aboutsummaryrefslogtreecommitdiffstats
path: root/docs/scheduler-languages.org
diff options
context:
space:
mode:
Diffstat (limited to 'docs/scheduler-languages.org')
-rw-r--r--docs/scheduler-languages.org682
1 files changed, 0 insertions, 682 deletions
diff --git a/docs/scheduler-languages.org b/docs/scheduler-languages.org
deleted file mode 100644
index 02249f8..0000000
--- a/docs/scheduler-languages.org
+++ /dev/null
@@ -1,682 +0,0 @@
-#+title: Scheduler Languages
-#+author: Yann Herklotz
-#+email: yann [at] yannherklotz [dot] com
-
-* RTLBlockInstr
-:PROPERTIES:
-:header-args:coq: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/RTLBlockInstr.v
-:END:
-
-#+begin_src coq :comments no :padline no :exports none
-<<license>>
-#+end_src
-
-#+name: rtlblockinstr-imports
-#+begin_src coq
-Require Import Coq.micromega.Lia.
-
-Require Import compcert.backend.Registers.
-Require Import compcert.common.AST.
-Require Import compcert.common.Events.
-Require Import compcert.common.Globalenvs.
-Require Import compcert.common.Memory.
-Require Import compcert.common.Values.
-Require Import compcert.lib.Integers.
-Require Import compcert.lib.Maps.
-Require Import compcert.verilog.Op.
-
-Require Import Predicate.
-Require Import Vericertlib.
-#+end_src
-
-These instructions are used for ~RTLBlock~ and ~RTLPar~, so that they have consistent instructions,
-which greatly simplifies the proofs, as they will by default have the same instruction syntax and
-semantics. The only changes are therefore at the top-level of the instructions.
-
-** Instruction Definition
-
-First, we define the instructions that can be placed into a basic block, meaning they won't branch.
-The main changes to how instructions are defined in [RTL], is that these instructions don't have a
-next node, as they will be in a basic block, and they also have an optional predicate ([pred_op]).
-
-#+name: rtlblockinstr-instr-def
-#+begin_src coq
-Definition node := positive.
-
-Inductive instr : Type :=
-| RBnop : instr
-| RBop : option pred_op -> operation -> list reg -> reg -> instr
-| RBload : option pred_op -> memory_chunk -> addressing -> list reg -> reg -> instr
-| RBstore : option pred_op -> memory_chunk -> addressing -> list reg -> reg -> instr
-| RBsetpred : option pred_op -> condition -> list reg -> predicate -> instr.
-#+end_src
-
-** Control-Flow Instruction Definition
-
-These are the instructions that count as control-flow, and will be placed at the end of the basic
-blocks.
-
-#+name: rtlblockinstr-cf-instr-def
-#+begin_src coq
-Inductive cf_instr : Type :=
-| RBcall : signature -> reg + ident -> list reg -> reg -> node -> cf_instr
-| RBtailcall : signature -> reg + ident -> list reg -> cf_instr
-| RBbuiltin : external_function -> list (builtin_arg reg) ->
- builtin_res reg -> node -> cf_instr
-| RBcond : condition -> list reg -> node -> node -> cf_instr
-| RBjumptable : reg -> list node -> cf_instr
-| RBreturn : option reg -> cf_instr
-| RBgoto : node -> cf_instr
-| RBpred_cf : pred_op -> cf_instr -> cf_instr -> cf_instr.
-#+end_src
-
-** Helper functions
-
-#+name: rtlblockinstr-helpers
-#+begin_src coq
-Fixpoint successors_instr (i : cf_instr) : list node :=
- match i with
- | RBcall sig ros args res s => s :: nil
- | RBtailcall sig ros args => nil
- | RBbuiltin ef args res s => s :: nil
- | RBcond cond args ifso ifnot => ifso :: ifnot :: nil
- | RBjumptable arg tbl => tbl
- | RBreturn optarg => nil
- | RBgoto n => n :: nil
- | RBpred_cf p c1 c2 => concat (successors_instr c1 :: successors_instr c2 :: nil)
- end.
-
-Definition max_reg_instr (m: positive) (i: instr) :=
- match i with
- | RBnop => m
- | RBop p op args res =>
- fold_left Pos.max args (Pos.max res m)
- | RBload p chunk addr args dst =>
- fold_left Pos.max args (Pos.max dst m)
- | RBstore p chunk addr args src =>
- fold_left Pos.max args (Pos.max src m)
- | RBsetpred p' c args p =>
- fold_left Pos.max args m
- end.
-
-Fixpoint max_reg_cfi (m : positive) (i : cf_instr) :=
- match i with
- | RBcall sig (inl r) args res s =>
- fold_left Pos.max args (Pos.max r (Pos.max res m))
- | RBcall sig (inr id) args res s =>
- fold_left Pos.max args (Pos.max res m)
- | RBtailcall sig (inl r) args =>
- fold_left Pos.max args (Pos.max r m)
- | RBtailcall sig (inr id) args =>
- fold_left Pos.max args m
- | RBbuiltin ef args res s =>
- fold_left Pos.max (params_of_builtin_args args)
- (fold_left Pos.max (params_of_builtin_res res) m)
- | RBcond cond args ifso ifnot => fold_left Pos.max args m
- | RBjumptable arg tbl => Pos.max arg m
- | RBreturn None => m
- | RBreturn (Some arg) => Pos.max arg m
- | RBgoto n => m
- | RBpred_cf p c1 c2 => Pos.max (max_reg_cfi m c1) (max_reg_cfi m c2)
- end.
-
-Definition regset := Regmap.t val.
-Definition predset := PMap.t bool.
-
-Definition eval_predf (pr: predset) (p: pred_op) :=
- sat_predicate p (fun x => pr !! (Pos.of_nat x)).
-
-#[global]
-Instance eval_predf_Proper : Proper (eq ==> equiv ==> eq) eval_predf.
-Proof.
- unfold Proper. simplify. unfold "==>".
- intros.
- unfold sat_equiv in *. intros. unfold eval_predf. subst. apply H0.
-Qed.
-
-#[local] Open Scope pred_op.
-
-Lemma eval_predf_Pand :
- forall ps p p',
- eval_predf ps (p ∧ p') = eval_predf ps p && eval_predf ps p'.
-Proof. unfold eval_predf; split; simplify; auto with bool. Qed.
-
-Lemma eval_predf_Por :
- forall ps p p',
- eval_predf ps (p ∨ p') = eval_predf ps p || eval_predf ps p'.
-Proof. unfold eval_predf; split; simplify; auto with bool. Qed.
-
-Lemma eval_predf_pr_equiv :
- forall p ps ps',
- (forall x, ps !! x = ps' !! x) ->
- eval_predf ps p = eval_predf ps' p.
-Proof.
- induction p; simplify; auto;
- try (unfold eval_predf; simplify; repeat (destruct_match; []); inv Heqp0; rewrite <- H; auto);
- [repeat rewrite eval_predf_Pand|repeat rewrite eval_predf_Por];
- erewrite IHp1; try eassumption; erewrite IHp2; eauto.
-Qed.
-
-Fixpoint init_regs (vl: list val) (rl: list reg) {struct rl} : regset :=
- match rl, vl with
- | r1 :: rs, v1 :: vs => Regmap.set r1 v1 (init_regs vs rs)
- | _, _ => Regmap.init Vundef
- end.
-#+end_src
-
-*** Instruction State
-
-Definition of the instruction state, which contains the following:
-
-- ~is_rs~ :: This is the current state of the registers.
-- ~is_ps~ :: This is the current state of the predicate registers, which is in a separate namespace
- and area compared to the standard registers in [is_rs].
-- ~is_mem~ :: The current state of the memory.
-
-#+name: rtlblockinstr-instr-state
-#+begin_src coq
-Record instr_state := mk_instr_state {
- is_rs: regset;
- is_ps: predset;
- is_mem: mem;
-}.
-#+end_src
-
-** Top-Level Type Definitions
-
-#+name: rtlblockinstr-type-def
-#+begin_src coq
-Section DEFINITION.
-
- Context {bblock_body: Type}.
-
- Record bblock : Type := mk_bblock {
- bb_body: bblock_body;
- bb_exit: cf_instr
- }.
-
- Definition code: Type := PTree.t bblock.
-
- Record function: Type := mkfunction {
- fn_sig: signature;
- fn_params: list reg;
- fn_stacksize: Z;
- fn_code: code;
- fn_entrypoint: node
- }.
-
- Definition fundef := AST.fundef function.
-
- Definition program := AST.program fundef unit.
-
- Definition funsig (fd: fundef) :=
- match fd with
- | Internal f => fn_sig f
- | External ef => ef_sig ef
- end.
-
- Inductive stackframe : Type :=
- | Stackframe:
- forall (res: reg) (**r where to store the result *)
- (f: function) (**r calling function *)
- (sp: val) (**r stack pointer in calling function *)
- (pc: node) (**r program point in calling function *)
- (rs: regset) (**r register state in calling function *)
- (pr: predset), (**r predicate state of the calling function *)
- stackframe.
-#+end_src
-
-*** State definition
-:PROPERTIES:
-:CUSTOM_ID: state
-:END:
-
-Definition of the ~state~ type, which is used by the ~step~ functions.
-
-#+name: rtlblockinstr-state
-#+begin_src coq
- Variant state : Type :=
- | State:
- forall (stack: list stackframe) (**r call stack *)
- (f: function) (**r current function *)
- (sp: val) (**r stack pointer *)
- (pc: node) (**r current program point in [c] *)
- (rs: regset) (**r register state *)
- (pr: predset) (**r predicate register state *)
- (m: mem), (**r memory state *)
- state
- | Callstate:
- forall (stack: list stackframe) (**r call stack *)
- (f: fundef) (**r function to call *)
- (args: list val) (**r arguments to the call *)
- (m: mem), (**r memory state *)
- state
- | Returnstate:
- forall (stack: list stackframe) (**r call stack *)
- (v: val) (**r return value for the call *)
- (m: mem), (**r memory state *)
- state.
-#+end_src
-
-#+name: rtlblockinstr-state
-#+begin_src coq
-End DEFINITION.
-#+end_src
-
-** Semantics
-
-#+name: rtlblockinstr-semantics
-#+begin_src coq
-Section RELSEM.
-
- Context {bblock_body : Type}.
-
- Definition genv := Genv.t (@fundef bblock_body) unit.
-
- Context (ge: genv).
-
- Definition find_function
- (ros: reg + ident) (rs: regset) : option fundef :=
- match ros with
- | inl r => Genv.find_funct ge rs#r
- | inr symb =>
- match Genv.find_symbol ge symb with
- | None => None
- | Some b => Genv.find_funct_ptr ge b
- end
- end.
-
- Inductive eval_pred: option pred_op -> instr_state -> instr_state -> instr_state -> Prop :=
- | eval_pred_true:
- forall i i' p,
- eval_predf (is_ps i) p = true ->
- eval_pred (Some p) i i' i'
- | eval_pred_false:
- forall i i' p,
- eval_predf (is_ps i) p = false ->
- eval_pred (Some p) i i' i
- | eval_pred_none:
- forall i i', eval_pred None i i' i.
-#+end_src
-
-*** Step a single instruction
-:PROPERTIES:
-:CUSTOM_ID: step_instr
-:END:
-
-#+name: rtlblockinstr-step_instr
-#+begin_src coq
- Inductive step_instr: val -> instr_state -> instr -> instr_state -> Prop :=
- | exec_RBnop:
- forall sp ist,
- step_instr sp ist RBnop ist
- | exec_RBop:
- forall op v res args rs m sp p ist pr,
- eval_operation ge sp op rs##args m = Some v ->
- eval_pred p (mk_instr_state rs pr m) (mk_instr_state (rs#res <- v) pr m) ist ->
- step_instr sp (mk_instr_state rs pr m) (RBop p op args res) ist
- | exec_RBload:
- forall addr rs args a chunk m v dst sp p pr ist,
- eval_addressing ge sp addr rs##args = Some a ->
- Mem.loadv chunk m a = Some v ->
- eval_pred p (mk_instr_state rs pr m) (mk_instr_state (rs#dst <- v) pr m) ist ->
- step_instr sp (mk_instr_state rs pr m) (RBload p chunk addr args dst) ist
- | exec_RBstore:
- forall addr rs args a chunk m src m' sp p pr ist,
- eval_addressing ge sp addr rs##args = Some a ->
- Mem.storev chunk m a rs#src = Some m' ->
- eval_pred p (mk_instr_state rs pr m) (mk_instr_state rs pr m') ist ->
- step_instr sp (mk_instr_state rs pr m) (RBstore p chunk addr args src) ist
- | exec_RBsetpred:
- forall sp rs pr m p c b args p' ist,
- Op.eval_condition c rs##args m = Some b ->
- eval_pred p' (mk_instr_state rs pr m) (mk_instr_state rs (pr#p <- b) m) ist ->
- step_instr sp (mk_instr_state rs pr m) (RBsetpred p' c args p) ist.
-#+end_src
-
-*** Step a control-flow instruction
-:PROPERTIES:
-:CUSTOM_ID: step_cf_instr
-:END:
-
-#+name: rtlblockinstr-step_cf_instr
-#+begin_src coq
- Inductive step_cf_instr: state -> cf_instr -> trace -> state -> Prop :=
- | exec_RBcall:
- forall s f sp rs m res fd ros sig args pc pc' pr,
- find_function ros rs = Some fd ->
- funsig fd = sig ->
- step_cf_instr (State s f sp pc rs pr m) (RBcall sig ros args res pc')
- E0 (Callstate (Stackframe res f sp pc' rs pr :: s) fd rs##args m)
- | exec_RBtailcall:
- forall s f stk rs m sig ros args fd m' pc pr,
- find_function ros rs = Some fd ->
- funsig fd = sig ->
- Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
- step_cf_instr (State s f (Vptr stk Ptrofs.zero) pc rs pr m) (RBtailcall sig ros args)
- E0 (Callstate s fd rs##args m')
- | exec_RBbuiltin:
- forall s f sp rs m ef args res pc' vargs t vres m' pc pr,
- eval_builtin_args ge (fun r => rs#r) sp m args vargs ->
- external_call ef ge vargs m t vres m' ->
- step_cf_instr (State s f sp pc rs pr m) (RBbuiltin ef args res pc')
- t (State s f sp pc' (regmap_setres res vres rs) pr m')
- | exec_RBcond:
- forall s f sp rs m cond args ifso ifnot b pc pc' pr,
- eval_condition cond rs##args m = Some b ->
- pc' = (if b then ifso else ifnot) ->
- step_cf_instr (State s f sp pc rs pr m) (RBcond cond args ifso ifnot)
- E0 (State s f sp pc' rs pr m)
- | exec_RBjumptable:
- forall s f sp rs m arg tbl n pc pc' pr,
- rs#arg = Vint n ->
- list_nth_z tbl (Int.unsigned n) = Some pc' ->
- step_cf_instr (State s f sp pc rs pr m) (RBjumptable arg tbl)
- E0 (State s f sp pc' rs pr m)
- | exec_RBreturn:
- forall s f stk rs m or pc m' pr,
- Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
- step_cf_instr (State s f (Vptr stk Ptrofs.zero) pc rs pr m) (RBreturn or)
- E0 (Returnstate s (regmap_optget or Vundef rs) m')
- | exec_RBgoto:
- forall s f sp pc rs pr m pc',
- step_cf_instr (State s f sp pc rs pr m) (RBgoto pc') E0 (State s f sp pc' rs pr m)
- | exec_RBpred_cf:
- forall s f sp pc rs pr m cf1 cf2 st' p t,
- step_cf_instr (State s f sp pc rs pr m) (if eval_predf pr p then cf1 else cf2) t st' ->
- step_cf_instr (State s f sp pc rs pr m) (RBpred_cf p cf1 cf2) t st'.
-#+end_src
-
-#+name: rtlblockinstr-end_RELSEM
-#+begin_src coq
-End RELSEM.
-#+end_src
-
-* RTLBlock
-:PROPERTIES:
-:header-args:coq: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/RTLBlock.v
-:END:
-
-#+begin_src coq :comments no :padline no :exports none
-<<license>>
-#+end_src
-
-#+name: rtlblock-main
-#+begin_src coq
-Require Import compcert.backend.Registers.
-Require Import compcert.common.AST.
-Require Import compcert.common.Events.
-Require Import compcert.common.Globalenvs.
-Require Import compcert.common.Memory.
-Require Import compcert.common.Smallstep.
-Require Import compcert.common.Values.
-Require Import compcert.lib.Coqlib.
-Require Import compcert.lib.Integers.
-Require Import compcert.lib.Maps.
-Require Import compcert.verilog.Op.
-
-Require Import vericert.hls.RTLBlockInstr.
-
-Definition bb := list instr.
-
-Definition bblock := @bblock bb.
-Definition code := @code bb.
-Definition function := @function bb.
-Definition fundef := @fundef bb.
-Definition program := @program bb.
-Definition funsig := @funsig bb.
-Definition stackframe := @stackframe bb.
-Definition state := @state bb.
-
-Definition genv := @genv bb.
-#+end_src
-
-** Semantics
-
-We first describe the semantics by assuming a global program environment with type ~genv~ which was
-declared earlier.
-
-#+name: rtlblock-semantics
-#+begin_src coq
-Section RELSEM.
-
- Context (ge: genv).
-#+end_src
-
-*** Instruction list step
-:PROPERTIES:
-:CUSTOM_ID: step_instr_list
-:END:
-
-The ~step_instr_list~ definition describes the execution of a list of instructions in one big step,
-inductively traversing the list of instructions and applying the ~step_instr~ ([[#step_instr][step_instr]]).
-
-#+name: rtlblock-step_instr_list
-#+begin_src coq
- Inductive step_instr_list: val -> instr_state -> list instr -> instr_state -> Prop :=
- | exec_RBcons:
- forall state i state' state'' instrs sp,
- step_instr ge sp state i state' ->
- step_instr_list sp state' instrs state'' ->
- step_instr_list sp state (i :: instrs) state''
- | exec_RBnil:
- forall state sp,
- step_instr_list sp state nil state.
-#+end_src
-
-*** Top-level step
-:PROPERTIES:
-:CUSTOM_ID: rtlblock-step
-:END:
-
-The step function itself then uses this big step of the list of instructions to then show a
-transition from basic block to basic block.
-
-#+name: rtlblock-step
-#+begin_src coq
- Variant step: state -> trace -> state -> Prop :=
- | exec_bblock:
- forall s f sp pc rs rs' m m' t s' bb pr pr',
- f.(fn_code)!pc = Some bb ->
- step_instr_list sp (mk_instr_state rs pr m) bb.(bb_body) (mk_instr_state rs' pr' m') ->
- step_cf_instr ge (State s f sp pc rs' pr' m') bb.(bb_exit) t s' ->
- step (State s f sp pc rs pr m) t s'
- | exec_function_internal:
- forall s f args m m' stk,
- Mem.alloc m 0 f.(fn_stacksize) = (m', stk) ->
- step (Callstate s (Internal f) args m)
- E0 (State s f
- (Vptr stk Ptrofs.zero)
- f.(fn_entrypoint)
- (init_regs args f.(fn_params))
- (PMap.init false)
- m')
- | exec_function_external:
- forall s ef args res t m m',
- external_call ef ge args m t res m' ->
- step (Callstate s (External ef) args m)
- t (Returnstate s res m')
- | exec_return:
- forall res f sp pc rs s vres m pr,
- step (Returnstate (Stackframe res f sp pc rs pr :: s) vres m)
- E0 (State s f sp pc (rs#res <- vres) pr m).
-#+end_src
-
-#+name: rtlblock-rest
-#+begin_src coq
-End RELSEM.
-
-Inductive initial_state (p: program): state -> Prop :=
-| initial_state_intro: forall b f m0,
- let ge := Genv.globalenv p in
- Genv.init_mem p = Some m0 ->
- Genv.find_symbol ge p.(prog_main) = Some b ->
- Genv.find_funct_ptr ge b = Some f ->
- funsig f = signature_main ->
- initial_state p (Callstate nil f nil m0).
-
-Inductive final_state: state -> int -> Prop :=
-| final_state_intro: forall r m,
- final_state (Returnstate nil (Vint r) m) r.
-
-Definition semantics (p: program) :=
- Semantics step (initial_state p) final_state (Genv.globalenv p).
-#+end_src
-
-* RTLPar
-:PROPERTIES:
-:header-args:coq: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/RTLPar.v
-:END:
-
-#+begin_src coq :comments no :padline no :exports none
-<<license>>
-#+end_src
-
-#+name: rtlpar-main
-#+begin_src coq
-Require Import compcert.backend.Registers.
-Require Import compcert.common.AST.
-Require Import compcert.common.Events.
-Require Import compcert.common.Globalenvs.
-Require Import compcert.common.Memory.
-Require Import compcert.common.Smallstep.
-Require Import compcert.common.Values.
-Require Import compcert.lib.Coqlib.
-Require Import compcert.lib.Integers.
-Require Import compcert.lib.Maps.
-Require Import compcert.verilog.Op.
-
-Require Import vericert.hls.RTLBlockInstr.
-
-Definition bb := list (list (list instr)).
-
-Definition bblock := @bblock bb.
-Definition code := @code bb.
-Definition function := @function bb.
-Definition fundef := @fundef bb.
-Definition program := @program bb.
-Definition funsig := @funsig bb.
-Definition stackframe := @stackframe bb.
-Definition state := @state bb.
-Definition genv := @genv bb.
-
-Section RELSEM.
-
- Context (ge: genv).
-
- Inductive step_instr_list: val -> instr_state -> list instr -> instr_state -> Prop :=
- | exec_RBcons:
- forall state i state' state'' instrs sp,
- step_instr ge sp state i state' ->
- step_instr_list sp state' instrs state'' ->
- step_instr_list sp state (i :: instrs) state''
- | exec_RBnil:
- forall state sp,
- step_instr_list sp state nil state.
-
- Inductive step_instr_seq (sp : val)
- : instr_state -> list (list instr) -> instr_state -> Prop :=
- | exec_instr_seq_cons:
- forall state i state' state'' instrs,
- step_instr_list sp state i state' ->
- step_instr_seq sp state' instrs state'' ->
- step_instr_seq sp state (i :: instrs) state''
- | exec_instr_seq_nil:
- forall state,
- step_instr_seq sp state nil state.
-
- Inductive step_instr_block (sp : val)
- : instr_state -> bb -> instr_state -> Prop :=
- | exec_instr_block_cons:
- forall state i state' state'' instrs,
- step_instr_seq sp state i state' ->
- step_instr_block sp state' instrs state'' ->
- step_instr_block sp state (i :: instrs) state''
- | exec_instr_block_nil:
- forall state,
- step_instr_block sp state nil state.
-
- Inductive step: state -> trace -> state -> Prop :=
- | exec_bblock:
- forall s f sp pc rs rs' m m' t s' bb pr pr',
- f.(fn_code)!pc = Some bb ->
- step_instr_block sp (mk_instr_state rs pr m) bb.(bb_body) (mk_instr_state rs' pr' m') ->
- step_cf_instr ge (State s f sp pc rs' pr' m') bb.(bb_exit) t s' ->
- step (State s f sp pc rs pr m) t s'
- | exec_function_internal:
- forall s f args m m' stk,
- Mem.alloc m 0 f.(fn_stacksize) = (m', stk) ->
- step (Callstate s (Internal f) args m)
- E0 (State s
- f
- (Vptr stk Ptrofs.zero)
- f.(fn_entrypoint)
- (init_regs args f.(fn_params))
- (PMap.init false)
- m')
- | exec_function_external:
- forall s ef args res t m m',
- external_call ef ge args m t res m' ->
- step (Callstate s (External ef) args m)
- t (Returnstate s res m')
- | exec_return:
- forall res f sp pc rs s vres m pr,
- step (Returnstate (Stackframe res f sp pc rs pr :: s) vres m)
- E0 (State s f sp pc (rs#res <- vres) pr m).
-
-End RELSEM.
-
-Inductive initial_state (p: program): state -> Prop :=
- | initial_state_intro: forall b f m0,
- let ge := Genv.globalenv p in
- Genv.init_mem p = Some m0 ->
- Genv.find_symbol ge p.(prog_main) = Some b ->
- Genv.find_funct_ptr ge b = Some f ->
- funsig f = signature_main ->
- initial_state p (Callstate nil f nil m0).
-
-Inductive final_state: state -> int -> Prop :=
- | final_state_intro: forall r m,
- final_state (Returnstate nil (Vint r) m) r.
-
-Definition semantics (p: program) :=
- Semantics step (initial_state p) final_state (Genv.globalenv p).
-
-Definition max_reg_bblock (m : positive) (pc : node) (bb : bblock) :=
- let max_body := fold_left (fun x l => fold_left (fun x' l' => fold_left max_reg_instr l' x') l x) bb.(bb_body) m in
- max_reg_cfi max_body bb.(bb_exit).
-
-Definition max_reg_function (f: function) :=
- Pos.max
- (PTree.fold max_reg_bblock f.(fn_code) 1%positive)
- (fold_left Pos.max f.(fn_params) 1%positive).
-
-Definition max_pc_function (f: function) : positive :=
- PTree.fold (fun m pc i => (Pos.max m
- (pc + match Zlength i.(bb_body)
- with Z.pos p => p | _ => 1 end))%positive)
- f.(fn_code) 1%positive.
-#+end_src
-
-* License
-
-#+name: license
-#+begin_src coq :tangle no
-(*
- * Vericert: Verified high-level synthesis.
- * Copyright (C) 2020-2022 Yann Herklotz <yann@yannherklotz.com>
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <https://www.gnu.org/licenses/>.
- *)
-#+end_src