aboutsummaryrefslogtreecommitdiffstats
path: root/src
diff options
context:
space:
mode:
authorYann Herklotz <git@yannherklotz.com>2020-03-29 16:39:17 +0100
committerYann Herklotz <git@yannherklotz.com>2020-03-29 16:39:17 +0100
commitc3106c7a61ecb79c1f1be0922aef32dffc92cc41 (patch)
tree8f99cf24a9f94fc7315399fdc353a866c5ea7e5f /src
parent0d5113c826bde8002d40dd896c97afb86a0b66f0 (diff)
downloadvericert-c3106c7a61ecb79c1f1be0922aef32dffc92cc41.tar.gz
vericert-c3106c7a61ecb79c1f1be0922aef32dffc92cc41.zip
Update AST and value representations
Diffstat (limited to 'src')
-rw-r--r--src/verilog/Verilog.v255
1 files changed, 42 insertions, 213 deletions
diff --git a/src/verilog/Verilog.v b/src/verilog/Verilog.v
index 88c8ac4..deb658d 100644
--- a/src/verilog/Verilog.v
+++ b/src/verilog/Verilog.v
@@ -1,4 +1,4 @@
-(*
+(*
* CoqUp: Verified high-level synthesis.
* Copyright (C) 2019-2020 Yann Herklotz <yann@yannherklotz.com>
*
@@ -17,70 +17,52 @@
*)
From Coq Require Import
-Structures.OrderedTypeEx
-FSets.FMapList
-Program.Basics
-PeanoNat.
+ Structures.OrderedTypeEx
+ FSets.FMapPositive
+ Program.Basics
+ PeanoNat
+ ZArith.
-From compcert.backend Require Registers.
+From bbv Require Word.
From coqup.common Require Import Helper Coquplib Show.
Import ListNotations.
-Module Map := FMapList.Make String_as_OT.
+Definition reg : Type := positive.
-Inductive value : Type :=
-| VBool (b : bool)
-| VArray (l : list value).
+Record value : Type := mkvalue {
+ vsize : nat;
+ vword : Word.word vsize
+}.
-Inductive literal : Type := LitArray (l : list bool).
+Definition posToValue (p : positive) : value :=
+ let size := Z.to_nat (log_sup p) in
+ mkvalue size (Word.posToWord size p).
-Definition cons_value (a b : value) : value :=
- match a, b with
- | VBool _, VArray b' => VArray (a :: b')
- | VArray a', VBool _ => VArray (List.concat [a'; [b]])
- | VArray a', VArray b' => VArray (List.concat [a'; b'])
- | _, _ => VArray [a; b]
- end.
-
-(** * Conversion to and from value *)
-
-Fixpoint nat_to_value' (sz n : nat) : value :=
- match sz with
- | 0%nat => VArray []
- | S sz' =>
- if Nat.even n then
- cons_value (VBool false) (nat_to_value' sz' (Nat.div n 2))
- else
- cons_value (VBool true) (nat_to_value' sz' (Nat.div n 2))
- end.
-
-Definition nat_to_value (n : nat) : value :=
- nat_to_value' ((Nat.log2 n) + 1) n.
-
-Definition state : Type := Map.t value * Map.t value.
+Definition state : Type := PositiveMap.t value * PositiveMap.t value.
Inductive binop : Type :=
-| Plus
-| Minus
-| Times
-| Divide
-| LT
-| GT
-| LE
-| GE
-| Eq
-| And
-| Or
-| Xor.
-
-Inductive expr : Type :=
-| Lit (n : value)
-| Var (s : Registers.reg)
-| Neg (a : expr)
-| BinOp (op : binop) (a1 a2 : expr)
-| Ternary (c t f : expr).
+| Vconst (v : value)
+| Vmove
+| Vneg
+| Vadd
+| Vsub
+| Vmul
+| Vmulimm (v : value)
+| Vdiv
+| Vdivimm (v : value)
+| Vmod
+| Vlt
+| Vgt
+| Vle
+| Vge
+| Veq
+| Vand
+| Vor
+| Vxor.
+
+Inductive expr : Type := Op (op : binop) (v : list expr).
Inductive stmnt : Type :=
| Skip
@@ -88,166 +70,13 @@ Inductive stmnt : Type :=
| Cond (c : expr) (st sf : stmnt)
| Case (c : expr) (b : list (expr * stmnt))
| Blocking (a b : expr)
-| Nonblocking (a b : expr).
+| Nonblocking (a b : expr)
+| Decl (v : reg) (s : nat) (b : expr).
-Inductive verilog : Type := Verilog (s : list stmnt).
+Definition posToLit (p : positive) : expr :=
+ Lit (posToValue p).
-Definition verilog_example := Verilog [Block [Nonblocking (Var 2%positive) (BinOp Plus (Lit (nat_to_value 40)) (Lit (nat_to_value 20))); Cond (BinOp LE (Lit (nat_to_value 2)) (Lit (nat_to_value 3))) (Blocking (Var 2%positive) (BinOp Times (Lit (nat_to_value 20)) (Lit (nat_to_value 500)))) Skip]; Block []].
+Definition verilog : Type := list stmnt.
-Coercion VBool : bool >-> value.
Coercion Lit : value >-> expr.
-Coercion Var : Registers.reg >-> expr.
-
-Definition value_is_bool (v : value) : bool :=
- match v with
- | VBool _ => true
- | VArray _ => false
- end.
-
-Definition value_is_array : value -> bool := compose negb value_is_bool.
-
-Definition flat_value (v : value) : bool :=
- match v with
- | VBool _ => true
- | VArray l => forallb value_is_bool l
- end.
-
-Inductive value_is_boolP : value -> Prop :=
-| ValIsBool : forall b : bool, value_is_boolP (VBool b).
-
-Inductive value_is_arrayP : value -> Prop :=
-| ValIsArray : forall v : list value, value_is_arrayP (VArray v).
-
-Inductive flat_valueP : value -> Prop :=
-| FLV0 : forall b : bool, flat_valueP (VBool b)
-| FLVA : forall l : list value,
- Forall (value_is_boolP) l -> flat_valueP (VArray l).
-
-Lemma value_is_bool_equiv :
- forall v, value_is_boolP v <-> value_is_bool v = true.
-Proof.
- split; intros.
- - inversion H. trivial.
- - destruct v. constructor. unfold value_is_bool in H. discriminate.
-Qed.
-
-Lemma value_is_array_equiv :
- forall v, value_is_arrayP v <-> value_is_array v = true.
-Proof.
- split; intros.
- - inversion H. trivial.
- - destruct v; try constructor. unfold value_is_array in H.
- unfold compose, value_is_bool, negb in H. discriminate.
-Qed.
-
-Lemma flat_value_equiv :
- forall v, flat_valueP v <-> flat_value v = true.
-Proof.
- split; intros.
- - unfold flat_value. inversion H. subst. trivial.
- + rewrite Forall_forall in H0. rewrite forallb_forall. intros. subst.
- apply value_is_bool_equiv. apply H0. assumption.
- - destruct v. constructor. constructor. unfold flat_value in H.
- rewrite Forall_forall. rewrite forallb_forall in H. intros. apply value_is_bool_equiv.
- apply H. assumption.
-Qed.
-
-Fixpoint value_to_nat' (i : nat) (v : value) : option nat :=
- match i, v with
- | _, VBool b => Some (Nat.b2n b)
- | _, VArray [VBool b] => Some (Nat.b2n b)
- | S i', VArray ((VBool b) :: l) =>
- Option.map (compose (Nat.add (Nat.b2n b)) (Mult.tail_mult 2)) (value_to_nat' i' (VArray l))
- | _, _ => None
- end.
-
-Definition value_length (v : value) : nat :=
- match v with
- | VBool _ => 1
- | VArray l => Datatypes.length l
- end.
-
-Definition value_to_nat (v : value) : option nat :=
- value_to_nat' (value_length v) v.
-
-Lemma empty_is_flat : flat_valueP (VArray []).
-Proof.
- constructor. apply Forall_forall. intros. inversion H.
-Qed.
-
-Lemma check_5_is_101 :
- value_to_nat (VArray [VBool true; VBool false; VBool true]) = Some 5%nat.
-Proof. reflexivity. Qed.
-
-Lemma cons_value_flat :
- forall (b : bool) (v : value),
- flat_valueP v -> flat_valueP (cons_value (VBool b) v).
-Proof.
- intros. unfold cons_value. destruct v.
- - constructor. apply Forall_forall. intros.
- inversion H0; subst. constructor.
- inversion H1; subst. constructor.
- inversion H2.
- - intros. inversion H. inversion H1; subst; constructor.
- + apply Forall_forall. intros.
- inversion H0; subst. constructor.
- inversion H2.
- + repeat constructor. assumption. assumption.
-Qed.
-
-Lemma nat_to_value'_is_flat :
- forall (sz n : nat),
- flat_valueP (nat_to_value' sz n).
-Proof.
- induction sz; intros.
- - subst. apply empty_is_flat.
- - unfold_rec nat_to_value'.
- destruct (Nat.even n); apply cons_value_flat; apply IHsz.
-Qed.
-
-Lemma nat_to_value_is_flat :
- forall (sz n : nat),
- flat_valueP (nat_to_value n).
-Proof.
- intros. unfold nat_to_value. apply nat_to_value'_is_flat.
-Qed.
-
-Lemma nat_to_value_idempotent :
- forall (sz n : nat),
- (sz > 0)%nat -> (value_to_nat' sz (nat_to_value' sz n)) = Some n.
-Proof.
- induction sz; intros.
- - inversion H.
- - unfold_rec value_to_nat'.
- assert (flat_valueP (nat_to_value' (S sz) n)).
- { apply nat_to_value'_is_flat. }
- destruct (nat_to_value' (S sz) n) eqn:?.
-Admitted.
-
-Module VerilogEval.
-
- Definition app (f : nat -> nat -> nat) (a : value) (b : value) : option value :=
- Option.map nat_to_value (Option.liftA2 f (value_to_nat a) (value_to_nat b)).
-
- Definition state_find (k : string) (s : state) : option value :=
- Map.find k (fst s).
-
- Definition eval_binop (op : binop) (a1 a2 : value) : option value :=
- match op with
- | Plus => app Nat.add a1 a2
- | Minus => app Nat.sub a1 a2
- | Times => app Mult.tail_mult a1 a2
- | Divide => app Nat.div a1 a2
- | _ => Some a1
- end.
-
-(* Fixpoint eval_expr (s : state) (e : expr) : option value :=
- match e with
- | Lit n => Some n
- | Var v => state_find v s
- | Neg a => 0 - (eval_expr s a)
- | BinOp op a1 a2 => eval_binop op a1 a2
- | Ternary c t f => if eval_expr s c then eval_expr s t else eval_expr s f
- end.
- *)
-End VerilogEval.
+Coercion Var : reg >-> expr.