aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/GiblePargenproofEquiv.v
diff options
context:
space:
mode:
authorYann Herklotz <git@yannherklotz.com>2023-05-09 10:10:05 +0100
committerYann Herklotz <git@yannherklotz.com>2023-05-09 10:10:05 +0100
commitc1778dc2f1a5de755b32f8c4655a718c109c6489 (patch)
tree826185424f8e081203b392824781f84a7bb58cfe /src/hls/GiblePargenproofEquiv.v
parentbad5c59b014a9baf18df0e2146edcb11fb931216 (diff)
downloadvericert-c1778dc2f1a5de755b32f8c4655a718c109c6489.tar.gz
vericert-c1778dc2f1a5de755b32f8c4655a718c109c6489.zip
Split proof up into more files
Diffstat (limited to 'src/hls/GiblePargenproofEquiv.v')
-rw-r--r--src/hls/GiblePargenproofEquiv.v1736
1 files changed, 1736 insertions, 0 deletions
diff --git a/src/hls/GiblePargenproofEquiv.v b/src/hls/GiblePargenproofEquiv.v
new file mode 100644
index 0000000..5f28d53
--- /dev/null
+++ b/src/hls/GiblePargenproofEquiv.v
@@ -0,0 +1,1736 @@
+(*
+ * Vericert: Verified high-level synthesis.
+ * Copyright (C) 2023 Yann Herklotz <git@yannherklotz.com>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *)
+
+Require Import Coq.Logic.Decidable.
+Require Import Coq.Structures.Equalities.
+
+Require Import compcert.backend.Registers.
+Require Import compcert.common.AST.
+Require Import compcert.common.Globalenvs.
+Require Import compcert.common.Memory.
+Require Import compcert.common.Values.
+Require Import compcert.lib.Floats.
+Require Import compcert.lib.Integers.
+Require Import compcert.lib.Maps.
+Require compcert.verilog.Op.
+
+Require Import vericert.common.Vericertlib.
+Require Import vericert.hls.GibleSeq.
+Require Import vericert.hls.GiblePar.
+Require Import vericert.hls.Gible.
+Require Import vericert.hls.HashTree.
+Require Import vericert.hls.Predicate.
+Require Import vericert.common.DecEq.
+Require Import vericert.hls.Abstr.
+Require vericert.common.NonEmpty.
+Module NE := NonEmpty.
+Import NE.NonEmptyNotation.
+
+#[local] Open Scope non_empty_scope.
+#[local] Open Scope positive.
+#[local] Open Scope pred_op.
+#[local] Open Scope forest.
+
+Fixpoint beq_expression (e1 e2: expression) {struct e1}: bool :=
+ match e1, e2 with
+ | Ebase r1, Ebase r2 => if resource_eq r1 r2 then true else false
+ | Eop op1 el1, Eop op2 el2 =>
+ if operation_eq op1 op2 then
+ beq_expression_list el1 el2 else false
+ | Eload chk1 addr1 el1 e1, Eload chk2 addr2 el2 e2 =>
+ if memory_chunk_eq chk1 chk2
+ then if addressing_eq addr1 addr2
+ then if beq_expression_list el1 el2
+ then beq_expression e1 e2 else false else false else false
+ | Estore e1 chk1 addr1 el1 m1, Estore e2 chk2 addr2 el2 m2 =>
+ if memory_chunk_eq chk1 chk2
+ then if addressing_eq addr1 addr2
+ then if beq_expression_list el1 el2
+ then if beq_expression m1 m2
+ then beq_expression e1 e2 else false else false else false else false
+ | _, _ => false
+ end
+with beq_expression_list (el1 el2: expression_list) {struct el1} : bool :=
+ match el1, el2 with
+ | Enil, Enil => true
+ | Econs e1 t1, Econs e2 t2 => beq_expression e1 e2 && beq_expression_list t1 t2
+ | _, _ => false
+ end
+.
+
+Scheme expression_ind2 := Induction for expression Sort Prop
+ with expression_list_ind2 := Induction for expression_list Sort Prop.
+Definition beq_pred_expression (e1 e2: pred_expression) : bool :=
+ match e1, e2 with
+ | PEbase p1, PEbase p2 => if peq p1 p2 then true else false
+ | PEsetpred c1 el1, PEsetpred c2 el2 =>
+ if condition_eq c1 c2
+ then beq_expression_list el1 el2 else false
+ | _, _ => false
+ end.
+
+Definition beq_exit_expression (e1 e2: exit_expression) : bool :=
+ match e1, e2 with
+ | EEbase, EEbase => true
+ | EEexit cf1, EEexit cf2 => if cf_instr_eq cf1 cf2 then true else false
+ | _, _ => false
+ end.
+
+Lemma beq_expression_correct:
+ forall e1 e2, beq_expression e1 e2 = true -> e1 = e2.
+Proof.
+ intro e1;
+ apply expression_ind2 with
+ (P := fun (e1 : expression) =>
+ forall e2, beq_expression e1 e2 = true -> e1 = e2)
+ (P0 := fun (e1 : expression_list) =>
+ forall e2, beq_expression_list e1 e2 = true -> e1 = e2); simplify;
+ try solve [repeat match goal with
+ | [ H : context[match ?x with _ => _ end] |- _ ] => destruct x eqn:?
+ | [ H : context[if ?x then _ else _] |- _ ] => destruct x eqn:?
+ end; subst; f_equal; crush; eauto using Peqb_true_eq].
+Qed.
+
+Lemma beq_expression_refl: forall e, beq_expression e e = true.
+Proof.
+ intros.
+ induction e using expression_ind2 with (P0 := fun el => beq_expression_list el el = true);
+ crush; repeat (destruct_match; crush); [].
+ crush. rewrite IHe. rewrite IHe0. auto.
+Qed.
+
+Lemma beq_expression_list_refl: forall e, beq_expression_list e e = true.
+Proof. induction e; auto. simplify. rewrite beq_expression_refl. auto. Qed.
+
+Lemma beq_expression_correct2:
+ forall e1 e2, beq_expression e1 e2 = false -> e1 <> e2.
+Proof.
+ induction e1 using expression_ind2
+ with (P0 := fun el1 => forall el2, beq_expression_list el1 el2 = false -> el1 <> el2).
+ - intros. simplify. repeat (destruct_match; crush).
+ - intros. simplify. repeat (destruct_match; crush). subst. apply IHe1 in H.
+ unfold not in *. intros. apply H. inv H0. auto.
+ - intros. simplify. repeat (destruct_match; crush); subst.
+ unfold not in *; intros. inv H0. rewrite beq_expression_refl in H. discriminate.
+ unfold not in *; intros. inv H. rewrite beq_expression_list_refl in Heqb. discriminate.
+ - simplify. repeat (destruct_match; crush); subst;
+ unfold not in *; intros.
+ inv H0. rewrite beq_expression_refl in H; crush.
+ inv H. rewrite beq_expression_refl in Heqb0; crush.
+ inv H. rewrite beq_expression_list_refl in Heqb; crush.
+ (* - simplify. repeat (destruct_match; crush); subst. *)
+ (* unfold not in *; intros. inv H0. rewrite beq_expression_list_refl in H; crush. *)
+ - simplify. repeat (destruct_match; crush); subst.
+ - simplify. repeat (destruct_match; crush); subst.
+ apply andb_false_iff in H. inv H. unfold not in *; intros.
+ inv H. rewrite beq_expression_refl in H0; discriminate.
+ unfold not in *; intros. inv H. rewrite beq_expression_list_refl in H0; discriminate.
+Qed.
+
+Definition expression_dec: forall e1 e2: expression, {e1 = e2} + {e1 <> e2}.
+Proof.
+ intros.
+ destruct (beq_expression e1 e2) eqn:?. apply beq_expression_correct in Heqb. auto.
+ apply beq_expression_correct2 in Heqb. auto.
+Defined.
+
+Lemma beq_expression_list_correct:
+ forall e1 e2, beq_expression_list e1 e2 = true -> e1 = e2.
+Proof.
+ induction e1; crush.
+ - destruct_match; crush.
+ - destruct_match; crush.
+ apply IHe1 in H1; subst.
+ apply beq_expression_correct in H0; subst.
+ trivial.
+Qed.
+
+Lemma beq_expression_list_correct2:
+ forall e1 e2, beq_expression_list e1 e2 = false -> e1 <> e2.
+Proof.
+ induction e1; crush.
+ - destruct_match; crush.
+ - destruct_match; crush.
+ apply andb_false_iff in H. inv H. apply beq_expression_correct2 in H0.
+ unfold not in *; intros. apply H0. inv H. auto.
+ apply IHe1 in H0. unfold not in *; intros. apply H0. inv H.
+ auto.
+Qed.
+
+Lemma beq_pred_expression_correct:
+ forall e1 e2, beq_pred_expression e1 e2 = true -> e1 = e2.
+Proof.
+ destruct e1, e2; crush.
+ - destruct_match; crush.
+ - destruct_match; subst; crush.
+ apply beq_expression_list_correct in H; subst.
+ trivial.
+Qed.
+
+Lemma beq_pred_expression_refl:
+ forall e, beq_pred_expression e e = true.
+Proof.
+ destruct e; crush; destruct_match; crush.
+ apply beq_expression_list_refl.
+Qed.
+
+Lemma beq_pred_expression_correct2:
+ forall e1 e2, beq_pred_expression e1 e2 = false -> e1 <> e2.
+Proof.
+ destruct e1, e2; unfold not; crush.
+ + destruct_match; crush.
+ + destruct_match; crush. inv H0.
+ now rewrite beq_expression_list_refl in H.
+Qed.
+
+Lemma beq_exit_expression_correct:
+ forall e1 e2, beq_exit_expression e1 e2 = true <-> e1 = e2.
+Proof.
+ destruct e1, e2; split; crush;
+ destruct_match; subst; crush.
+Qed.
+
+Definition pred_expr_item_eq (pe1 pe2: pred_op * expression) : bool :=
+ @equiv_dec _ SATSetoid _ (fst pe1) (fst pe2) && beq_expression (snd pe1) (snd pe2).
+
+Definition pred_eexpr_item_eq (pe1 pe2: pred_op * exit_expression) : bool :=
+ @equiv_dec _ SATSetoid _ (fst pe1) (fst pe2) && beq_exit_expression (snd pe1) (snd pe2).
+
+Definition pred_expr_dec: forall (pe1 pe2: pred_op * expression),
+ {pred_expr_item_eq pe1 pe2 = true} + {pred_expr_item_eq pe1 pe2 = false}.
+Proof.
+ intros; destruct (pred_expr_item_eq pe1 pe2) eqn:?; unfold not; [tauto | now right].
+Defined.
+
+Definition pred_expr_dec2: forall (pe1 pe2: pred_op * expression),
+ {pred_expr_item_eq pe1 pe2 = true} + {~ pred_expr_item_eq pe1 pe2 = true}.
+Proof.
+ intros; destruct (pred_expr_item_eq pe1 pe2) eqn:?; unfold not; [tauto | now right].
+Defined.
+
+Definition pred_expression_dec:
+ forall e1 e2: pred_expression, {e1 = e2} + {e1 <> e2}.
+Proof.
+ intros. destruct (beq_pred_expression e1 e2) eqn:?.
+ eauto using beq_pred_expression_correct.
+ eauto using beq_pred_expression_correct2.
+Defined.
+
+Lemma exit_expression_refl:
+ forall e, beq_exit_expression e e = true.
+Proof. destruct e; crush; destruct_match; crush. Qed.
+
+Definition exit_expression_dec:
+ forall e1 e2: exit_expression, {e1 = e2} + {e1 <> e2}.
+Proof.
+ intros. destruct (beq_exit_expression e1 e2) eqn:?.
+ - left. eapply beq_exit_expression_correct; eauto.
+ - right. unfold not; intros.
+ assert (X: ~ (beq_exit_expression e1 e2 = true))
+ by eauto with bool.
+ subst. apply X. apply exit_expression_refl.
+Defined.
+
+Lemma pred_eexpression_dec:
+ forall (e1 e2: exit_expression) (p1 p2: pred_op),
+ {(p1, e1) = (p2, e2)} + {(p1, e1) <> (p2, e2)}.
+Proof.
+ pose proof (Predicate.eq_dec peq).
+ pose proof (exit_expression_dec).
+ decide equality.
+Defined.
+
+(*Fixpoint encode_expression_ne (max: predicate) (pe: pred_expr_ne) (h: hash_tree)
+ : (PTree.t pred_op) * hash_tree :=
+ match pe with
+ | NE.singleton (p, e) =>
+ let (p', h') := hash_value max e h in
+ (Por (Pnot p) (Pvar p'), h')
+ | (p, e) ::| pr =>
+ let (p', h') := hash_value max e h in
+ let (p'', h'') := encode_expression_ne max pr h' in
+ (Pand (Por (Pnot p) (Pvar p')) p'', h'')
+ end.*)
+
+Fixpoint max_pred_expr (pe: pred_expr) : positive :=
+ match pe with
+ | NE.singleton (p, e) => max_predicate p
+ | (p, e) ::| pe' => Pos.max (max_predicate p) (max_pred_expr pe')
+ end.
+
+Definition ge_preserved {A B C D: Type} (ge: Genv.t A B) (tge: Genv.t C D) : Prop :=
+ (forall sp op vl m, Op.eval_operation ge sp op vl m =
+ Op.eval_operation tge sp op vl m)
+ /\ (forall sp addr vl, Op.eval_addressing ge sp addr vl =
+ Op.eval_addressing tge sp addr vl).
+
+Lemma ge_preserved_same:
+ forall A B ge, @ge_preserved A B A B ge ge.
+Proof. unfold ge_preserved; auto. Qed.
+#[local] Hint Resolve ge_preserved_same : core.
+
+Inductive match_states : instr_state -> instr_state -> Prop :=
+| match_states_intro:
+ forall ps ps' rs rs' m m',
+ (forall x, rs !! x = rs' !! x) ->
+ (forall x, ps !! x = ps' !! x) ->
+ m = m' ->
+ match_states (mk_instr_state rs ps m) (mk_instr_state rs' ps' m').
+
+Lemma match_states_refl x : match_states x x.
+Proof. destruct x; constructor; crush. Qed.
+
+Lemma match_states_commut x y : match_states x y -> match_states y x.
+Proof. inversion 1; constructor; crush. Qed.
+
+Lemma match_states_trans x y z :
+ match_states x y -> match_states y z -> match_states x z.
+Proof. repeat inversion 1; constructor; crush. Qed.
+
+#[global] Instance match_states_Equivalence : Equivalence match_states :=
+ { Equivalence_Reflexive := match_states_refl ;
+ Equivalence_Symmetric := match_states_commut ;
+ Equivalence_Transitive := match_states_trans ; }.
+
+Inductive similar {A B} : @ctx A -> @ctx B -> Prop :=
+| similar_intro :
+ forall ist ist' sp ge tge,
+ ge_preserved ge tge ->
+ match_states ist ist' ->
+ similar (mk_ctx ist sp ge) (mk_ctx ist' sp tge).
+
+Lemma ge_preserved_refl:
+ forall A B (a: Genv.t A B), ge_preserved a a.
+Proof. auto. Qed.
+
+Lemma similar_refl:
+ forall A (a: @Abstr.ctx A), similar a a.
+Proof. intros; destruct a; constructor; auto. reflexivity. Qed.
+
+Lemma similar_commut:
+ forall A B (a: @Abstr.ctx A) (b: @Abstr.ctx B), similar a b -> similar b a.
+Proof.
+ inversion 1; constructor; auto.
+ - unfold ge_preserved in *; inv H0; split; intros.
+ rewrite H4; auto. rewrite H5; auto.
+ - symmetry; auto.
+Qed.
+
+Lemma similar_trans:
+ forall A B C (a: @Abstr.ctx A) (b: @Abstr.ctx B) (c: @Abstr.ctx C),
+ similar a b -> similar b c -> similar a c.
+Proof.
+ repeat inversion 1; constructor.
+ - unfold ge_preserved in *; inv H0; inv H9; split; intros.
+ rewrite H11. rewrite H0; auto.
+ rewrite H12. rewrite H2. auto.
+ - transitivity ist'; auto.
+Qed.
+
+Module HashExpr' <: MiniDecidableType.
+ Definition t := expression.
+ Definition eq_dec := expression_dec.
+End HashExpr'.
+
+Module HashExpr := Make_UDT(HashExpr').
+Module Import HT := HashTree(HashExpr).
+
+Module PHashExpr' <: MiniDecidableType.
+ Definition t := pred_expression.
+ Definition eq_dec := pred_expression_dec.
+End PHashExpr'.
+
+Module PHashExpr := Make_UDT(PHashExpr').
+Module PHT := HashTree(PHashExpr).
+
+Module EHashExpr' <: MiniDecidableType.
+ Definition t := exit_expression.
+ Definition eq_dec := exit_expression_dec.
+End EHashExpr'.
+
+Module EHashExpr := Make_UDT(EHashExpr').
+Module EHT := HashTree(EHashExpr).
+
+Fixpoint hash_predicate (max: predicate) (ap: pred_pexpr) (h: PHT.hash_tree)
+ : pred_op * PHT.hash_tree :=
+ match ap with
+ | Ptrue => (Ptrue, h)
+ | Pfalse => (Pfalse, h)
+ | Plit (b, ap') =>
+ let (p', h') := PHT.hash_value max ap' h in
+ (Plit (b, p'), h')
+ | Pand p1 p2 =>
+ let (p1', h') := hash_predicate max p1 h in
+ let (p2', h'') := hash_predicate max p2 h' in
+ (Pand p1' p2', h'')
+ | Por p1 p2 =>
+ let (p1', h') := hash_predicate max p1 h in
+ let (p2', h'') := hash_predicate max p2 h' in
+ (Por p1' p2', h'')
+ end.
+
+Definition predicated_mutexcl {A: Type} (pe: predicated A): Prop :=
+ (forall x y, NE.In x pe -> NE.In y pe -> x <> y -> fst x ⇒ ¬ fst y)
+ /\ NE.norepet pe.
+
+Lemma predicated_cons :
+ forall A (a: pred_op * A) x,
+ predicated_mutexcl (a ::| x) ->
+ predicated_mutexcl x.
+Proof.
+ unfold predicated_mutexcl; intros. inv H. inv H1. split; auto.
+ intros. apply H0; auto; constructor; tauto.
+Qed.
+
+Lemma predicated_singleton :
+ forall A (a: (pred_op * A)), predicated_mutexcl (NE.singleton a).
+Proof.
+ unfold predicated_mutexcl; intros; split; intros.
+ { inv H. now inv H0. }
+ constructor.
+Qed.
+
+(*
+
+Lemma norm_expr_constant :
+ forall x m h t h' e p,
+ HN.norm_expression m x h = (t, h') ->
+ h ! e = Some p ->
+ h' ! e = Some p.
+Proof. Abort.
+
+Definition sat_aequiv ap1 ap2 :=
+ exists h p1 p2,
+ sat_equiv p1 p2
+ /\ hash_predicate 1 ap1 h = (p1, h)
+ /\ hash_predicate 1 ap2 h = (p2, h).
+
+Lemma aequiv_symm : forall a b, sat_aequiv a b -> sat_aequiv b a.
+Proof.
+ unfold sat_aequiv; simplify; do 3 eexists; simplify; [symmetry | |]; eauto.
+Qed.
+
+Lemma existsh :
+ forall ap1,
+ exists h p1,
+ hash_predicate 1 ap1 h = (p1, h).
+Proof. Admitted.
+
+Lemma aequiv_refl : forall a, sat_aequiv a a.
+Proof.
+ unfold sat_aequiv; intros.
+ pose proof (existsh a); simplify.
+ do 3 eexists; simplify; eauto. reflexivity.
+Qed.
+
+Lemma aequiv_trans :
+ forall a b c,
+ sat_aequiv a b ->
+ sat_aequiv b c ->
+ sat_aequiv a c.
+Proof.
+ unfold sat_aequiv; intros.
+ simplify.
+Abort.
+
+Lemma norm_expr_mutexcl :
+ forall m pe h t h' e e' p p',
+ HN.norm_expression m pe h = (t, h') ->
+ predicated_mutexcl pe ->
+ t ! e = Some p ->
+ t ! e' = Some p' ->
+ e <> e' ->
+ p ⇒ ¬ p'.
+Proof. Abort.*)
+
+Definition pred_expr_eqb: forall pe1 pe2: pred_expr,
+ {pe1 = pe2} + {pe1 <> pe2}.
+Proof.
+ pose proof expression_dec.
+ pose proof NE.eq_dec.
+ pose proof (Predicate.eq_dec peq).
+ assert (forall a b: pred_op * expression, {a = b} + {a <> b})
+ by decide equality.
+ decide equality.
+Defined.
+
+Definition pred_pexpr_eqb: forall pe1 pe2: pred_pexpr,
+ {pe1 = pe2} + {pe1 <> pe2}.
+Proof.
+ pose proof pred_expression_dec.
+ pose proof (Predicate.eq_dec pred_expression_dec).
+ apply X.
+Defined.
+
+Definition beq_pred_pexpr (pe1 pe2: pred_pexpr): bool :=
+ if pred_pexpr_eqb pe1 pe2 then true else
+ let (np1, h) := hash_predicate 1 pe1 (PTree.empty _) in
+ let (np2, h') := hash_predicate 1 pe2 h in
+ equiv_check np1 np2.
+
+Lemma inj_asgn_eg : forall a b, (a =? b)%positive = (a =? a)%positive -> a = b.
+Proof.
+ intros. destruct (peq a b); subst.
+ auto. rewrite OrdersEx.Positive_as_OT.eqb_refl in H.
+ now apply Peqb_true_eq.
+Qed.
+
+Lemma inj_asgn :
+ forall a b, (forall (f: positive -> bool), f a = f b) -> a = b.
+Proof. intros. apply inj_asgn_eg. eauto. Qed.
+
+Lemma inj_asgn_false:
+ forall n1 n2 , ~ (forall c: positive -> bool, c n1 = negb (c n2)).
+Proof.
+ unfold not; intros. specialize (H (fun x => true)).
+ simplify. discriminate.
+Qed.
+
+Lemma negb_inj:
+ forall a b,
+ negb a = negb b -> a = b.
+Proof. destruct a, b; crush. Qed.
+
+Lemma sat_predicate_Plit_inj :
+ forall p1 p2,
+ Plit p1 == Plit p2 -> p1 = p2.
+Proof.
+ simplify. destruct p1, p2.
+ destruct b, b0. f_equal. unfold sat_equiv in H. cbn in H. now apply inj_asgn.
+ solve [exfalso; eapply inj_asgn_false; eauto].
+ solve [exfalso; eapply inj_asgn_false; eauto].
+ assert (p = p0). eapply inj_asgn. intros. specialize (H f).
+ apply negb_inj in H. auto. rewrite H0; auto.
+Qed.
+
+Definition ind_preds t :=
+ forall e1 e2 p1 p2 c,
+ e1 <> e2 ->
+ t ! e1 = Some p1 ->
+ t ! e2 = Some p2 ->
+ sat_predicate p1 c = true ->
+ sat_predicate p2 c = false.
+
+Definition ind_preds_l t :=
+ forall (e1: predicate) e2 p1 p2 c,
+ e1 <> e2 ->
+ In (e1, p1) t ->
+ In (e2, p2) t ->
+ sat_predicate p1 c = true ->
+ sat_predicate p2 c = false.
+
+(*Lemma pred_equivalence_Some' :
+ forall ta tb e pe pe',
+ list_norepet (map fst ta) ->
+ list_norepet (map fst tb) ->
+ In (e, pe) ta ->
+ In (e, pe') tb ->
+ fold_right (fun p a => mk_pred_stmnt' (fst p) (snd p) ∧ a) T ta ==
+ fold_right (fun p a => mk_pred_stmnt' (fst p) (snd p) ∧ a) T tb ->
+ pe == pe'.
+Proof.
+ induction ta as [|hd tl Hta]; try solve [crush].
+ - intros * NRP1 NRP2 IN1 IN2 FOLD. inv NRP1. inv IN1.
+ simpl in FOLD.
+
+Lemma pred_equivalence_Some :
+ forall (ta tb: PTree.t pred_op) e pe pe',
+ ta ! e = Some pe ->
+ tb ! e = Some pe' ->
+ mk_pred_stmnt ta == mk_pred_stmnt tb ->
+ pe == pe'.
+Proof.
+ intros * SMEA SMEB EQ. unfold mk_pred_stmnt in *.
+ repeat rewrite PTree.fold_spec in EQ.
+
+Lemma pred_equivalence_None :
+ forall (ta tb: PTree.t pred_op) e pe,
+ (mk_pred_stmnt ta) == (mk_pred_stmnt tb) ->
+ ta ! e = Some pe ->
+ tb ! e = None ->
+ equiv pe ⟂.
+Abort.
+
+Lemma pred_equivalence :
+ forall (ta tb: PTree.t pred_op) e pe,
+ equiv (mk_pred_stmnt ta) (mk_pred_stmnt tb) ->
+ ta ! e = Some pe ->
+ equiv pe ⟂ \/ (exists pe', tb ! e = Some pe' /\ equiv pe pe').
+Proof.
+ intros * EQ SME. destruct (tb ! e) eqn:HTB.
+ { right. econstructor. split; eauto. eapply pred_equivalence_Some; eauto. }
+ { left. eapply pred_equivalence_None; eauto. }
+Qed.*)
+
+Section CORRECT.
+
+ Context {FUN TFUN: Type}.
+
+ Context (ictx: @ctx FUN) (octx: @ctx TFUN) (HSIM: similar ictx octx).
+
+ Lemma sem_value_mem_det:
+ forall e v v' m m',
+ (sem_value ictx e v -> sem_value octx e v' -> v = v')
+ /\ (sem_mem ictx e m -> sem_mem octx e m' -> m = m').
+ Proof using HSIM.
+ induction e using expression_ind2
+ with (P0 := fun p => forall v v',
+ sem_val_list ictx p v -> sem_val_list octx p v' -> v = v');
+ inv HSIM; match goal with H: context [match_states] |- _ => inv H end; repeat progress simplify;
+ try solve [match goal with
+ | H: sem_value _ _ _, H2: sem_value _ _ _ |- _ => inv H; inv H2; auto
+ | H: sem_mem _ _ _, H2: sem_mem _ _ _ |- _ => inv H; inv H2; auto
+ | H: sem_val_list _ _ _, H2: sem_val_list _ _ _ |- _ => inv H; inv H2; auto
+ end].
+ - repeat match goal with
+ | H: sem_value _ _ _ |- _ => inv H
+ | H: sem_val_list {| ctx_ge := ge; |} ?e ?l1,
+ H2: sem_val_list {| ctx_ge := tge |} ?e ?l2,
+ IH: forall _ _, sem_val_list _ _ _ -> sem_val_list _ _ _ -> _ = _ |- _ =>
+ assert (X: l1 = l2) by (apply IH; auto)
+ | H: ge_preserved _ _ |- _ => inv H
+ | |- context [ctx_rs] => unfold ctx_rs; cbn
+ | H: context [ctx_mem] |- _ => unfold ctx_mem in H; cbn
+ end; crush.
+ - repeat match goal with H: sem_value _ _ _ |- _ => inv H end; simplify;
+ assert (lv0 = lv) by (apply IHe; eauto); subst;
+ match goal with H: ge_preserved _ _ |- _ => inv H end;
+ match goal with H: context [Op.eval_addressing _ _ _ _ = Op.eval_addressing _ _ _ _] |- _
+ => rewrite H in * end;
+ assert (a0 = a1) by crush;
+ assert (m'2 = m'1) by (apply IHe0; eauto); crush.
+ - inv H0; inv H3. simplify.
+ assert (lv = lv0) by ( apply IHe2; eauto). subst.
+ assert (a1 = a0). { inv H. rewrite H3 in *. crush. }
+ assert (v0 = v1). { apply IHe1; auto. }
+ assert (m'1 = m'2). { apply IHe3; auto. } crush.
+ - inv H0. inv H3. f_equal. apply IHe; auto.
+ apply IHe0; auto.
+ Qed.
+
+ Lemma sem_value_mem_corr:
+ forall e v m,
+ (sem_value ictx e v -> sem_value octx e v)
+ /\ (sem_mem ictx e m -> sem_mem octx e m).
+ Proof using HSIM.
+ induction e using expression_ind2
+ with (P0 := fun p => forall v,
+ sem_val_list ictx p v -> sem_val_list octx p v);
+ inv HSIM; match goal with H: context [match_states] |- _ => inv H end; repeat progress simplify.
+ - inv H0. unfold ctx_rs, ctx_ps, ctx_mem in *; cbn. rewrite H1. constructor.
+ - inv H0. unfold ctx_rs, ctx_ps, ctx_mem in *; cbn. constructor.
+ - inv H0. apply IHe in H6. econstructor; try eassumption.
+ unfold ctx_rs, ctx_ps, ctx_mem in *; cbn in *. inv H. crush.
+ - inv H0.
+ - inv H0. eapply IHe in H10. eapply IHe0 in H8; auto.
+ econstructor; try eassumption.
+ unfold ctx_rs, ctx_ps, ctx_mem in *; cbn in *. inv H; crush.
+ - inv H0.
+ - inv H0.
+ - inv H0. eapply IHe1 in H11; auto. eapply IHe2 in H12; auto. eapply IHe3 in H9; auto.
+ econstructor; try eassumption.
+ unfold ctx_rs, ctx_ps, ctx_mem in *; cbn in *. inv H; crush.
+ - inv H0. econstructor.
+ - inv H0. eapply IHe in H6; auto. eapply IHe0 in H8.
+ econstructor; eassumption.
+ Qed.
+
+ Lemma sem_value_det:
+ forall e v v', sem_value ictx e v -> sem_value octx e v' -> v = v'.
+ Proof using HSIM.
+ intros. eapply sem_value_mem_det; eauto; apply Mem.empty.
+ Qed.
+
+ Lemma sem_value_corr:
+ forall e v, sem_value ictx e v -> sem_value octx e v.
+ Proof using HSIM.
+ intros. eapply sem_value_mem_corr; eauto; apply Mem.empty.
+ Qed.
+
+ Lemma sem_mem_det:
+ forall e v v', sem_mem ictx e v -> sem_mem octx e v' -> v = v'.
+ Proof using HSIM.
+ intros. eapply sem_value_mem_det; eauto; apply (Vint (Int.repr 0%Z)).
+ Qed.
+
+ Lemma sem_mem_corr:
+ forall e v, sem_mem ictx e v -> sem_mem octx e v.
+ Proof using HSIM.
+ intros. eapply sem_value_mem_corr; eauto; apply (Vint (Int.repr 0%Z)).
+ Qed.
+
+ Lemma sem_val_list_det:
+ forall e l l', sem_val_list ictx e l -> sem_val_list octx e l' -> l = l'.
+ Proof using HSIM.
+ induction e; simplify.
+ - inv H; inv H0; auto.
+ - inv H; inv H0. f_equal. eapply sem_value_det; eauto; try apply Mem.empty.
+ apply IHe; eauto.
+ Qed.
+
+ Lemma sem_val_list_corr:
+ forall e l, sem_val_list ictx e l -> sem_val_list octx e l.
+ Proof using HSIM.
+ induction e; simplify.
+ - inv H; constructor.
+ - inv H. apply sem_value_corr in H3; auto; try apply Mem.empty;
+ apply IHe in H5; constructor; assumption.
+ Qed.
+
+ Lemma sem_pred_det:
+ forall e v v', sem_pred ictx e v -> sem_pred octx e v' -> v = v'.
+ Proof using HSIM.
+ try solve [inversion 1]; pose proof sem_value_det; pose proof sem_val_list_det; inv HSIM;
+ match goal with H: match_states _ _ |- _ => inv H end; simplify.
+ inv H2; inv H5; auto. assert (lv = lv0) by (eapply H0; eauto). subst. unfold ctx_mem in *.
+ crush.
+ Qed.
+
+ Lemma sem_pred_corr:
+ forall e v, sem_pred ictx e v -> sem_pred octx e v.
+ Proof using HSIM.
+ try solve [inversion 1]; pose proof sem_value_corr; pose proof sem_val_list_corr; inv HSIM;
+ match goal with H: match_states _ _ |- _ => inv H end; simplify.
+ inv H2; auto. apply H0 in H5. econstructor; eauto.
+ unfold ctx_ps; cbn. rewrite H4. constructor.
+ Qed.
+
+ Lemma sem_exit_det:
+ forall e v v', sem_exit ictx e v -> sem_exit octx e v' -> v = v'.
+ Proof using HSIM.
+ try solve [inversion 1]; pose proof sem_value_det; pose proof sem_val_list_det; inv HSIM;
+ match goal with H: match_states _ _ |- _ => inv H end; simplify.
+ inv H2; inv H5; auto.
+ Qed.
+
+ Lemma sem_exit_corr:
+ forall e v, sem_exit ictx e v -> sem_exit octx e v.
+ Proof using HSIM.
+ try solve [inversion 1]; pose proof sem_value_corr; pose proof sem_val_list_corr; inv HSIM;
+ match goal with H: match_states _ _ |- _ => inv H end; simplify.
+ inv H2; auto; constructor.
+ Qed.
+
+ Lemma sem_pexpr_det :
+ forall p b1 b2, sem_pexpr ictx p b1 -> sem_pexpr octx p b2 -> b1 = b2.
+ Proof.
+ induction p; crush; inv H; inv H0; firstorder.
+ destruct b.
+ - apply sem_pred_det with (e:=p0); auto.
+ - apply negb_inj. apply sem_pred_det with (e:=p0); auto.
+ Qed.
+
+ Lemma sem_pexpr_corr :
+ forall p b, sem_pexpr ictx p b -> sem_pexpr octx p b.
+ Proof.
+ induction p; crush; inv H; constructor;
+ try solve [try inv H3; firstorder].
+ now apply sem_pred_corr.
+ Qed.
+
+ Lemma sem_pred_exec_beq_correct2 :
+ forall A B (sem: forall G, @Abstr.ctx G -> A -> B -> Prop) a p r R,
+ (forall x y,
+ sem _ ictx x y ->
+ exists y', sem _ octx x y' /\ R y y') ->
+ sem_pred_expr a (sem _) ictx p r ->
+ exists r', sem_pred_expr a (sem _) octx p r' /\ R r r'.
+ Proof.
+ induction p; crush.
+ - inv H0. apply H in H4. simplify.
+ exists x; split; auto.
+ constructor; auto.
+ now apply sem_pexpr_corr.
+ - inv H0.
+ + apply H in H6; simplify.
+ exists x; split; auto.
+ constructor; auto.
+ now apply sem_pexpr_corr.
+ + exploit IHp; auto. exact H6. intros. simplify.
+ exists x; split; auto.
+ apply sem_pred_expr_cons_false; auto.
+ now apply sem_pexpr_corr.
+ Qed.
+
+ Lemma sem_pred_expr_corr :
+ forall A B (sem: forall G, @Abstr.ctx G -> A -> B -> Prop) a p r,
+ (forall x y, sem _ ictx x y -> sem _ octx x y) ->
+ sem_pred_expr a (sem _) ictx p r ->
+ sem_pred_expr a (sem _) octx p r.
+ Proof.
+ intros.
+ assert
+ (forall x y,
+ sem _ ictx x y ->
+ exists y', sem _ octx x y' /\ eq y y') by firstorder.
+ pose proof (sem_pred_exec_beq_correct2 _ _ sem a p r _ H1 H0).
+ crush.
+ Qed.
+
+ Lemma sem_correct:
+ forall f i cf, sem ictx f (i, cf) -> sem octx f (i, cf).
+ Proof.
+ intros. inv H. constructor.
+ - inv H2. constructor; intros. specialize (H x).
+ apply sem_pred_expr_corr; auto. exact sem_value_corr.
+ - inv H3; constructor; intros. specialize (H x).
+ now apply sem_pexpr_corr.
+ - apply sem_pred_expr_corr; auto. exact sem_mem_corr.
+ - apply sem_pred_expr_corr; auto. exact sem_exit_corr.
+ Qed.
+
+End CORRECT.
+
+Section SEM_PRED_EXEC.
+
+ Context (A: Type).
+ Context (ctx: @Abstr.ctx A).
+
+ Lemma sem_pexpr_negate :
+ forall p b,
+ sem_pexpr ctx p b ->
+ sem_pexpr ctx (¬ p) (negb b).
+ Proof.
+ induction p; crush.
+ - destruct_match. destruct b0; crush. inv Heqp0.
+ constructor. inv H. rewrite negb_involutive. auto.
+ constructor. inv H. auto.
+ - inv H. constructor.
+ - inv H. constructor.
+ - inv H. inv H3.
+ + apply IHp1 in H. solve [constructor; auto].
+ + apply IHp2 in H. solve [constructor; auto].
+ + apply IHp1 in H2. apply IHp2 in H4. solve [constructor; auto].
+ - inv H. inv H3.
+ + apply IHp1 in H. solve [constructor; auto].
+ + apply IHp2 in H. solve [constructor; auto].
+ + apply IHp1 in H2. apply IHp2 in H4. solve [constructor; auto].
+ Qed.
+
+ Lemma sem_pexpr_negate2 :
+ forall p b,
+ sem_pexpr ctx (¬ p) (negb b) ->
+ sem_pexpr ctx p b.
+ Proof.
+ induction p; crush.
+ - destruct_match. destruct b0; crush. inv Heqp0.
+ constructor. inv H. rewrite negb_involutive in *. auto.
+ constructor. inv H. auto.
+ - inv H. destruct b; try discriminate. constructor.
+ - inv H. destruct b; try discriminate. constructor.
+ - inv H. destruct b; try discriminate.
+ + constructor. inv H1; eauto.
+ + destruct b; try discriminate. constructor; eauto.
+ - inv H. destruct b; try discriminate.
+ + constructor. inv H1; eauto.
+ + destruct b; try discriminate. constructor; eauto.
+ Qed.
+
+ Lemma sem_pexpr_evaluable :
+ forall f_p ps,
+ (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
+ forall p, exists b, sem_pexpr ctx (from_pred_op f_p p) b.
+ Proof.
+ induction p; crush.
+ - destruct_match. inv Heqp0. destruct b. econstructor. eauto.
+ econstructor. eapply sem_pexpr_negate. eauto.
+ - econstructor. constructor.
+ - econstructor. constructor.
+ - destruct x0, x; solve [eexists; constructor; auto].
+ - destruct x0, x; solve [eexists; constructor; auto].
+ Qed.
+
+ Lemma sem_pexpr_eval1 :
+ forall f_p ps,
+ (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
+ forall p,
+ eval_predf ps p = false ->
+ sem_pexpr ctx (from_pred_op f_p p) false.
+ Proof.
+ induction p; crush.
+ - destruct_match. inv Heqp0.
+ destruct b.
+ + cbn in H0. rewrite <- H0. eauto.
+ + replace false with (negb true) by auto.
+ apply sem_pexpr_negate. cbn in H0.
+ apply negb_true_iff in H0. rewrite negb_involutive in H0.
+ rewrite <- H0. eauto.
+ - constructor.
+ - rewrite eval_predf_Pand in H0.
+ apply andb_false_iff in H0. inv H0. eapply IHp1 in H1.
+ pose proof (sem_pexpr_evaluable _ _ H p2) as EVAL.
+ inversion_clear EVAL as [x EVAL2].
+ replace false with (false && x) by auto.
+ constructor; auto.
+ eapply IHp2 in H1.
+ pose proof (sem_pexpr_evaluable _ _ H p1) as EVAL.
+ inversion_clear EVAL as [x EVAL2].
+ replace false with (x && false) by eauto with bool.
+ apply sem_pexpr_Pand; auto.
+ - rewrite eval_predf_Por in H0.
+ apply orb_false_iff in H0. inv H0.
+ replace false with (false || false) by auto.
+ apply sem_pexpr_Por; auto.
+ Qed.
+
+ Lemma sem_pexpr_eval2 :
+ forall f_p ps,
+ (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
+ forall p,
+ eval_predf ps p = true ->
+ sem_pexpr ctx (from_pred_op f_p p) true.
+ Proof.
+ induction p; crush.
+ - destruct_match. inv Heqp0.
+ destruct b.
+ + cbn in H0. rewrite <- H0. eauto.
+ + replace true with (negb false) by auto.
+ apply sem_pexpr_negate. cbn in H0.
+ apply negb_true_iff in H0.
+ rewrite <- H0. eauto.
+ - constructor.
+ - rewrite eval_predf_Pand in H0.
+ apply andb_true_iff in H0. inv H0.
+ replace true with (true && true) by auto.
+ constructor; auto.
+ - rewrite eval_predf_Por in H0.
+ apply orb_true_iff in H0. inv H0. eapply IHp1 in H1.
+ pose proof (sem_pexpr_evaluable _ _ H p2) as EVAL.
+ inversion_clear EVAL as [x EVAL2].
+ replace true with (true || x) by auto.
+ apply sem_pexpr_Por; auto.
+ eapply IHp2 in H1.
+ pose proof (sem_pexpr_evaluable _ _ H p1) as EVAL.
+ inversion_clear EVAL as [x EVAL2].
+ replace true with (x || true) by eauto with bool.
+ apply sem_pexpr_Por; auto.
+ Qed.
+
+ Lemma sem_pexpr_eval :
+ forall f_p ps b,
+ (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
+ forall p,
+ eval_predf ps p = b ->
+ sem_pexpr ctx (from_pred_op f_p p) b.
+ Proof.
+ intros; destruct b; eauto using sem_pexpr_eval1, sem_pexpr_eval2.
+ Qed.
+
+ Lemma sem_pexpr_eval_inv :
+ forall f_p ps b,
+ (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
+ forall p,
+ sem_pexpr ctx (from_pred_op f_p p) b ->
+ eval_predf ps p = b.
+ Proof.
+ induction p; intros.
+ - cbn in H0. destruct_match. destruct b0; cbn in *.
+ + specialize (H p0). eapply sem_pexpr_det; eauto. apply similar_refl.
+ + rewrite <- negb_involutive in H0. apply sem_pexpr_negate2 in H0.
+ symmetry; apply negb_sym. eapply sem_pexpr_det; eauto.
+ apply similar_refl.
+ - now inv H0.
+ - now inv H0.
+ - inv H0; try inv H4; rewrite eval_predf_Pand.
+ + apply IHp1 in H0. rewrite H0. auto.
+ + apply IHp2 in H0. rewrite H0. auto with bool.
+ + apply IHp2 in H5. apply IHp1 in H3. rewrite H3. rewrite H5. auto.
+ - inv H0; try inv H4; rewrite eval_predf_Por.
+ + apply IHp1 in H0. rewrite H0. auto.
+ + apply IHp2 in H0. rewrite H0. auto with bool.
+ + apply IHp2 in H5. apply IHp1 in H3. rewrite H3. rewrite H5. auto.
+ Qed.
+
+ Context {C B: Type}.
+ Context (f: PTree.t pred_pexpr).
+ Context (ps: PMap.t bool).
+ Context (a_sem: @Abstr.ctx A -> C -> B -> Prop).
+
+ Context (F_EVALULABLE: forall x, sem_pexpr ctx (get_forest_p' x f) ps !! x).
+
+ Lemma sem_pexpr_equiv :
+ forall p1 p2 b,
+ p1 == p2 ->
+ sem_pexpr ctx (from_pred_op f p1) b ->
+ sem_pexpr ctx (from_pred_op f p2) b.
+ Proof.
+ intros.
+ eapply sem_pexpr_eval_inv in H0; eauto.
+ eapply sem_pexpr_eval; eauto.
+ Qed.
+
+End SEM_PRED_EXEC.
+
+Module HashExprNorm(HS: Hashable).
+ Module H := HashTree(HS).
+
+ Definition norm_tree: Type := PTree.t pred_op * H.hash_tree.
+
+ Fixpoint norm_expression (max: predicate) (pe: predicated HS.t) (h: H.hash_tree)
+ : norm_tree :=
+ match pe with
+ | NE.singleton (p, e) =>
+ let (hashed_e, h') := H.hash_value max e h in
+ (PTree.set hashed_e p (PTree.empty _), h')
+ | (p, e) ::| pr =>
+ let (hashed_e, h') := H.hash_value max e h in
+ let (norm_pr, h'') := norm_expression max pr h' in
+ match norm_pr ! hashed_e with
+ | Some pr_op =>
+ (PTree.set hashed_e (pr_op ∨ p) norm_pr, h'')
+ | None =>
+ (PTree.set hashed_e p norm_pr, h'')
+ end
+ end.
+
+ Definition mk_pred_stmnt' (e: predicate) p_e := ¬ p_e ∨ Plit (true, e).
+
+ Definition mk_pred_stmnt t := PTree.fold (fun x a b => mk_pred_stmnt' a b ∧ x) t T.
+
+ Definition mk_pred_stmnt_l (t: list (predicate * pred_op)) :=
+ fold_left (fun x a => uncurry mk_pred_stmnt' a ∧ x) t T.
+
+ Definition encode_expression max pe h :=
+ let (tree, h) := norm_expression max pe h in
+ (mk_pred_stmnt tree, h).
+
+ Definition pred_expr_dec: forall pe1 pe2: predicated HS.t,
+ {pe1 = pe2} + {pe1 <> pe2}.
+ Proof.
+ pose proof HS.eq_dec as X.
+ pose proof (Predicate.eq_dec peq).
+ pose proof (NE.eq_dec _ X).
+ assert (forall a b: pred_op * HS.t, {a = b} + {a <> b})
+ by decide equality.
+ decide equality.
+ Defined.
+
+ Definition beq_pred_expr' (pe1 pe2: predicated HS.t) : bool :=
+ if pred_expr_dec pe1 pe2 then true else
+ let (p1, h) := encode_expression 1%positive pe1 (PTree.empty _) in
+ let (p2, h') := encode_expression 1%positive pe2 h in
+ equiv_check p1 p2.
+
+ Lemma mk_pred_stmnt_equiv' :
+ forall l l' e p,
+ mk_pred_stmnt_l l == mk_pred_stmnt_l l' ->
+ In (e, p) l ->
+ list_norepet (map fst l) ->
+ (exists p', In (e, p') l' /\ p == p')
+ \/ ~ In e (map fst l') /\ p == ⟂.
+ Proof. Abort.
+
+ Lemma mk_pred_stmnt_equiv :
+ forall tree tree',
+ mk_pred_stmnt tree == mk_pred_stmnt tree'.
+ Proof. Abort.
+
+ Definition tree_equiv_check_el (np2: PTree.t pred_op) (n: positive) (p: pred_op): bool :=
+ match np2 ! n with
+ | Some p' => equiv_check p p'
+ | None => equiv_check p ⟂
+ end.
+
+ Definition tree_equiv_check_None_el (np2: PTree.t pred_op) (n: positive) (p: pred_op): bool :=
+ match np2 ! n with
+ | Some p' => true
+ | None => equiv_check p ⟂
+ end.
+
+ Definition beq_pred_expr (pe1 pe2: predicated HS.t) : bool :=
+ if pred_expr_dec pe1 pe2 then true else
+ let (np1, h) := norm_expression 1 pe1 (PTree.empty _) in
+ let (np2, h') := norm_expression 1 pe2 h in
+ forall_ptree (tree_equiv_check_el np2) np1
+ && forall_ptree (tree_equiv_check_None_el np1) np2.
+
+ Lemma beq_pred_expr_correct:
+ forall np1 np2 e p p',
+ forall_ptree (tree_equiv_check_el np2) np1 = true ->
+ np1 ! e = Some p ->
+ np2 ! e = Some p' ->
+ p == p'.
+ Proof.
+ intros.
+ eapply forall_ptree_true in H; try eassumption.
+ unfold tree_equiv_check_el in H.
+ rewrite H1 in H. now apply equiv_check_correct.
+ Qed.
+
+ Lemma beq_pred_expr_correct2:
+ forall np1 np2 e p,
+ forall_ptree (tree_equiv_check_el np2) np1 = true ->
+ np1 ! e = Some p ->
+ np2 ! e = None ->
+ p == ⟂.
+ Proof.
+ intros.
+ eapply forall_ptree_true in H; try eassumption.
+ unfold tree_equiv_check_el in H.
+ rewrite H1 in H. now apply equiv_check_correct.
+ Qed.
+
+ Lemma beq_pred_expr_correct3:
+ forall np1 np2 e p,
+ forall_ptree (tree_equiv_check_None_el np1) np2 = true ->
+ np1 ! e = None ->
+ np2 ! e = Some p ->
+ p == ⟂.
+ Proof.
+ intros.
+ eapply forall_ptree_true in H; try eassumption.
+ unfold tree_equiv_check_None_el in H.
+ rewrite H0 in H. now apply equiv_check_correct.
+ Qed.
+
+ Section PRED_PROOFS.
+
+ Context {G B: Type}.
+ Context (f: PTree.t pred_pexpr).
+ Context (ps: PMap.t bool).
+ Context (a_sem: @Abstr.ctx G -> HS.t -> B -> Prop).
+ Context (ctx: @Abstr.ctx G).
+
+ Context (F_EVALULABLE: forall x, sem_pexpr ctx (get_forest_p' x f) ps !! x).
+
+ Variant sem_pred_tree: PTree.t HS.t -> PTree.t pred_op -> B -> Prop :=
+ | sem_pred_tree_intro :
+ forall expr e v et pt pr,
+ sem_pexpr ctx (from_pred_op f pr) true ->
+ a_sem ctx expr v ->
+ pt ! e = Some pr ->
+ et ! e = Some expr ->
+ sem_pred_tree et pt v.
+
+ Lemma norm_expression_in :
+ forall pe et pt h x y,
+ H.wf_hash_table h ->
+ norm_expression 1 pe h = (pt, et) ->
+ h ! x = Some y ->
+ et ! x = Some y.
+ Proof.
+ induction pe; crush; repeat (destruct_match; try discriminate; []).
+ - inv H0. eauto using H.hash_constant.
+ - destruct_match.
+ + inv H0. eapply IHpe.
+ eapply H.wf_hash_table_distr; eauto. eauto.
+ eauto using H.hash_constant.
+ + inv H0. eapply IHpe.
+ eapply H.wf_hash_table_distr; eauto. eauto.
+ eauto using H.hash_constant.
+ Qed.
+
+ Lemma norm_expression_exists :
+ forall pe et pt h x y,
+ H.wf_hash_table h ->
+ norm_expression 1 pe h = (pt, et) ->
+ pt ! x = Some y ->
+ exists z, et ! x = Some z.
+ Proof.
+ induction pe; crush; repeat (destruct_match; try discriminate; []).
+ - inv H0. destruct (peq x h0); subst; inv H1.
+ + eexists. eauto using H.hash_value_in.
+ + rewrite PTree.gso in H2 by auto. now rewrite PTree.gempty in H2.
+ - assert (H.wf_hash_table h1) by eauto using H.wf_hash_table_distr.
+ destruct_match; inv H0.
+ + destruct (peq h0 x); subst; eauto.
+ rewrite PTree.gso in H1 by auto. eauto.
+ + destruct (peq h0 x); subst; eauto.
+ * pose proof Heqp0 as X.
+ eapply H.hash_value_in in Heqp0.
+ eapply norm_expression_in in Heqn; eauto.
+ * rewrite PTree.gso in H1 by auto. eauto.
+ Qed.
+
+ Lemma norm_expression_wf :
+ forall pe et pt h,
+ H.wf_hash_table h ->
+ norm_expression 1 pe h = (pt, et) ->
+ H.wf_hash_table et.
+ Proof.
+ induction pe; crush; repeat (destruct_match; try discriminate; []).
+ - inv H0. eauto using H.wf_hash_table_distr.
+ - destruct_match.
+ + inv H0. eapply IHpe.
+ eapply H.wf_hash_table_distr; eauto. eauto.
+ + inv H0. eapply IHpe.
+ eapply H.wf_hash_table_distr; eauto. eauto.
+ Qed.
+
+ Lemma sem_pred_expr_in_true :
+ forall pe v,
+ sem_pred_expr f a_sem ctx pe v ->
+ exists p e, NE.In (p, e) pe
+ /\ sem_pexpr ctx (from_pred_op f p) true
+ /\ a_sem ctx e v.
+ Proof.
+ induction pe; crush.
+ - inv H. do 2 eexists; split; try split; eauto. constructor.
+ - inv H.
+ + do 2 eexists; split; try split; eauto. constructor; tauto.
+ + exploit IHpe; eauto. simplify.
+ do 2 eexists; split; try split; eauto. constructor; tauto.
+ Qed.
+
+ Definition pred_Ht_dec :
+ forall x y: pred_op * HS.t, {x = y} + {x <> y}.
+ Proof.
+ pose proof HS.eq_dec.
+ pose proof (@Predicate.eq_dec positive peq).
+ decide equality.
+ Defined.
+
+ Lemma sem_pred_mutexcl :
+ forall pe p t v,
+ predicated_mutexcl ((p, t) ::| pe) ->
+ sem_pred_expr f a_sem ctx pe v ->
+ sem_pexpr ctx (from_pred_op f p) false.
+ Proof.
+ intros. unfold predicated_mutexcl in H.
+ exploit sem_pred_expr_in_true; eauto; simplify.
+ unfold "⇒" in *. inv H5.
+ destruct (pred_Ht_dec (x, x0) (p, t)); subst.
+ { inv e; exfalso; apply H7; auto. }
+ assert (NE.In (x, x0) ((p, t) ::| pe)) by (constructor; tauto).
+ assert (NE.In (p, t) ((p, t) ::| pe)) by (constructor; tauto).
+ pose proof (H3 _ _ H H5 n).
+ assert (forall c, eval_predf c x = true -> eval_predf c (¬ p) = true)
+ by eauto.
+ eapply sem_pexpr_eval_inv in H1; eauto.
+ eapply sem_pexpr_eval; eauto. apply H9 in H1.
+ unfold eval_predf in *. rewrite negate_correct in H1.
+ symmetry in H1. apply negb_sym in H1. auto.
+ Qed.
+
+ Lemma exec_tree_exec_pe :
+ forall pe et pt v h
+ (MUTEXCL: predicated_mutexcl pe),
+ H.wf_hash_table h ->
+ norm_expression 1 pe h = (pt, et) ->
+ sem_pred_tree et pt v ->
+ sem_pred_expr f a_sem ctx pe v.
+ Proof.
+ induction pe; simplify; repeat (destruct_match; try discriminate; []).
+ - inv Heqp. inv H0. inv H1.
+ destruct (peq e h0); subst.
+ 2: { rewrite PTree.gso in H3 by auto.
+ rewrite PTree.gempty in H3. discriminate. }
+ assert (expr = t).
+ { apply H.hash_value_in in Heqp0. rewrite H4 in Heqp0. now inv Heqp0. }
+ subst. constructor; auto. rewrite PTree.gss in H3. inv H3; auto.
+ - inv Heqp. inv H1. destruct_match; inv H0; destruct (peq h0 e); subst.
+ + rewrite PTree.gss in H4. inv H4. inv H2. inv H1.
+ * exploit IHpe. eauto using predicated_cons.
+ eapply H.wf_hash_table_distr; eauto. eauto.
+ econstructor. eauto. eauto. eauto. eauto. intros.
+ assert (sem_pexpr ctx (from_pred_op f p) false)
+ by (eapply sem_pred_mutexcl; eauto).
+ eapply sem_pred_expr_cons_false; auto.
+ * assert (et ! e = Some t).
+ { eapply norm_expression_in. eapply H.wf_hash_table_distr; eauto.
+ eauto. apply H.hash_value_in in Heqp0. auto. }
+ rewrite H1 in H5. inv H5.
+ constructor; auto.
+ + exploit IHpe. eauto using predicated_cons.
+ eapply H.wf_hash_table_distr; eauto. eauto.
+ econstructor. eauto. eauto. rewrite PTree.gso in H4; eauto. auto.
+ intros.
+ assert (sem_pexpr ctx (from_pred_op f p) false)
+ by (eapply sem_pred_mutexcl; eauto).
+ eapply sem_pred_expr_cons_false; auto.
+ + rewrite PTree.gss in H4. inv H4.
+ econstructor; auto.
+ assert (et ! e = Some t).
+ { eapply norm_expression_in. eapply H.wf_hash_table_distr; eauto.
+ eauto. apply H.hash_value_in in Heqp0. auto. }
+ rewrite H0 in H5; inv H5. auto.
+ + rewrite PTree.gso in H4 by auto.
+ exploit IHpe. eauto using predicated_cons.
+ eapply H.wf_hash_table_distr; eauto. eauto.
+ econstructor. eauto. eauto. eauto. eauto. intros.
+ assert (sem_pexpr ctx (from_pred_op f p) false)
+ by (eapply sem_pred_mutexcl; eauto).
+ eapply sem_pred_expr_cons_false; auto.
+ Qed.
+
+ Lemma exec_pe_exec_tree :
+ forall pe et pt v h
+ (MUTEXCL: predicated_mutexcl pe),
+ H.wf_hash_table h ->
+ norm_expression 1 pe h = (pt, et) ->
+ sem_pred_expr f a_sem ctx pe v ->
+ sem_pred_tree et pt v.
+ Proof.
+ induction pe; simplify; repeat (destruct_match; try discriminate; []).
+ - inv H0. inv H1. econstructor; eauto. apply PTree.gss.
+ eapply H.hash_value_in; eauto.
+ - inv H1.
+ + destruct_match.
+ * inv H0. econstructor.
+ 2: { eauto. }
+ 2: { apply PTree.gss. }
+ constructor; tauto.
+ eapply norm_expression_in. eapply H.wf_hash_table_distr; eauto.
+ eauto. eapply H.hash_value_in; eauto.
+ * inv H0. econstructor. eauto. eauto. apply PTree.gss.
+ eapply norm_expression_in. eapply H.wf_hash_table_distr; eauto.
+ eauto. eapply H.hash_value_in; eauto.
+ + destruct_match.
+ * inv H0. exploit IHpe.
+ eauto using predicated_cons.
+ eapply H.wf_hash_table_distr; eauto.
+ eauto. eauto. intros. inv H0.
+ destruct (peq e h0); subst.
+ -- rewrite H3 in Heqo. inv Heqo.
+ econstructor.
+ 3: { apply PTree.gss. }
+ constructor; tauto. eauto. auto.
+ -- econstructor. eauto. eauto. rewrite PTree.gso by eauto. auto.
+ auto.
+ * inv H0. exploit IHpe.
+ eauto using predicated_cons.
+ eapply H.wf_hash_table_distr; eauto.
+ eauto. eauto. intros. inv H0.
+ destruct (peq e h0); subst.
+ -- rewrite H3 in Heqo; discriminate.
+ -- econstructor; eauto. rewrite PTree.gso by auto. auto.
+ Qed.
+
+ Lemma beq_pred_expr_correct_top:
+ forall p1 p2 v
+ (MUTEXCL1: predicated_mutexcl p1)
+ (MUTEXCL2: predicated_mutexcl p2),
+ beq_pred_expr p1 p2 = true ->
+ sem_pred_expr f a_sem ctx p1 v ->
+ sem_pred_expr f a_sem ctx p2 v.
+ Proof.
+ unfold beq_pred_expr; intros.
+ destruct_match; subst; auto.
+ repeat (destruct_match; []).
+ symmetry in H. apply andb_true_eq in H. inv H.
+ symmetry in H1. symmetry in H2.
+ pose proof Heqn0. eapply norm_expression_wf in H.
+ 2: { unfold H.wf_hash_table; intros. now rewrite PTree.gempty in H3. }
+ eapply exec_tree_exec_pe; eauto.
+ eapply exec_pe_exec_tree in H0; auto.
+ 3: { eauto. }
+ 2: { unfold H.wf_hash_table; intros. now rewrite PTree.gempty in H3. }
+ inv H0. destruct (t0 ! e) eqn:?.
+ - assert (pr == p) by eauto using beq_pred_expr_correct.
+ assert (sem_pexpr ctx (from_pred_op f p) true).
+ { eapply sem_pexpr_eval; eauto. eapply sem_pexpr_eval_inv in H3; eauto. }
+ econstructor. apply H7. eauto. eauto.
+ eapply norm_expression_in; eauto.
+ - assert (pr == ⟂) by eauto using beq_pred_expr_correct2.
+ eapply sem_pexpr_eval_inv in H3; eauto. now rewrite H0 in H3.
+ Qed.
+
+ Lemma beq_pred_expr_correct_top2:
+ forall p1 p2 v
+ (MUTEXCL1: predicated_mutexcl p1)
+ (MUTEXCL2: predicated_mutexcl p2),
+ beq_pred_expr p1 p2 = true ->
+ sem_pred_expr f a_sem ctx p2 v ->
+ sem_pred_expr f a_sem ctx p1 v.
+ Proof.
+ unfold beq_pred_expr; intros.
+ destruct_match; subst; auto.
+ repeat (destruct_match; []).
+ symmetry in H. apply andb_true_eq in H. inv H.
+ symmetry in H1. symmetry in H2.
+ pose proof Heqn0. eapply norm_expression_wf in H.
+ 2: { unfold H.wf_hash_table; intros. now rewrite PTree.gempty in H3. }
+ eapply exec_tree_exec_pe; auto.
+ 2: { eauto. }
+ unfold H.wf_hash_table; intros. now rewrite PTree.gempty in H3.
+ eapply exec_pe_exec_tree in H0; auto.
+ 3: { eauto. }
+ 2: { auto. }
+ inv H0. destruct (t ! e) eqn:?.
+ - assert (p == pr) by eauto using beq_pred_expr_correct.
+ assert (sem_pexpr ctx (from_pred_op f p) true).
+ { eapply sem_pexpr_eval; eauto. eapply sem_pexpr_eval_inv in H3; eauto. }
+ econstructor. apply H7. eauto. eauto.
+ exploit norm_expression_exists.
+ 2: { eapply Heqn0. } unfold H.wf_hash_table; intros * YH.
+ now rewrite PTree.gempty in YH. eauto. simplify.
+ exploit norm_expression_in. 2: { eauto. } auto. eauto. intros.
+ crush.
+ - assert (pr == ⟂) by eauto using beq_pred_expr_correct3.
+ eapply sem_pexpr_eval_inv in H3; eauto. now rewrite H0 in H3.
+ Qed.
+
+ End PRED_PROOFS.
+
+End HashExprNorm.
+
+Module HN := HashExprNorm(HashExpr).
+Module EHN := HashExprNorm(EHashExpr).
+
+Definition check_mutexcl {A} (pe: predicated A) :=
+ let preds := map fst (NE.to_list pe) in
+ let pairs := map (fun x => x → or_list (remove (Predicate.eq_dec peq) x preds)) preds in
+ match sat_pred_simple (simplify (negate (and_list pairs))) with
+ | None => true
+ | _ => false
+ end.
+
+Lemma check_mutexcl_correct:
+ forall A (pe: predicated A),
+ check_mutexcl pe = true ->
+ predicated_mutexcl pe.
+Proof. Admitted.
+
+Definition check_mutexcl_tree {A} (f: PTree.t (predicated A)) :=
+ forall_ptree (fun _ => check_mutexcl) f.
+
+Lemma check_mutexcl_tree_correct:
+ forall A (f: PTree.t (predicated A)) i pe,
+ check_mutexcl_tree f = true ->
+ f ! i = Some pe ->
+ predicated_mutexcl pe.
+Proof.
+ unfold check_mutexcl_tree; intros.
+ eapply forall_ptree_true in H; eauto using check_mutexcl_correct.
+Qed.
+
+Definition check f1 f2 :=
+ RTree.beq HN.beq_pred_expr f1.(forest_regs) f2.(forest_regs)
+ && PTree.beq beq_pred_pexpr f1.(forest_preds) f2.(forest_preds)
+ && EHN.beq_pred_expr f1.(forest_exit) f2.(forest_exit)
+ && check_mutexcl_tree f1.(forest_regs)
+ && check_mutexcl_tree f2.(forest_regs)
+ && check_mutexcl f1.(forest_exit)
+ && check_mutexcl f2.(forest_exit).
+
+Lemma sem_pexpr_forward_eval1 :
+ forall A ctx f_p ps,
+ (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
+ forall p,
+ @sem_pexpr A ctx (from_pred_op f_p p) false ->
+ eval_predf ps p = false.
+Proof.
+ induction p; crush.
+ - destruct_match. inv Heqp0. destruct b.
+ cbn. specialize (H p0).
+ eapply sem_pexpr_det; eauto. apply similar_refl.
+ specialize (H p0).
+ replace false with (negb true) in H0 by auto.
+ eapply sem_pexpr_negate2 in H0. cbn.
+ symmetry; apply negb_sym. cbn.
+ eapply sem_pexpr_det; eauto. apply similar_refl.
+ - inv H0.
+ - inv H0. inv H2. rewrite eval_predf_Pand. rewrite IHp1; eauto.
+ rewrite eval_predf_Pand. rewrite IHp2; eauto with bool.
+ - inv H0. rewrite eval_predf_Por. rewrite IHp1; eauto.
+Qed.
+
+Lemma sem_pexpr_forward_eval2 :
+ forall A ctx f_p ps,
+ (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
+ forall p,
+ @sem_pexpr A ctx (from_pred_op f_p p) true ->
+ eval_predf ps p = true.
+Proof.
+ induction p; crush.
+ - destruct_match. inv Heqp0. destruct b.
+ cbn. specialize (H p0).
+ eapply sem_pexpr_det; eauto. apply similar_refl.
+ cbn. symmetry. apply negb_sym; cbn.
+ replace true with (negb false) in H0 by auto.
+ eapply sem_pexpr_negate2 in H0.
+ eapply sem_pexpr_det; eauto. apply similar_refl.
+ - inv H0.
+ - inv H0. rewrite eval_predf_Pand. rewrite IHp1; eauto.
+ - inv H0. inv H2. rewrite eval_predf_Por. rewrite IHp1; eauto.
+ rewrite eval_predf_Por. rewrite IHp2; eauto with bool.
+Qed.
+
+Lemma sem_pexpr_forward_eval :
+ forall A ctx f_p ps,
+ (forall x, sem_pexpr ctx (get_forest_p' x f_p) ps !! x) ->
+ forall p b,
+ @sem_pexpr A ctx (from_pred_op f_p p) b ->
+ eval_predf ps p = b.
+Proof.
+ intros; destruct b; eauto using sem_pexpr_forward_eval1, sem_pexpr_forward_eval2.
+Qed.
+
+Section BOOLEAN_EQUALITY.
+
+ Context {A B: Type}.
+ Context (beqA: A -> B -> bool).
+
+ Fixpoint beq2' (m1: PTree.tree' A) (m2: PTree.tree' B) {struct m1} : bool :=
+ match m1, m2 with
+ | PTree.Node001 r1, PTree.Node001 r2 => beq2' r1 r2
+ | PTree.Node010 x1, PTree.Node010 x2 => beqA x1 x2
+ | PTree.Node011 x1 r1, PTree.Node011 x2 r2 => beqA x1 x2 && beq2' r1 r2
+ | PTree.Node100 l1, PTree.Node100 l2 => beq2' l1 l2
+ | PTree.Node101 l1 r1, PTree.Node101 l2 r2 => beq2' l1 l2 && beq2' r1 r2
+ | PTree.Node110 l1 x1, PTree.Node110 l2 x2 => beqA x1 x2 && beq2' l1 l2
+ | PTree.Node111 l1 x1 r1, PTree.Node111 l2 x2 r2 => beqA x1 x2 && beq2' l1 l2 && beq2' r1 r2
+ | _, _ => false
+ end.
+
+ Definition beq2 (m1: PTree.t A) (m2 : PTree.t B) : bool :=
+ match m1, m2 with
+ | PTree.Empty, PTree.Empty => true
+ | PTree.Nodes m1', PTree.Nodes m2' => beq2' m1' m2'
+ | _, _ => false
+ end.
+
+ Let beq2_optA (o1: option A) (o2: option B) : bool :=
+ match o1, o2 with
+ | None, None => true
+ | Some a1, Some a2 => beqA a1 a2
+ | _, _ => false
+ end.
+
+ Lemma beq_correct_bool:
+ forall m1 m2,
+ beq2 m1 m2 = true <-> (forall x, beq2_optA (m1 ! x) (m2 ! x) = true).
+ Proof.
+ Local Transparent PTree.Node.
+ assert (beq_NN: forall l1 o1 r1 l2 o2 r2,
+ PTree.not_trivially_empty l1 o1 r1 ->
+ PTree.not_trivially_empty l2 o2 r2 ->
+ beq2 (PTree.Node l1 o1 r1) (PTree.Node l2 o2 r2) =
+ beq2 l1 l2 && beq2_optA o1 o2 && beq2 r1 r2).
+ { intros.
+ destruct l1, o1, r1; try contradiction; destruct l2, o2, r2; try contradiction;
+ simpl; rewrite ? andb_true_r, ? andb_false_r; auto.
+ rewrite andb_comm; auto.
+ f_equal; rewrite andb_comm; auto. }
+ induction m1 using PTree.tree_ind; [|induction m2 using PTree.tree_ind].
+ - intros. simpl; split; intros.
+ + destruct m2; try discriminate. simpl; auto.
+ + replace m2 with (@PTree.Empty B); auto. apply PTree.extensionality; intros x.
+ specialize (H x). destruct (m2 ! x); simpl; easy.
+ - split; intros.
+ + destruct (PTree.Node l o r); try discriminate. simpl; auto.
+ + replace (PTree.Node l o r) with (@PTree.Empty A); auto. apply PTree.extensionality; intros x.
+ specialize (H0 x). destruct ((PTree.Node l o r) ! x); simpl in *; easy.
+ - rewrite beq_NN by auto. split; intros.
+ + InvBooleans. rewrite ! PTree.gNode. destruct x.
+ * apply IHm0; auto.
+ * apply IHm1; auto.
+ * auto.
+ + apply andb_true_intro; split; [apply andb_true_intro; split|].
+ * apply IHm1. intros. specialize (H1 (xO x)); rewrite ! PTree.gNode in H1; auto.
+ * specialize (H1 xH); rewrite ! PTree.gNode in H1; auto.
+ * apply IHm0. intros. specialize (H1 (xI x)); rewrite ! PTree.gNode in H1; auto.
+ Qed.
+
+ Theorem beq2_correct:
+ forall m1 m2,
+ beq2 m1 m2 = true <->
+ (forall (x: PTree.elt),
+ match m1 ! x, m2 ! x with
+ | None, None => True
+ | Some y1, Some y2 => beqA y1 y2 = true
+ | _, _ => False
+ end).
+ Proof.
+ intros. rewrite beq_correct_bool. unfold beq2_optA. split; intros.
+ - specialize (H x). destruct (m1 ! x), (m2 ! x); intuition congruence.
+ - specialize (H x). destruct (m1 ! x), (m2 ! x); intuition auto.
+ Qed.
+
+End BOOLEAN_EQUALITY.
+
+Section GENERIC_CONTEXT.
+
+Context {A: Type}.
+Context (ctx: @ctx A).
+
+(*|
+Suitably restrict the predicate set so that one can evaluate a hashed predicate
+using that predicate set. However, one issue might be that we do not know that
+all the atoms of the original formula are actually evaluable.
+|*)
+
+Definition match_pred_states
+ (ht: PHT.hash_tree) (p_out: pred_op) (pred_set: predset) :=
+ forall (p: positive) (br: bool) (p_in: pred_expression),
+ PredIn p p_out ->
+ ht ! p = Some p_in ->
+ sem_pred ctx p_in (pred_set !! p).
+
+Lemma eval_hash_predicate :
+ forall max p_in ht p_out ht' br pred_set,
+ hash_predicate max p_in ht = (p_out, ht') ->
+ sem_pexpr ctx p_in br ->
+ match_pred_states ht' p_out pred_set ->
+ eval_predf pred_set p_out = br.
+Proof.
+ induction p_in; simplify.
+ + repeat destruct_match. inv H.
+ unfold eval_predf. cbn.
+ inv H0. inv H4. unfold match_pred_states in H1.
+ specialize (H1 h br).
+Abort.
+
+Lemma sem_pexpr_beq_correct :
+ forall p1 p2 b,
+ beq_pred_pexpr p1 p2 = true ->
+ sem_pexpr ctx p1 b ->
+ sem_pexpr ctx p2 b.
+Proof.
+ unfold beq_pred_pexpr.
+ induction p1; intros; destruct_match; crush.
+ Admitted.
+
+(*|
+This should only require a proof of sem_pexpr_beq_correct, the rest is
+straightforward.
+|*)
+
+Lemma pred_pexpr_beq_pred_pexpr :
+ forall pr a b br,
+ PTree.beq beq_pred_pexpr a b = true ->
+ sem_pexpr ctx (from_pred_op a pr) br ->
+ sem_pexpr ctx (from_pred_op b pr) br.
+Proof.
+ induction pr; crush.
+ - destruct_match. inv Heqp0. destruct b0.
+ + unfold get_forest_p' in *.
+ apply PTree.beq_correct with (x := p0) in H.
+ destruct a ! p0; destruct b ! p0; try (exfalso; assumption); auto.
+ eapply sem_pexpr_beq_correct; eauto.
+ + replace br with (negb (negb br)) by (now apply negb_involutive).
+ replace br with (negb (negb br)) in H0 by (now apply negb_involutive).
+ apply sem_pexpr_negate. apply sem_pexpr_negate2 in H0.
+ unfold get_forest_p' in *.
+ apply PTree.beq_correct with (x := p0) in H.
+ destruct a ! p0; destruct b ! p0; try (exfalso; assumption); auto.
+ eapply sem_pexpr_beq_correct; eauto.
+ - inv H0; try inv H4.
+ + eapply IHpr1 in H0; eauto. apply sem_pexpr_Pand_false; tauto.
+ + eapply IHpr2 in H0; eauto. apply sem_pexpr_Pand_false; tauto.
+ + eapply IHpr1 in H3; eauto. eapply IHpr2 in H5; eauto.
+ apply sem_pexpr_Pand_true; auto.
+ - inv H0; try inv H4.
+ + eapply IHpr1 in H0; eauto. apply sem_pexpr_Por_true; tauto.
+ + eapply IHpr2 in H0; eauto. apply sem_pexpr_Por_true; tauto.
+ + eapply IHpr1 in H3; eauto. eapply IHpr2 in H5; eauto.
+ apply sem_pexpr_Por_false; auto.
+Qed.
+
+(*|
+This lemma requires a theorem that equivalence of symbolic predicates means they
+will be. This further needs three-valued logic to be able to compare arbitrary
+predicates with each other, that will also show that the predicate will also be
+computable.
+|*)
+
+Lemma sem_pred_exec_beq_correct :
+ forall A B (sem: Abstr.ctx -> A -> B -> Prop) p a b r,
+ PTree.beq beq_pred_pexpr a b = true ->
+ sem_pred_expr a sem ctx p r ->
+ sem_pred_expr b sem ctx p r.
+Proof.
+ induction p; intros; inv H0.
+ - constructor; auto. eapply pred_pexpr_beq_pred_pexpr; eauto.
+ - constructor; auto. eapply pred_pexpr_beq_pred_pexpr; eauto.
+ - apply sem_pred_expr_cons_false; eauto.
+ eapply pred_pexpr_beq_pred_pexpr; eauto.
+Qed.
+
+End GENERIC_CONTEXT.
+
+Lemma tree_beq_pred_pexpr :
+ forall a b x,
+ RTree.beq beq_pred_pexpr (forest_preds a) (forest_preds b) = true ->
+ beq_pred_pexpr a #p x b #p x = true.
+Proof.
+ intros. unfold "#p". unfold get_forest_p'.
+ apply PTree.beq_correct with (x := x) in H.
+ destruct_match; destruct_match; auto.
+ unfold beq_pred_pexpr. destruct_match; auto.
+Qed.
+
+Lemma tree_beq_pred_expr :
+ forall a b x,
+ RTree.beq HN.beq_pred_expr (forest_regs a) (forest_regs b) = true ->
+ HN.beq_pred_expr a #r x b #r x = true.
+Proof.
+ intros. unfold "#r" in *.
+ apply PTree.beq_correct with (x := (R_indexed.index x)) in H.
+ unfold RTree.get in *.
+ unfold pred_expr in *.
+ destruct_match; destruct_match; auto.
+ unfold HN.beq_pred_expr. destruct_match; auto.
+Qed.
+
+Section CORRECT.
+
+Context {FUN TFUN: Type}.
+Context (ictx: @ctx FUN) (octx: @ctx TFUN) (HSIM: similar ictx octx).
+
+Lemma abstr_check_correct :
+ forall i' a b cf,
+ (exists ps, forall x, sem_pexpr ictx (get_forest_p' x (forest_preds a)) ps !! x) ->
+ check a b = true ->
+ sem ictx a (i', cf) ->
+ exists ti', sem octx b (ti', cf) /\ match_states i' ti'.
+Proof.
+ intros * EVALUABLE **. unfold check in H. simplify.
+ inv H0. inv H10. inv H11.
+ eexists; split; constructor; auto.
+ - constructor. intros.
+ eapply sem_pred_exec_beq_correct; eauto.
+ eapply sem_pred_expr_corr; eauto. now apply sem_value_corr.
+ eapply HN.beq_pred_expr_correct_top; eauto.
+ { unfold "#r"; destruct_match; eauto using check_mutexcl_tree_correct, predicated_singleton. }
+ { unfold "#r"; destruct_match; eauto using check_mutexcl_tree_correct, predicated_singleton. }
+ eapply tree_beq_pred_expr; eauto.
+ - (* This is where three-valued logic would be needed. *)
+ constructor. intros. apply sem_pexpr_beq_correct with (p1 := a #p x0).
+ apply tree_beq_pred_pexpr; auto.
+ apply sem_pexpr_corr with (ictx:=ictx); auto.
+ - eapply sem_pred_exec_beq_correct; eauto.
+ eapply sem_pred_expr_corr; eauto. now apply sem_mem_corr.
+ eapply HN.beq_pred_expr_correct_top; eauto.
+ { unfold "#r"; destruct_match; eauto using check_mutexcl_tree_correct, predicated_singleton. }
+ { unfold "#r"; destruct_match; eauto using check_mutexcl_tree_correct, predicated_singleton. }
+ eapply tree_beq_pred_expr; eauto.
+ - eapply sem_pred_exec_beq_correct; eauto.
+ eapply sem_pred_expr_corr; eauto. now apply sem_exit_corr.
+ eapply EHN.beq_pred_expr_correct_top; eauto using check_mutexcl_correct.
+Qed.
+
+(*|
+Proof Sketch:
+
+Two abstract states can be equivalent, without it being obvious that they can
+actually both be executed assuming one can be executed. One will therefore have
+to add a few more assumptions to makes it possible to execute the other.
+
+It currently assumes that all the predicates in the predicate tree are
+evaluable, which is actually something that can either be checked, or something
+that can be proven constructively. I believe that it should already be possible
+using the latter, so here it will only be assumed.
+
+Similarly, the current assumption is that mutual exclusivity of predicates is
+being checked within the ``check`` function, which could possibly also be proven
+constructively about the update function. This is a simpler short-term fix
+though.
+|*)
+
+End CORRECT.