aboutsummaryrefslogtreecommitdiffstats
path: root/docs/scheduler-languages.org
diff options
context:
space:
mode:
Diffstat (limited to 'docs/scheduler-languages.org')
-rw-r--r--docs/scheduler-languages.org689
1 files changed, 689 insertions, 0 deletions
diff --git a/docs/scheduler-languages.org b/docs/scheduler-languages.org
new file mode 100644
index 0000000..cf03b3a
--- /dev/null
+++ b/docs/scheduler-languages.org
@@ -0,0 +1,689 @@
+#+title: Scheduler Languages
+#+author: Yann Herklotz
+#+email: yann [at] yannherklotz [dot] com
+
+* RTLBlockInstr
+:PROPERTIES:
+:header-args:coq: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/RTLBlockInstr.v
+:END:
+
+#+begin_src coq :comments no :padline no :exports none
+<<license>>
+#+end_src
+
+#+name: rtlblockinstr-imports
+#+begin_src coq
+Require Import Coq.micromega.Lia.
+
+Require Import compcert.backend.Registers.
+Require Import compcert.common.AST.
+Require Import compcert.common.Events.
+Require Import compcert.common.Globalenvs.
+Require Import compcert.common.Memory.
+Require Import compcert.common.Values.
+Require Import compcert.lib.Integers.
+Require Import compcert.lib.Maps.
+Require Import compcert.verilog.Op.
+
+Require Import Predicate.
+Require Import Vericertlib.
+#+end_src
+
+These instructions are used for ~RTLBlock~ and ~RTLPar~, so that they have consistent instructions,
+which greatly simplifies the proofs, as they will by default have the same instruction syntax and
+semantics. The only changes are therefore at the top-level of the instructions.
+
+** Instruction Definition
+
+First, we define the instructions that can be placed into a basic block, meaning they won't branch.
+The main changes to how instructions are defined in [RTL], is that these instructions don't have a
+next node, as they will be in a basic block, and they also have an optional predicate ([pred_op]).
+
+#+name: rtlblockinstr-instr-def
+#+begin_src coq
+Definition node := positive.
+
+Inductive instr : Type :=
+| RBnop : instr
+| RBop : option pred_op -> operation -> list reg -> reg -> instr
+| RBload : option pred_op -> memory_chunk -> addressing -> list reg -> reg -> instr
+| RBstore : option pred_op -> memory_chunk -> addressing -> list reg -> reg -> instr
+| RBsetpred : option pred_op -> condition -> list reg -> predicate -> instr.
+#+end_src
+
+** Control-Flow Instruction Definition
+
+These are the instructions that count as control-flow, and will be placed at the end of the basic
+blocks.
+
+#+name: rtlblockinstr-cf-instr-def
+#+begin_src coq
+Inductive cf_instr : Type :=
+| RBcall : signature -> reg + ident -> list reg -> reg -> node -> cf_instr
+| RBtailcall : signature -> reg + ident -> list reg -> cf_instr
+| RBbuiltin : external_function -> list (builtin_arg reg) ->
+ builtin_res reg -> node -> cf_instr
+| RBcond : condition -> list reg -> node -> node -> cf_instr
+| RBjumptable : reg -> list node -> cf_instr
+| RBreturn : option reg -> cf_instr
+| RBgoto : node -> cf_instr
+| RBpred_cf : pred_op -> cf_instr -> cf_instr -> cf_instr.
+#+end_src
+
+** Helper functions
+
+#+name: rtlblockinstr-helpers
+#+begin_src coq
+Fixpoint successors_instr (i : cf_instr) : list node :=
+ match i with
+ | RBcall sig ros args res s => s :: nil
+ | RBtailcall sig ros args => nil
+ | RBbuiltin ef args res s => s :: nil
+ | RBcond cond args ifso ifnot => ifso :: ifnot :: nil
+ | RBjumptable arg tbl => tbl
+ | RBreturn optarg => nil
+ | RBgoto n => n :: nil
+ | RBpred_cf p c1 c2 => concat (successors_instr c1 :: successors_instr c2 :: nil)
+ end.
+
+Definition max_reg_instr (m: positive) (i: instr) :=
+ match i with
+ | RBnop => m
+ | RBop p op args res =>
+ fold_left Pos.max args (Pos.max res m)
+ | RBload p chunk addr args dst =>
+ fold_left Pos.max args (Pos.max dst m)
+ | RBstore p chunk addr args src =>
+ fold_left Pos.max args (Pos.max src m)
+ | RBsetpred p' c args p =>
+ fold_left Pos.max args m
+ end.
+
+Fixpoint max_reg_cfi (m : positive) (i : cf_instr) :=
+ match i with
+ | RBcall sig (inl r) args res s =>
+ fold_left Pos.max args (Pos.max r (Pos.max res m))
+ | RBcall sig (inr id) args res s =>
+ fold_left Pos.max args (Pos.max res m)
+ | RBtailcall sig (inl r) args =>
+ fold_left Pos.max args (Pos.max r m)
+ | RBtailcall sig (inr id) args =>
+ fold_left Pos.max args m
+ | RBbuiltin ef args res s =>
+ fold_left Pos.max (params_of_builtin_args args)
+ (fold_left Pos.max (params_of_builtin_res res) m)
+ | RBcond cond args ifso ifnot => fold_left Pos.max args m
+ | RBjumptable arg tbl => Pos.max arg m
+ | RBreturn None => m
+ | RBreturn (Some arg) => Pos.max arg m
+ | RBgoto n => m
+ | RBpred_cf p c1 c2 => Pos.max (max_reg_cfi m c1) (max_reg_cfi m c2)
+ end.
+
+Definition regset := Regmap.t val.
+Definition predset := PMap.t bool.
+
+Definition eval_predf (pr: predset) (p: pred_op) :=
+ sat_predicate p (fun x => pr !! (Pos.of_nat x)).
+
+#[global]
+Instance eval_predf_Proper : Proper (eq ==> equiv ==> eq) eval_predf.
+Proof.
+ unfold Proper. simplify. unfold "==>".
+ intros.
+ unfold sat_equiv in *. intros. unfold eval_predf. subst. apply H0.
+Qed.
+
+#[local] Open Scope pred_op.
+
+Lemma eval_predf_Pand :
+ forall ps p p',
+ eval_predf ps (p ∧ p') = eval_predf ps p && eval_predf ps p'.
+Proof. unfold eval_predf; split; simplify; auto with bool. Qed.
+
+Lemma eval_predf_Por :
+ forall ps p p',
+ eval_predf ps (p ∨ p') = eval_predf ps p || eval_predf ps p'.
+Proof. unfold eval_predf; split; simplify; auto with bool. Qed.
+
+Lemma eval_predf_pr_equiv :
+ forall p ps ps',
+ (forall x, ps !! x = ps' !! x) ->
+ eval_predf ps p = eval_predf ps' p.
+Proof.
+ induction p; simplify; auto;
+ try (unfold eval_predf; simplify; repeat (destruct_match; []); inv Heqp0; rewrite <- H; auto);
+ [repeat rewrite eval_predf_Pand|repeat rewrite eval_predf_Por];
+ erewrite IHp1; try eassumption; erewrite IHp2; eauto.
+Qed.
+
+Fixpoint init_regs (vl: list val) (rl: list reg) {struct rl} : regset :=
+ match rl, vl with
+ | r1 :: rs, v1 :: vs => Regmap.set r1 v1 (init_regs vs rs)
+ | _, _ => Regmap.init Vundef
+ end.
+#+end_src
+
+*** Instruction State
+
+Definition of the instruction state, which contains the following:
+
+- ~is_rs~ :: This is the current state of the registers.
+- ~is_ps~ :: This is the current state of the predicate registers, which is in a separate namespace
+ and area compared to the standard registers in [is_rs].
+- ~is_mem~ :: The current state of the memory.
+
+#+name: rtlblockinstr-instr-state
+#+begin_src coq
+Record instr_state := mk_instr_state {
+ is_rs: regset;
+ is_ps: predset;
+ is_mem: mem;
+}.
+#+end_src
+
+** Top-Level Type Definitions
+
+#+name: rtlblockinstr-type-def
+#+begin_src coq
+Section DEFINITION.
+
+ Context {bblock_body: Type}.
+
+ Record bblock : Type := mk_bblock {
+ bb_body: bblock_body;
+ bb_exit: cf_instr
+ }.
+
+ Definition code: Type := PTree.t bblock.
+
+ Record function: Type := mkfunction {
+ fn_sig: signature;
+ fn_params: list reg;
+ fn_stacksize: Z;
+ fn_code: code;
+ fn_entrypoint: node
+ }.
+
+ Definition fundef := AST.fundef function.
+
+ Definition program := AST.program fundef unit.
+
+ Definition funsig (fd: fundef) :=
+ match fd with
+ | Internal f => fn_sig f
+ | External ef => ef_sig ef
+ end.
+
+ Inductive stackframe : Type :=
+ | Stackframe:
+ forall (res: reg) (**r where to store the result *)
+ (f: function) (**r calling function *)
+ (sp: val) (**r stack pointer in calling function *)
+ (pc: node) (**r program point in calling function *)
+ (rs: regset) (**r register state in calling function *)
+ (pr: predset), (**r predicate state of the calling function *)
+ stackframe.
+
+ Inductive state : Type :=
+ | State:
+ forall (stack: list stackframe) (**r call stack *)
+ (f: function) (**r current function *)
+ (sp: val) (**r stack pointer *)
+ (pc: node) (**r current program point in [c] *)
+ (rs: regset) (**r register state *)
+ (pr: predset) (**r predicate register state *)
+ (m: mem), (**r memory state *)
+ state
+ | Callstate:
+ forall (stack: list stackframe) (**r call stack *)
+ (f: fundef) (**r function to call *)
+ (args: list val) (**r arguments to the call *)
+ (m: mem), (**r memory state *)
+ state
+ | Returnstate:
+ forall (stack: list stackframe) (**r call stack *)
+ (v: val) (**r return value for the call *)
+ (m: mem), (**r memory state *)
+ state.
+
+End DEFINITION.
+#+end_src
+
+** Semantics
+
+#+name: rtlblockinstr-semantics
+#+begin_src coq
+Section RELSEM.
+
+ Context {bblock_body : Type}.
+
+ Definition genv := Genv.t (@fundef bblock_body) unit.
+
+ Context (ge: genv).
+
+ Definition find_function
+ (ros: reg + ident) (rs: regset) : option fundef :=
+ match ros with
+ | inl r => Genv.find_funct ge rs#r
+ | inr symb =>
+ match Genv.find_symbol ge symb with
+ | None => None
+ | Some b => Genv.find_funct_ptr ge b
+ end
+ end.
+
+ Inductive eval_pred: option pred_op -> instr_state -> instr_state -> instr_state -> Prop :=
+ | eval_pred_true:
+ forall i i' p,
+ eval_predf (is_ps i) p = true ->
+ eval_pred (Some p) i i' i'
+ | eval_pred_false:
+ forall i i' p,
+ eval_predf (is_ps i) p = false ->
+ eval_pred (Some p) i i' i
+ | eval_pred_none:
+ forall i i', eval_pred None i i' i.
+
+ Inductive step_instr: val -> instr_state -> instr -> instr_state -> Prop :=
+ | exec_RBnop:
+ forall sp ist,
+ step_instr sp ist RBnop ist
+ | exec_RBop:
+ forall op v res args rs m sp p ist pr,
+ eval_operation ge sp op rs##args m = Some v ->
+ eval_pred p (mk_instr_state rs pr m) (mk_instr_state (rs#res <- v) pr m) ist ->
+ step_instr sp (mk_instr_state rs pr m) (RBop p op args res) ist
+ | exec_RBload:
+ forall addr rs args a chunk m v dst sp p pr ist,
+ eval_addressing ge sp addr rs##args = Some a ->
+ Mem.loadv chunk m a = Some v ->
+ eval_pred p (mk_instr_state rs pr m) (mk_instr_state (rs#dst <- v) pr m) ist ->
+ step_instr sp (mk_instr_state rs pr m) (RBload p chunk addr args dst) ist
+ | exec_RBstore:
+ forall addr rs args a chunk m src m' sp p pr ist,
+ eval_addressing ge sp addr rs##args = Some a ->
+ Mem.storev chunk m a rs#src = Some m' ->
+ eval_pred p (mk_instr_state rs pr m) (mk_instr_state rs pr m') ist ->
+ step_instr sp (mk_instr_state rs pr m) (RBstore p chunk addr args src) ist
+ | exec_RBsetpred:
+ forall sp rs pr m p c b args p' ist,
+ Op.eval_condition c rs##args m = Some b ->
+ eval_pred p' (mk_instr_state rs pr m) (mk_instr_state rs (pr#p <- b) m) ist ->
+ step_instr sp (mk_instr_state rs pr m) (RBsetpred p' c args p) ist.
+
+ Inductive step_cf_instr: state -> cf_instr -> trace -> state -> Prop :=
+ | exec_RBcall:
+ forall s f sp rs m res fd ros sig args pc pc' pr,
+ find_function ros rs = Some fd ->
+ funsig fd = sig ->
+ step_cf_instr (State s f sp pc rs pr m) (RBcall sig ros args res pc')
+ E0 (Callstate (Stackframe res f sp pc' rs pr :: s) fd rs##args m)
+ | exec_RBtailcall:
+ forall s f stk rs m sig ros args fd m' pc pr,
+ find_function ros rs = Some fd ->
+ funsig fd = sig ->
+ Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
+ step_cf_instr (State s f (Vptr stk Ptrofs.zero) pc rs pr m) (RBtailcall sig ros args)
+ E0 (Callstate s fd rs##args m')
+ | exec_RBbuiltin:
+ forall s f sp rs m ef args res pc' vargs t vres m' pc pr,
+ eval_builtin_args ge (fun r => rs#r) sp m args vargs ->
+ external_call ef ge vargs m t vres m' ->
+ step_cf_instr (State s f sp pc rs pr m) (RBbuiltin ef args res pc')
+ t (State s f sp pc' (regmap_setres res vres rs) pr m')
+ | exec_RBcond:
+ forall s f sp rs m cond args ifso ifnot b pc pc' pr,
+ eval_condition cond rs##args m = Some b ->
+ pc' = (if b then ifso else ifnot) ->
+ step_cf_instr (State s f sp pc rs pr m) (RBcond cond args ifso ifnot)
+ E0 (State s f sp pc' rs pr m)
+ | exec_RBjumptable:
+ forall s f sp rs m arg tbl n pc pc' pr,
+ rs#arg = Vint n ->
+ list_nth_z tbl (Int.unsigned n) = Some pc' ->
+ step_cf_instr (State s f sp pc rs pr m) (RBjumptable arg tbl)
+ E0 (State s f sp pc' rs pr m)
+ | exec_RBreturn:
+ forall s f stk rs m or pc m' pr,
+ Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
+ step_cf_instr (State s f (Vptr stk Ptrofs.zero) pc rs pr m) (RBreturn or)
+ E0 (Returnstate s (regmap_optget or Vundef rs) m')
+ | exec_RBgoto:
+ forall s f sp pc rs pr m pc',
+ step_cf_instr (State s f sp pc rs pr m) (RBgoto pc') E0 (State s f sp pc' rs pr m)
+ | exec_RBpred_cf:
+ forall s f sp pc rs pr m cf1 cf2 st' p t,
+ step_cf_instr (State s f sp pc rs pr m) (if eval_predf pr p then cf1 else cf2) t st' ->
+ step_cf_instr (State s f sp pc rs pr m) (RBpred_cf p cf1 cf2) t st'.
+
+End RELSEM.
+#+end_src
+
+* RTLBlock
+:PROPERTIES:
+:header-args:coq: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/RTLBlock.v
+:END:
+
+#+begin_src coq :comments no :padline no :exports none
+<<license>>
+#+end_src
+
+#+name: rtlblock-main
+#+begin_src coq
+Require Import compcert.backend.Registers.
+Require Import compcert.common.AST.
+Require Import compcert.common.Events.
+Require Import compcert.common.Globalenvs.
+Require Import compcert.common.Memory.
+Require Import compcert.common.Smallstep.
+Require Import compcert.common.Values.
+Require Import compcert.lib.Coqlib.
+Require Import compcert.lib.Integers.
+Require Import compcert.lib.Maps.
+Require Import compcert.verilog.Op.
+
+Require Import vericert.hls.RTLBlockInstr.
+
+Definition bb := list instr.
+
+Definition bblock := @bblock bb.
+Definition code := @code bb.
+Definition function := @function bb.
+Definition fundef := @fundef bb.
+Definition program := @program bb.
+Definition funsig := @funsig bb.
+Definition stackframe := @stackframe bb.
+
+Definition genv := @genv bb.
+
+Inductive state : Type :=
+| State:
+ forall (stack: list stackframe) (**r call stack *)
+ (f: function) (**r current function *)
+ (b: bb) (**r current block being executed *)
+ (sp: val) (**r stack pointer *)
+ (pc: node) (**r current program point in [c] *)
+ (rs: regset) (**r register state *)
+ (pr: predset) (**r predicate register state *)
+ (m: mem), (**r memory state *)
+ state
+| Callstate:
+ forall (stack: list stackframe) (**r call stack *)
+ (f: fundef) (**r function to call *)
+ (args: list val) (**r arguments to the call *)
+ (m: mem), (**r memory state *)
+ state
+| Returnstate:
+ forall (stack: list stackframe) (**r call stack *)
+ (v: val) (**r return value for the call *)
+ (m: mem), (**r memory state *)
+ state.
+
+Section RELSEM.
+
+ Context (ge: genv).
+
+ Inductive step_instr_list: val -> instr_state -> list instr -> instr_state -> Prop :=
+ | exec_RBcons:
+ forall state i state' state'' instrs sp,
+ step_instr ge sp state i state' ->
+ step_instr_list sp state' instrs state'' ->
+ step_instr_list sp state (i :: instrs) state''
+ | exec_RBnil:
+ forall state sp,
+ step_instr_list sp state nil state.
+
+ Definition find_function
+ (ros: reg + ident) (rs: regset) : option fundef :=
+ match ros with
+ | inl r => Genv.find_funct ge rs#r
+ | inr symb =>
+ match Genv.find_symbol ge symb with
+ | None => None
+ | Some b => Genv.find_funct_ptr ge b
+ end
+ end.
+
+ Inductive step_cf_instr: state -> cf_instr -> trace -> state -> Prop :=
+ | exec_RBcall:
+ forall s f b sp rs m res fd ros sig args pc pc' pr,
+ find_function ros rs = Some fd ->
+ funsig fd = sig ->
+ step_cf_instr (State s f b sp pc rs pr m) (RBcall sig ros args res pc')
+ E0 (Callstate (Stackframe res f sp pc' rs pr :: s) fd rs##args m)
+ | exec_RBtailcall:
+ forall s f b stk rs m sig ros args fd m' pc pr,
+ find_function ros rs = Some fd ->
+ funsig fd = sig ->
+ Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
+ step_cf_instr (State s f b (Vptr stk Ptrofs.zero) pc rs pr m) (RBtailcall sig ros args)
+ E0 (Callstate s fd rs##args m')
+ | exec_RBbuiltin:
+ forall s f b sp rs m ef args res pc' vargs t vres m' pc pr,
+ eval_builtin_args ge (fun r => rs#r) sp m args vargs ->
+ external_call ef ge vargs m t vres m' ->
+ step_cf_instr (State s f b sp pc rs pr m) (RBbuiltin ef args res pc')
+ t (State s f b sp pc' (regmap_setres res vres rs) pr m')
+ | exec_RBcond:
+ forall s f block sp rs m cond args ifso ifnot b pc pc' pr,
+ eval_condition cond rs##args m = Some b ->
+ pc' = (if b then ifso else ifnot) ->
+ step_cf_instr (State s f block sp pc rs pr m) (RBcond cond args ifso ifnot)
+ E0 (State s f block sp pc' rs pr m)
+ | exec_RBjumptable:
+ forall s f b sp rs m arg tbl n pc pc' pr,
+ rs#arg = Vint n ->
+ list_nth_z tbl (Int.unsigned n) = Some pc' ->
+ step_cf_instr (State s f b sp pc rs pr m) (RBjumptable arg tbl)
+ E0 (State s f b sp pc' rs pr m)
+ | exec_RBreturn:
+ forall s f b stk rs m or pc m' pr,
+ Mem.free m stk 0 f.(fn_stacksize) = Some m' ->
+ step_cf_instr (State s f b (Vptr stk Ptrofs.zero) pc rs pr m) (RBreturn or)
+ E0 (Returnstate s (regmap_optget or Vundef rs) m')
+ | exec_RBgoto:
+ forall s f b sp pc rs pr m pc',
+ step_cf_instr (State s f b sp pc rs pr m) (RBgoto pc') E0 (State s f b sp pc' rs pr m)
+ | exec_RBpred_cf:
+ forall s f b sp pc rs pr m cf1 cf2 st' p t,
+ step_cf_instr (State s f b sp pc rs pr m) (if eval_predf pr p then cf1 else cf2) t st' ->
+ step_cf_instr (State s f b sp pc rs pr m) (RBpred_cf p cf1 cf2) t st'.
+
+ Inductive step: state -> trace -> state -> Prop :=
+ | exec_function_internal:
+ forall s f args m m' stk,
+ Mem.alloc m 0 f.(fn_stacksize) = (m', stk) ->
+ step (Callstate s (Internal f) args m)
+ E0 (State s f
+ (Vptr stk Ptrofs.zero)
+ f.(fn_entrypoint)
+ (init_regs args f.(fn_params))
+ (PMap.init false)
+ m')
+ | exec_function_external:
+ forall s ef args res t m m',
+ external_call ef ge args m t res m' ->
+ step (Callstate s (External ef) args m)
+ t (Returnstate s res m')
+ | exec_return:
+ forall res f sp pc rs s vres m pr,
+ step (Returnstate (Stackframe res f sp pc rs pr :: s) vres m)
+ E0 (State s f sp pc (rs#res <- vres) pr m).
+
+End RELSEM.
+
+Inductive initial_state (p: program): state -> Prop :=
+ | initial_state_intro: forall b f m0,
+ let ge := Genv.globalenv p in
+ Genv.init_mem p = Some m0 ->
+ Genv.find_symbol ge p.(prog_main) = Some b ->
+ Genv.find_funct_ptr ge b = Some f ->
+ funsig f = signature_main ->
+ initial_state p (Callstate nil f nil m0).
+
+Inductive final_state: state -> int -> Prop :=
+ | final_state_intro: forall r m,
+ final_state (Returnstate nil (Vint r) m) r.
+
+Definition semantics (p: program) :=
+ Semantics step (initial_state p) final_state (Genv.globalenv p).
+#+end_src
+
+* RTLPar
+:PROPERTIES:
+:header-args:coq: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/RTLPar.v
+:END:
+
+#+begin_src coq :comments no :padline no :exports none
+<<license>>
+#+end_src
+
+#+name: rtlpar-main
+#+begin_src coq
+Require Import compcert.backend.Registers.
+Require Import compcert.common.AST.
+Require Import compcert.common.Events.
+Require Import compcert.common.Globalenvs.
+Require Import compcert.common.Memory.
+Require Import compcert.common.Smallstep.
+Require Import compcert.common.Values.
+Require Import compcert.lib.Coqlib.
+Require Import compcert.lib.Integers.
+Require Import compcert.lib.Maps.
+Require Import compcert.verilog.Op.
+
+Require Import vericert.hls.RTLBlockInstr.
+
+Definition bb := list (list (list instr)).
+
+Definition bblock := @bblock bb.
+Definition code := @code bb.
+Definition function := @function bb.
+Definition fundef := @fundef bb.
+Definition program := @program bb.
+Definition funsig := @funsig bb.
+Definition stackframe := @stackframe bb.
+Definition state := @state bb.
+Definition genv := @genv bb.
+
+Section RELSEM.
+
+ Context (ge: genv).
+
+ Inductive step_instr_list: val -> instr_state -> list instr -> instr_state -> Prop :=
+ | exec_RBcons:
+ forall state i state' state'' instrs sp,
+ step_instr ge sp state i state' ->
+ step_instr_list sp state' instrs state'' ->
+ step_instr_list sp state (i :: instrs) state''
+ | exec_RBnil:
+ forall state sp,
+ step_instr_list sp state nil state.
+
+ Inductive step_instr_seq (sp : val)
+ : instr_state -> list (list instr) -> instr_state -> Prop :=
+ | exec_instr_seq_cons:
+ forall state i state' state'' instrs,
+ step_instr_list sp state i state' ->
+ step_instr_seq sp state' instrs state'' ->
+ step_instr_seq sp state (i :: instrs) state''
+ | exec_instr_seq_nil:
+ forall state,
+ step_instr_seq sp state nil state.
+
+ Inductive step_instr_block (sp : val)
+ : instr_state -> bb -> instr_state -> Prop :=
+ | exec_instr_block_cons:
+ forall state i state' state'' instrs,
+ step_instr_seq sp state i state' ->
+ step_instr_block sp state' instrs state'' ->
+ step_instr_block sp state (i :: instrs) state''
+ | exec_instr_block_nil:
+ forall state,
+ step_instr_block sp state nil state.
+
+ Inductive step: state -> trace -> state -> Prop :=
+ | exec_bblock:
+ forall s f sp pc rs rs' m m' t s' bb pr pr',
+ f.(fn_code)!pc = Some bb ->
+ step_instr_block sp (mk_instr_state rs pr m) bb.(bb_body) (mk_instr_state rs' pr' m') ->
+ step_cf_instr ge (State s f sp pc rs' pr' m') bb.(bb_exit) t s' ->
+ step (State s f sp pc rs pr m) t s'
+ | exec_function_internal:
+ forall s f args m m' stk,
+ Mem.alloc m 0 f.(fn_stacksize) = (m', stk) ->
+ step (Callstate s (Internal f) args m)
+ E0 (State s
+ f
+ (Vptr stk Ptrofs.zero)
+ f.(fn_entrypoint)
+ (init_regs args f.(fn_params))
+ (PMap.init false)
+ m')
+ | exec_function_external:
+ forall s ef args res t m m',
+ external_call ef ge args m t res m' ->
+ step (Callstate s (External ef) args m)
+ t (Returnstate s res m')
+ | exec_return:
+ forall res f sp pc rs s vres m pr,
+ step (Returnstate (Stackframe res f sp pc rs pr :: s) vres m)
+ E0 (State s f sp pc (rs#res <- vres) pr m).
+
+End RELSEM.
+
+Inductive initial_state (p: program): state -> Prop :=
+ | initial_state_intro: forall b f m0,
+ let ge := Genv.globalenv p in
+ Genv.init_mem p = Some m0 ->
+ Genv.find_symbol ge p.(prog_main) = Some b ->
+ Genv.find_funct_ptr ge b = Some f ->
+ funsig f = signature_main ->
+ initial_state p (Callstate nil f nil m0).
+
+Inductive final_state: state -> int -> Prop :=
+ | final_state_intro: forall r m,
+ final_state (Returnstate nil (Vint r) m) r.
+
+Definition semantics (p: program) :=
+ Semantics step (initial_state p) final_state (Genv.globalenv p).
+
+Definition max_reg_bblock (m : positive) (pc : node) (bb : bblock) :=
+ let max_body := fold_left (fun x l => fold_left (fun x' l' => fold_left max_reg_instr l' x') l x) bb.(bb_body) m in
+ max_reg_cfi max_body bb.(bb_exit).
+
+Definition max_reg_function (f: function) :=
+ Pos.max
+ (PTree.fold max_reg_bblock f.(fn_code) 1%positive)
+ (fold_left Pos.max f.(fn_params) 1%positive).
+
+Definition max_pc_function (f: function) : positive :=
+ PTree.fold (fun m pc i => (Pos.max m
+ (pc + match Zlength i.(bb_body)
+ with Z.pos p => p | _ => 1 end))%positive)
+ f.(fn_code) 1%positive.
+#+end_src
+
+* License
+
+#+name: license
+#+begin_src coq :tangle no
+(*
+ * Vericert: Verified high-level synthesis.
+ * Copyright (C) 2020-2022 Yann Herklotz <yann@yannherklotz.com>
+ *
+ * This program is free software: you can redistribute it and/or modify
+ * it under the terms of the GNU General Public License as published by
+ * the Free Software Foundation, either version 3 of the License, or
+ * (at your option) any later version.
+ *
+ * This program is distributed in the hope that it will be useful,
+ * but WITHOUT ANY WARRANTY; without even the implied warranty of
+ * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
+ * GNU General Public License for more details.
+ *
+ * You should have received a copy of the GNU General Public License
+ * along with this program. If not, see <https://www.gnu.org/licenses/>.
+ *)
+#+end_src