !! r = Some m' ->
+ match_states st' (mk_instr_state rs m0) ->
+ exists tst, sem ge sp st (update f (RBstore o m a l r)) tst
+ /\ match_states (mk_instr_state rs m') tst.
+Proof.
+ intros. inv H2. pose proof H. inv H. inv H9.
+ destruct st.
+ econstructor; simplify.
+ { econstructor.
+ { econstructor; intros. rewrite genmap1; crush. }
+ { rewrite map2. econstructor; eauto. eapply gen_list_base. intros. rewrite <- H6.
+ eauto. specialize (H6 r). rewrite H6. eauto. } }
+ { econstructor; eauto. }
+Qed.
+
+Lemma sem_update :
+ forall A ge sp st x st' st'' st''' f,
+ sem ge sp st f st' ->
+ match_states st' st''' ->
+ @step_instr A ge sp st''' x st'' ->
+ exists tst, sem ge sp st (update f x) tst /\ match_states st'' tst.
+Proof.
+ intros. destruct x; inv H1.
+ { econstructor. split.
+ apply sem_update_RBnop. eassumption.
+ apply match_states_commut. auto. }
+ { eapply sem_update_Op; eauto. }
+ { eapply sem_update_load; eauto. }
+ { eapply sem_update_store; eauto. }
+Qed.
+
+Lemma sem_update2_Op :
+ forall A ge sp st f r l o0 o m rs v,
+ @sem A ge sp st f (mk_instr_state rs m) ->
+ Op.eval_operation ge sp o0 rs ## l m = Some v ->
+ sem ge sp st (update f (RBop o o0 l r)) (mk_instr_state (Regmap.set r v rs) m).
+Proof.
+ intros. destruct st. constructor.
+ inv H. inv H6.
+ { constructor; intros. simplify.
+ destruct (Pos.eq_dec r x); subst.
+ { rewrite map2. econstructor. eauto.
+ apply gen_list_base. eauto.
+ rewrite Regmap.gss. auto. }
+ { rewrite genmap1; crush. rewrite Regmap.gso; auto. } }
+ { simplify. rewrite genmap1; crush. inv H. eauto. }
+Qed.
+
+Lemma sem_update2_load :
+ forall A ge sp st f r o m a l m0 rs v a0,
+ @sem A ge sp st f (mk_instr_state rs m0) ->
+ Op.eval_addressing ge sp a rs ## l = Some a0 ->
+ Mem.loadv m m0 a0 = Some v ->
+ sem ge sp st (update f (RBload o m a l r)) (mk_instr_state (Regmap.set r v rs) m0).
+Proof.
+ intros. simplify. inv H. inv H7. constructor.
+ { constructor; intros. destruct (Pos.eq_dec r x); subst.
+ { rewrite map2. rewrite Regmap.gss. econstructor; eauto.
+ apply gen_list_base; eauto. }
+ { rewrite genmap1; crush. rewrite Regmap.gso; eauto. }
+ }
+ { simplify. rewrite genmap1; crush. }
+Qed.
+
+Lemma sem_update2_store :
+ forall A ge sp a0 m a l r o f st m' rs m0,
+ @sem A ge sp st f (mk_instr_state rs m0) ->
+ Op.eval_addressing ge sp a rs ## l = Some a0 ->
+ Mem.storev m m0 a0 rs !! r = Some m' ->
+ sem ge sp st (update f (RBstore o m a l r)) (mk_instr_state rs m').
+Proof.
+ intros. simplify. inv H. inv H7. constructor; simplify.
+ { econstructor; intros. rewrite genmap1; crush. }
+ { rewrite map2. econstructor; eauto. apply gen_list_base; eauto. }
+Qed.
+
+Lemma sem_update2 :
+ forall A ge sp st x st' st'' f,
+ sem ge sp st f st' ->
+ @step_instr A ge sp st' x st'' ->
+ sem ge sp st (update f x) st''.
+Proof.
+ intros.
+ destruct x; inv H0;
+ eauto using sem_update_RBnop, sem_update2_Op, sem_update2_load, sem_update2_store.
+Qed.
+
+Lemma abstr_sem_val_mem :
+ forall A B ge tge st tst sp a,
+ ge_preserved ge tge ->
+ forall v m,
+ (@sem_mem A ge sp st a m /\ match_states st tst -> @sem_mem B tge sp tst a m) /\
+ (@sem_value A ge sp st a v /\ match_states st tst -> @sem_value B tge sp tst a v).
+Proof.
+ intros * H.
+ apply expression_ind2 with
+
+ (P := fun (e1: expression) =>
+ forall v m,
+ (@sem_mem A ge sp st e1 m /\ match_states st tst -> @sem_mem B tge sp tst e1 m) /\
+ (@sem_value A ge sp st e1 v /\ match_states st tst -> @sem_value B tge sp tst e1 v))
+
+ (P0 := fun (e1: expression_list) =>
+ forall lv, @sem_val_list A ge sp st e1 lv /\ match_states st tst -> @sem_val_list B tge sp tst e1 lv);
+ simplify; intros; simplify.
+ { inv H1. inv H2. constructor. }
+ { inv H2. inv H1. rewrite H0. constructor. }
+ { inv H3. }
+ { inv H3. inv H4. econstructor. apply H1; auto. simplify. eauto. constructor. auto. auto.
+ apply H0; simplify; eauto. constructor; eauto.
+ unfold ge_preserved in *. simplify. rewrite <- H2. auto.
+ }
+ { inv H3. }
+ { inv H3. inv H4. econstructor. apply H1; eauto; simplify; eauto. constructor; eauto.
+ apply H0; simplify; eauto. constructor; eauto.
+ inv H. rewrite <- H4. eauto.
+ auto.
+ }
+ { inv H4. inv H5. econstructor. apply H0; eauto. simplify; eauto. constructor; eauto.
+ apply H2; eauto. simplify; eauto. constructor; eauto.
+ apply H1; eauto. simplify; eauto. constructor; eauto.
+ inv H. rewrite <- H5. eauto. auto.
+ }
+ { inv H4. }
+ { inv H1. constructor. }
+ { inv H3. constructor; auto. apply H0; eauto. apply Mem.empty. }
+Qed.
+
+Lemma abstr_sem_value :
+ forall a A B ge tge sp st tst v,
+ @sem_value A ge sp st a v ->
+ ge_preserved ge tge ->
+ match_states st tst ->
+ @sem_value B tge sp tst a v.
+Proof. intros; eapply abstr_sem_val_mem; eauto; apply Mem.empty. Qed.
+
+Lemma abstr_sem_mem :
+ forall a A B ge tge sp st tst v,
+ @sem_mem A ge sp st a v ->
+ ge_preserved ge tge ->
+ match_states st tst ->
+ @sem_mem B tge sp tst a v.
+Proof. intros; eapply abstr_sem_val_mem; eauto. Qed.
+
+Lemma abstr_sem_regset :
+ forall a a' A B ge tge sp st tst rs,
+ @sem_regset A ge sp st a rs ->
+ ge_preserved ge tge ->
+ (forall x, a # x = a' # x) ->
+ match_states st tst ->
+ exists rs', @sem_regset B tge sp tst a' rs' /\ (forall x, rs !! x = rs' !! x).
+Proof.
+ inversion 1; intros.
+ inv H7.
+ econstructor. simplify. econstructor. intros.
+ eapply abstr_sem_value; eauto. rewrite <- H6.
+ eapply H0. constructor; eauto.
+ auto.
+Qed.
+
+Lemma abstr_sem :
+ forall a a' A B ge tge sp st tst st',
+ @sem A ge sp st a st' ->
+ ge_preserved ge tge ->
+ (forall x, a # x = a' # x) ->
+ match_states st tst ->
+ exists tst', @sem B tge sp tst a' tst' /\ match_states st' tst'.
+Proof.
+ inversion 1; subst; intros.
+ inversion H4; subst.
+ exploit abstr_sem_regset; eauto; inv_simp.
+ do 3 econstructor; eauto.
+ rewrite <- H3.
+ eapply abstr_sem_mem; eauto.
+Qed.
+
+Lemma abstract_execution_correct':
+ forall A B ge tge sp st' a a' st tst,
+ @sem A ge sp st a st' ->
+ ge_preserved ge tge ->
+ check a a' = true ->
+ match_states st tst ->
+ exists tst', @sem B tge sp tst a' tst' /\ match_states st' tst'.
+Proof.
+ intros;
+ pose proof (check_correct a a' H1);
+ eapply abstr_sem; eauto.
+Qed.
+
+Lemma states_match :
+ forall st1 st2 st3 st4,
+ match_states st1 st2 ->
+ match_states st2 st3 ->
+ match_states st3 st4 ->
+ match_states st1 st4.
+Proof.
+ intros * H1 H2 H3; destruct st1; destruct st2; destruct st3; destruct st4.
+ inv H1. inv H2. inv H3; constructor.
+ unfold regs_lessdef in *. intros.
+ repeat match goal with
+ | H: forall _, _, r : positive |- _ => specialize (H r)
+ end.
+ congruence.
+ auto.
+Qed.
+
+Lemma step_instr_block_same :
+ forall ge sp st st',
+ step_instr_block ge sp st nil st' ->
+ st = st'.
+Proof. inversion 1; auto. Qed.
+
+Lemma step_instr_seq_same :
+ forall ge sp st st',
+ step_instr_seq ge sp st nil st' ->
+ st = st'.
+Proof. inversion 1; auto. Qed.
+
+Lemma sem_update' :
+ forall A ge sp st a x st',
+ sem ge sp st (update (abstract_sequence empty a) x) st' ->
+ exists st'',
+ @step_instr A ge sp st'' x st' /\
+ sem ge sp st (abstract_sequence empty a) st''.
+Proof.
+ Admitted.
+
+Lemma rtlpar_trans_correct :
+ forall bb ge sp sem_st' sem_st st,
+ sem ge sp sem_st (abstract_sequence empty (concat (concat bb))) sem_st' ->
+ match_states sem_st st ->
+ exists st', RTLPar.step_instr_block ge sp st bb st'
+ /\ match_states sem_st' st'.
+Proof.
+ induction bb using rev_ind.
+ { repeat econstructor. eapply abstract_interp_empty3 in H.
+ inv H. inv H0. constructor; congruence. }
+ { simplify. inv H0. repeat rewrite concat_app in H. simplify.
+ rewrite app_nil_r in H.
+ exploit sem_separate; eauto; inv_simp.
+ repeat econstructor. admit. admit.
+ }
+Admitted.
+
+(*Lemma abstract_execution_correct_ld:
+ forall bb bb' cfi ge tge sp st st' tst,
+ RTLBlock.step_instr_list ge sp st bb st' ->
+ ge_preserved ge tge ->
+ schedule_oracle (mk_bblock bb cfi) (mk_bblock bb' cfi) = true ->
+ match_states_ld st tst ->
+ exists tst', RTLPar.step_instr_block tge sp tst bb' tst'
+ /\ match_states st' tst'.
+Proof.
+ intros.*)
+*)
+
+Lemma match_states_list :
+ forall A (rs: Regmap.t A) rs',
+ (forall r, rs !! r = rs' !! r) ->
+ forall l, rs ## l = rs' ## l.
+Proof. induction l; crush. Qed.
+
+Lemma PTree_matches :
+ forall A (v: A) res rs rs',
+ (forall r, rs !! r = rs' !! r) ->
+ forall x, (Regmap.set res v rs) !! x = (Regmap.set res v rs') !! x.
+Proof.
+ intros; destruct (Pos.eq_dec x res); subst;
+ [ repeat rewrite Regmap.gss by auto
+ | repeat rewrite Regmap.gso by auto ]; auto.
+Qed.
+
+Lemma abstract_interp_empty3 :
+ forall A ctx st',
+ @sem A ctx empty st' -> match_states (ctx_is ctx) st'.
+Proof.
+ inversion 1; subst; simplify. destruct ctx.
+ destruct ctx_is.
+ constructor; intros.
+ - inv H0. specialize (H3 x). inv H3. inv H8. reflexivity.
+ - inv H1. specialize (H3 x). inv H3. inv H8. reflexivity.
+ - inv H2. inv H8. reflexivity.
+Qed.
+
+Lemma step_instr_matches :
+ forall A a ge sp st st',
+ @step_instr A ge sp st a st' ->
+ forall tst,
+ match_states st tst ->
+ exists tst', step_instr ge sp tst a tst'
+ /\ match_states st' tst'.
+Proof.
+ induction 1; simplify;
+ match goal with H: match_states _ _ |- _ => inv H end;
+ try solve [repeat econstructor; try erewrite match_states_list;
+ try apply PTree_matches; eauto;
+ match goal with
+ H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
+ end].
+ - destruct p. match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
+ repeat econstructor; try erewrite match_states_list; eauto.
+ erewrite <- eval_predf_pr_equiv; eassumption.
+ apply PTree_matches; assumption.
+ repeat (econstructor; try apply eval_pred_false); eauto. try erewrite match_states_list; eauto.
+ erewrite <- eval_predf_pr_equiv; eassumption.
+ econstructor; auto.
+ match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
+ repeat econstructor; try erewrite match_states_list; eauto.
+ (*- destruct p. match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
+ repeat econstructor; try erewrite match_states_list; eauto.
+ erewrite <- eval_predf_pr_equiv; eassumption.
+ apply PTree_matches; assumption.
+ repeat (econstructor; try apply eval_pred_false); eauto. try erewrite match_states_list; eauto.
+ erewrite <- eval_predf_pr_equiv; eassumption.
+ econstructor; auto.
+ match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
+ repeat econstructor; try erewrite match_states_list; eauto.
+ - destruct p. match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
+ repeat econstructor; try erewrite match_states_list; eauto.
+ match goal with
+ H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
+ end.
+ erewrite <- eval_predf_pr_equiv; eassumption.
+ repeat (econstructor; try apply eval_pred_false); eauto. try erewrite match_states_list; eauto.
+ match goal with
+ H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
+ end.
+ erewrite <- eval_predf_pr_equiv; eassumption.
+ match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
+ repeat econstructor; try erewrite match_states_list; eauto.
+ match goal with
+ H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
+ end.
+ - admit.*) Admitted.
+
+Lemma step_instr_list_matches :
+ forall a ge sp st st',
+ step_instr_list ge sp st a st' ->
+ forall tst, match_states st tst ->
+ exists tst', step_instr_list ge sp tst a tst'
+ /\ match_states st' tst'.
+Proof.
+ induction a; intros; inv H;
+ try (exploit step_instr_matches; eauto; []; simplify;
+ exploit IHa; eauto; []; simplify); repeat econstructor; eauto.
+Qed.
+
+Lemma step_instr_seq_matches :
+ forall a ge sp st st',
+ step_instr_seq ge sp st a st' ->
+ forall tst, match_states st tst ->
+ exists tst', step_instr_seq ge sp tst a tst'
+ /\ match_states st' tst'.
+Proof.
+ induction a; intros; inv H;
+ try (exploit step_instr_list_matches; eauto; []; simplify;
+ exploit IHa; eauto; []; simplify); repeat econstructor; eauto.
+Qed.
+
+Lemma step_instr_block_matches :
+ forall bb ge sp st st',
+ step_instr_block ge sp st bb st' ->
+ forall tst, match_states st tst ->
+ exists tst', step_instr_block ge sp tst bb tst'
+ /\ match_states st' tst'.
+Proof.
+ induction bb; intros; inv H;
+ try (exploit step_instr_seq_matches; eauto; []; simplify;
+ exploit IHbb; eauto; []; simplify); repeat econstructor; eauto.
+Qed.
+
+Lemma rtlblock_trans_correct' :
+ forall bb ge sp st x st'',
+ RTLBlock.step_instr_list ge sp st (bb ++ x :: nil) st'' ->
+ exists st', RTLBlock.step_instr_list ge sp st bb st'
+ /\ step_instr ge sp st' x st''.
+Proof.
+ induction bb.
+ crush. exists st.
+ split. constructor. inv H. inv H6. auto.
+ crush. inv H. exploit IHbb. eassumption. simplify.
+ econstructor. split.
+ econstructor; eauto. eauto.
+Qed.
+
+Lemma abstract_interp_empty A st : @sem A st empty (ctx_is st).
+Proof. destruct st, ctx_is. simpl. repeat econstructor. Qed.
+
+Lemma abstract_seq :
+ forall l f i,
+ abstract_sequence f (l ++ i :: nil) = update (abstract_sequence f l) i.
+Proof. induction l; crush. Qed.
+
+Lemma abstract_sequence_update :
+ forall l r f,
+ check_dest_l l r = false ->
+ (abstract_sequence f l) # (Reg r) = f # (Reg r).
+Proof.
+ induction l using rev_ind; crush.
+ rewrite abstract_seq. rewrite check_dest_update. apply IHl.
+ apply check_list_l_false in H. tauto.
+ apply check_list_l_false in H. tauto.
+Qed.
+
+(*Lemma sem_separate :
+ forall A ctx b a st',
+ sem ctx (abstract_sequence empty (a ++ b)) st' ->
+ exists st'',
+ @sem A ctx (abstract_sequence empty a) st''
+ /\ @sem A (mk_ctx st'' (ctx_sp ctx) (ctx_ge ctx)) (abstract_sequence empty b) st'.
+Proof.
+ induction b using rev_ind; simplify.
+ { econstructor. simplify. rewrite app_nil_r in H. eauto. apply abstract_interp_empty. }
+ { simplify. rewrite app_assoc in H. rewrite abstract_seq in H.
+ exploit sem_update'; eauto; simplify.
+ exploit IHb; eauto; inv_simp.
+ econstructor; split; eauto.
+ rewrite abstract_seq.
+ eapply sem_update2; eauto.
+ }
+Qed.*)
+
+Lemma sem_update_RBnop :
+ forall A ctx f st',
+ @sem A ctx f st' -> sem ctx (update f RBnop) st'.
+Proof. auto. Qed.
+
+Lemma sem_update_Op :
+ forall A ge sp ist f st' r l o0 o m rs v ps,
+ @sem A (mk_ctx ist sp ge) f st' ->
+ eval_predf ps o = true ->
+ Op.eval_operation ge sp o0 (rs ## l) m = Some v ->
+ match_states st' (mk_instr_state rs ps m) ->
+ exists tst,
+ sem (mk_ctx ist sp ge) (update f (RBop (Some o) o0 l r)) tst
+ /\ match_states (mk_instr_state (Regmap.set r v rs) ps m) tst.
+Proof.
+ intros. inv H1. inv H. inv H1. inv H3. simplify.
+ econstructor. simplify.
+ { constructor; try constructor; intros; try solve [rewrite genmap1; now eauto].
+ destruct (Pos.eq_dec x r); subst.
+ { rewrite map2. specialize (H1 r). inv H1.
+(*}
+ }
+ destruct st.
+ econstructor. simplify.
+ { constructor.
+ { constructor. intros. destruct (Pos.eq_dec x r); subst.
+ { pose proof (H5 r). rewrite map2. pose proof H. inv H. econstructor; eauto.
+ { inv H9. eapply gen_list_base; eauto. }
+ { instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. erewrite regmap_list_equiv; eauto. } }
+ { rewrite Regmap.gso by auto. rewrite genmap1; crush. inv H. inv H7; eauto. } }
+ { inv H. rewrite genmap1; crush. eauto. } }
+ { constructor; eauto. intros.
+ destruct (Pos.eq_dec r x);
+ subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
+Qed.*) Admitted.
+
+Lemma sem_update :
+ forall A ge sp st x st' st'' st''' f,
+ sem (mk_ctx st sp ge) f st' ->
+ match_states st' st''' ->
+ @step_instr A ge sp st''' x st'' ->
+ exists tst, sem (mk_ctx st sp ge) (update f x) tst /\ match_states st'' tst.
+Proof.
+ intros. destruct x.
+ - inv H1. econstructor. simplify. eauto. symmetry; auto.
+ - inv H1. inv H0. econstructor.
+ Admitted.
+
+Lemma rtlblock_trans_correct :
+ forall bb ge sp st st',
+ RTLBlock.step_instr_list ge sp st bb st' ->
+ forall tst,
+ match_states st tst ->
+ exists tst', sem (mk_ctx tst sp ge) (abstract_sequence empty bb) tst'
+ /\ match_states st' tst'.
+Proof.
+ induction bb using rev_ind; simplify.
+ { econstructor. simplify. apply abstract_interp_empty.
+ inv H. auto. }
+ { apply rtlblock_trans_correct' in H. simplify.
+ rewrite abstract_seq.
+ exploit IHbb; try eassumption; []; simplify.
+ exploit sem_update. apply H1. symmetry; eassumption.
+ eauto. simplify. econstructor. split. apply H3.
+ auto. }
+Qed.
+
+Lemma abstract_execution_correct:
+ forall bb bb' cfi cfi' ge tge sp st st' tst,
+ RTLBlock.step_instr_list ge sp st bb st' ->
+ ge_preserved ge tge ->
+ schedule_oracle (mk_bblock bb cfi) (mk_bblock bb' cfi') = true ->
+ match_states st tst ->
+ exists tst', RTLPar.step_instr_block tge sp tst bb' tst'
+ /\ match_states st' tst'.
+Proof.
+ intros.
+ unfold schedule_oracle in *. simplify. unfold empty_trees in H4.
+ exploit rtlblock_trans_correct; try eassumption; []; simplify.
+(*) exploit abstract_execution_correct';
+ try solve [eassumption | apply state_lessdef_match_sem; eassumption].
+ apply match_states_commut. eauto. inv_simp.
+ exploit rtlpar_trans_correct; try eassumption; []; inv_simp.
+ exploit step_instr_block_matches; eauto. apply match_states_commut; eauto. inv_simp.
+ repeat match goal with | H: match_states _ _ |- _ => inv H end.
+ do 2 econstructor; eauto.
+ econstructor; congruence.
+Qed.*)Admitted.
+
+Definition match_prog (prog : RTLBlock.program) (tprog : RTLPar.program) :=
+ match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq prog tprog.
+
+(* TODO: Fix the `bb` and add matches for them. *)
+Inductive match_stackframes: RTLBlock.stackframe -> RTLPar.stackframe -> Prop :=
+| match_stackframe:
+ forall f tf res sp pc rs rs' ps ps',
+ transl_function f = OK tf ->
+ (forall x, rs !! x = rs' !! x) ->
+ (forall x, ps !! x = ps' !! x) ->
+ match_stackframes (Stackframe res f sp pc rs ps)
+ (Stackframe res tf sp pc rs' ps').
+
+Inductive match_states: RTLBlock.state -> RTLPar.state -> Prop :=
+| match_state:
+ forall sf f sp pc rs rs' m sf' tf ps ps'
+ (TRANSL: transl_function f = OK tf)
+ (STACKS: list_forall2 match_stackframes sf sf')
+ (REG: forall x, rs !! x = rs' !! x)
+ (REG: forall x, ps !! x = ps' !! x),
+ match_states (State sf f sp pc rs ps m)
+ (State sf' tf sp pc rs' ps' m)
+| match_returnstate:
+ forall stack stack' v m
+ (STACKS: list_forall2 match_stackframes stack stack'),
+ match_states (Returnstate stack v m)
+ (Returnstate stack' v m)
+| match_callstate:
+ forall stack stack' f tf args m
+ (TRANSL: transl_fundef f = OK tf)
+ (STACKS: list_forall2 match_stackframes stack stack'),
+ match_states (Callstate stack f args m)
+ (Callstate stack' tf args m).
+
+Section CORRECTNESS.
+
+ Context (prog: RTLBlock.program) (tprog : RTLPar.program).
+ Context (TRANSL: match_prog prog tprog).
+
+ Let ge : RTLBlock.genv := Globalenvs.Genv.globalenv prog.
+ Let tge : RTLPar.genv := Globalenvs.Genv.globalenv tprog.
+
+ Lemma symbols_preserved:
+ forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
+ Proof using TRANSL. intros. eapply (Genv.find_symbol_match TRANSL). Qed.
+ Hint Resolve symbols_preserved : rtlgp.
+
+ Lemma function_ptr_translated:
+ forall (b: Values.block) (f: RTLBlock.fundef),
+ Genv.find_funct_ptr ge b = Some f ->
+ exists tf,
+ Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = Errors.OK tf.
+ Proof using TRANSL.
+ intros. exploit (Genv.find_funct_ptr_match TRANSL); eauto.
+ intros (cu & tf & P & Q & R); exists tf; auto.
+ Qed.
+
+ Lemma functions_translated:
+ forall (v: Values.val) (f: RTLBlock.fundef),
+ Genv.find_funct ge v = Some f ->
+ exists tf,
+ Genv.find_funct tge v = Some tf /\ transl_fundef f = Errors.OK tf.
+ Proof using TRANSL.
+ intros. exploit (Genv.find_funct_match TRANSL); eauto.
+ intros (cu & tf & P & Q & R); exists tf; auto.
+ Qed.
+
+ Lemma senv_preserved:
+ Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge).
+ Proof (Genv.senv_transf_partial TRANSL).
+ Hint Resolve senv_preserved : rtlgp.
+
+ Lemma sig_transl_function:
+ forall (f: RTLBlock.fundef) (tf: RTLPar.fundef),
+ transl_fundef f = OK tf ->
+ funsig tf = funsig f.
+ Proof using .
+ unfold transl_fundef, transf_partial_fundef, transl_function; intros;
+ repeat destruct_match; crush;
+ match goal with H: OK _ = OK _ |- _ => inv H end; auto.
+ Qed.
+ Hint Resolve sig_transl_function : rtlgp.
+
+ Hint Resolve Val.lessdef_same : rtlgp.
+ Hint Resolve regs_lessdef_regs : rtlgp.
+
+ Lemma find_function_translated:
+ forall ros rs rs' f,
+ (forall x, rs !! x = rs' !! x) ->
+ find_function ge ros rs = Some f ->
+ exists tf, find_function tge ros rs' = Some tf
+ /\ transl_fundef f = OK tf.
+ Proof using TRANSL.
+ Ltac ffts := match goal with
+ | [ H: forall _, Val.lessdef _ _, r: Registers.reg |- _ ] =>
+ specialize (H r); inv H
+ | [ H: Vundef = ?r, H1: Genv.find_funct _ ?r = Some _ |- _ ] =>
+ rewrite <- H in H1
+ | [ H: Genv.find_funct _ Vundef = Some _ |- _] => solve [inv H]
+ | _ => solve [exploit functions_translated; eauto]
+ end.
+ destruct ros; simplify; try rewrite <- H;
+ [| rewrite symbols_preserved; destruct_match;
+ try (apply function_ptr_translated); crush ];
+ intros;
+ repeat ffts.
+ Qed.
+
+ Lemma schedule_oracle_nil:
+ forall bb cfi,
+ schedule_oracle {| bb_body := nil; bb_exit := cfi |} bb = true ->
+ bb_body bb = nil /\ bb_exit bb = cfi.
+ Proof using .
+ unfold schedule_oracle, check_control_flow_instr.
+ simplify; repeat destruct_match; crush.
+ Qed.
+
+ Lemma schedule_oracle_nil2:
+ forall cfi,
+ schedule_oracle {| bb_body := nil; bb_exit := cfi |}
+ {| bb_body := nil; bb_exit := cfi |} = true.
+ Proof using .
+ unfold schedule_oracle, check_control_flow_instr.
+ simplify; repeat destruct_match; crush.
+ Qed.
+
+ Lemma eval_op_eq:
+ forall (sp0 : Values.val) (op : Op.operation) (vl : list Values.val) m,
+ Op.eval_operation ge sp0 op vl m = Op.eval_operation tge sp0 op vl m.
+ Proof using TRANSL.
+ intros.
+ destruct op; auto; unfold Op.eval_operation, Genv.symbol_address, Op.eval_addressing32;
+ [| destruct a; unfold Genv.symbol_address ];
+ try rewrite symbols_preserved; auto.
+ Qed.
+ Hint Resolve eval_op_eq : rtlgp.
+
+ Lemma eval_addressing_eq:
+ forall sp addr vl,
+ Op.eval_addressing ge sp addr vl = Op.eval_addressing tge sp addr vl.
+ Proof using TRANSL.
+ intros.
+ destruct addr;
+ unfold Op.eval_addressing, Op.eval_addressing32;
+ unfold Genv.symbol_address;
+ try rewrite symbols_preserved; auto.
+ Qed.
+ Hint Resolve eval_addressing_eq : rtlgp.
+
+ Lemma ge_preserved_lem:
+ ge_preserved ge tge.
+ Proof using TRANSL.
+ unfold ge_preserved.
+ eauto with rtlgp.
+ Qed.
+ Hint Resolve ge_preserved_lem : rtlgp.
+
+ Lemma lessdef_regmap_optget:
+ forall or rs rs',
+ regs_lessdef rs rs' ->
+ Val.lessdef (regmap_optget or Vundef rs) (regmap_optget or Vundef rs').
+ Proof using. destruct or; crush. Qed.
+ Hint Resolve lessdef_regmap_optget : rtlgp.
+
+ Lemma regmap_equiv_lessdef:
+ forall rs rs',
+ (forall x, rs !! x = rs' !! x) ->
+ regs_lessdef rs rs'.
+ Proof using.
+ intros; unfold regs_lessdef; intros.
+ rewrite H. apply Val.lessdef_refl.
+ Qed.
+ Hint Resolve regmap_equiv_lessdef : rtlgp.
+
+ Lemma int_lessdef:
+ forall rs rs',
+ regs_lessdef rs rs' ->
+ (forall arg v,
+ rs !! arg = Vint v ->
+ rs' !! arg = Vint v).
+ Proof using. intros ? ? H; intros; specialize (H arg); inv H; crush. Qed.
+ Hint Resolve int_lessdef : rtlgp.
+
+ Ltac semantics_simpl :=
+ match goal with
+ | [ H: match_states _ _ |- _ ] =>
+ let H2 := fresh "H" in
+ learn H as H2; inv H2
+ | [ H: transl_function ?f = OK _ |- _ ] =>
+ let H2 := fresh "TRANSL" in
+ learn H as H2;
+ unfold transl_function in H2;
+ destruct (check_scheduled_trees
+ (@fn_code RTLBlock.bb f)
+ (@fn_code RTLPar.bb (schedule f))) eqn:?;
+ [| discriminate ]; inv H2
+ | [ H: context[check_scheduled_trees] |- _ ] =>
+ let H2 := fresh "CHECK" in
+ learn H as H2;
+ eapply check_scheduled_trees_correct in H2; [| solve [eauto] ]
+ | [ H: schedule_oracle {| bb_body := nil; bb_exit := _ |} ?bb = true |- _ ] =>
+ let H2 := fresh "SCHED" in
+ learn H as H2;
+ apply schedule_oracle_nil in H2
+ | [ H: find_function _ _ _ = Some _, H2: forall x, ?rs !! x = ?rs' !! x |- _ ] =>
+ learn H; exploit find_function_translated; try apply H2; eauto; inversion 1
+ | [ H: Mem.free ?m _ _ _ = Some ?m', H2: Mem.extends ?m ?m'' |- _ ] =>
+ learn H; exploit Mem.free_parallel_extends; eauto; intros
+ | [ H: Events.eval_builtin_args _ _ _ _ _ _, H2: regs_lessdef ?rs ?rs' |- _ ] =>
+ let H3 := fresh "H" in
+ learn H; exploit Events.eval_builtin_args_lessdef; [apply H2 | | |];
+ eauto with rtlgp; intro H3; learn H3
+ | [ H: Events.external_call _ _ _ _ _ _ _ |- _ ] =>
+ let H2 := fresh "H" in
+ learn H; exploit Events.external_call_mem_extends;
+ eauto; intro H2; learn H2
+ | [ H: exists _, _ |- _ ] => inv H
+ | _ => progress simplify
+ end.
+
+ Hint Resolve Events.eval_builtin_args_preserved : rtlgp.
+ Hint Resolve Events.external_call_symbols_preserved : rtlgp.
+ Hint Resolve set_res_lessdef : rtlgp.
+ Hint Resolve set_reg_lessdef : rtlgp.
+ Hint Resolve Op.eval_condition_lessdef : rtlgp.
+
+ Hint Constructors Events.eval_builtin_arg: barg.
+
+ Lemma eval_builtin_arg_eq:
+ forall A ge a v1 m1 e1 e2 sp,
+ (forall x, e1 x = e2 x) ->
+ @Events.eval_builtin_arg A ge e1 sp m1 a v1 ->
+ Events.eval_builtin_arg ge e2 sp m1 a v1.
+Proof. induction 2; try rewrite H; eauto with barg. Qed.
+
+ Lemma eval_builtin_args_eq:
+ forall A ge e1 sp m1 e2 al vl1,
+ (forall x, e1 x = e2 x) ->
+ @Events.eval_builtin_args A ge e1 sp m1 al vl1 ->
+ Events.eval_builtin_args ge e2 sp m1 al vl1.
+ Proof.
+ induction 2.
+ - econstructor; split.
+ - exploit eval_builtin_arg_eq; eauto. intros.
+ destruct IHlist_forall2 as [| y]. constructor; eauto.
+ constructor. constructor; auto.
+ constructor; eauto.
+ Qed.
+
+ (* TODO: Fix these proofs, now the cf_instr is in the State. *)
+ Lemma step_cf_instr_correct:
+ forall t s s' cf,
+ step_cf_instr ge s cf t s' ->
+ forall r,
+ match_states s r ->
+ exists r', step_cf_instr tge r cf t r' /\ match_states s' r'.
+ Proof using TRANSL.
+
+ (*induction 1; repeat semantics_simpl;
+ try solve [repeat (try erewrite match_states_list; eauto; econstructor; eauto with rtlgp)].
+ { do 3 (try erewrite match_states_list by eauto; econstructor; eauto with rtlgp).
+ eapply eval_builtin_args_eq. eapply REG.
+ eapply Events.eval_builtin_args_preserved. eapply symbols_preserved.
+ eauto.
+ intros.
+ unfold regmap_setres. destruct res.
+ destruct (Pos.eq_dec x0 x); subst.
+ repeat rewrite Regmap.gss; auto.
+ repeat rewrite Regmap.gso; auto.
+ eapply REG. eapply REG.
+ }
+ { repeat (try erewrite match_states_list; eauto; econstructor; eauto with rtlgp).
+ unfold regmap_optget. destruct or. rewrite REG. constructor; eauto.
+ constructor; eauto.
+ }
+ { exploit IHstep_cf_instr; eauto. simplify.
+ repeat (try erewrite match_states_list; eauto; econstructor; eauto with rtlgp).
+ erewrite eval_predf_pr_equiv; eauto.
+ }
+ Qed.*) Admitted.
+
+ Theorem transl_step_correct :
+ forall (S1 : RTLBlock.state) t S2,
+ RTLBlock.step ge S1 t S2 ->
+ forall (R1 : RTLPar.state),
+ match_states S1 R1 ->
+ exists R2, Smallstep.plus RTLPar.step tge R1 t R2 /\ match_states S2 R2.
+ Proof.
+
+ (*induction 1; repeat semantics_simpl.
+
+ { destruct bb; destruct x.
+ assert (bb_exit = bb_exit0).
+ { unfold schedule_oracle in *. simplify.
+ n unfold check_control_flow_instr in *.
+ destruct_match; crush.
+ }
+ subst.
+
+ exploit abstract_execution_correct; try eassumption. eapply ge_preserved_lem.
+ econstructor; eauto.
+ simplify. destruct x. inv H7.
+
+ exploit step_cf_instr_correct; try eassumption. econstructor; eauto.
+ simplify.
+
+ econstructor. econstructor. eapply Smallstep.plus_one. econstructor.
+ eauto. eauto. simplify. eauto. eauto. }
+ { unfold bind in *. inv TRANSL0. clear Learn. inv H0. destruct_match; crush.
+ inv H2. unfold transl_function in Heqr. destruct_match; crush.
+ inv Heqr.
+ repeat econstructor; eauto.
+ unfold bind in *. destruct_match; crush. }
+ { inv TRANSL0. repeat econstructor; eauto using Events.external_call_symbols_preserved, symbols_preserved, senv_preserved, Events.E0_right. }
+ { inv STACKS. inv H2. repeat econstructor; eauto.
+ intros. apply PTree_matches; eauto. }
+ Qed.*) Admitted.
+
+ Lemma transl_initial_states:
+ forall S,
+ RTLBlock.initial_state prog S ->
+ exists R, RTLPar.initial_state tprog R /\ match_states S R.
+ Proof.
+ induction 1.
+ exploit function_ptr_translated; eauto. intros [tf [A B]].
+ econstructor; split.
+ econstructor. apply (Genv.init_mem_transf_partial TRANSL); eauto.
+ replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved; eauto.
+ symmetry; eapply match_program_main; eauto.
+ eexact A.
+ rewrite <- H2. apply sig_transl_function; auto.
+ constructor. auto. constructor.
+ Qed.
+
+ Lemma transl_final_states:
+ forall S R r,
+ match_states S R -> RTLBlock.final_state S r -> RTLPar.final_state R r.
+ Proof.
+ intros. inv H0. inv H. inv STACKS. constructor.
+ Qed.
+
+ Theorem transf_program_correct:
+ Smallstep.forward_simulation (RTLBlock.semantics prog) (RTLPar.semantics tprog).
+ Proof.
+ eapply Smallstep.forward_simulation_plus.
+ apply senv_preserved.
+ eexact transl_initial_states.
+ eexact transl_final_states.
+ exact transl_step_correct.
+ Qed.
+
+End CORRECTNESS.
+*)