aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/Value.v
diff options
context:
space:
mode:
Diffstat (limited to 'src/hls/Value.v')
-rw-r--r--src/hls/Value.v552
1 files changed, 0 insertions, 552 deletions
diff --git a/src/hls/Value.v b/src/hls/Value.v
deleted file mode 100644
index 0d3ea66..0000000
--- a/src/hls/Value.v
+++ /dev/null
@@ -1,552 +0,0 @@
-(*(*
- * Vericert: Verified high-level synthesis.
- * Copyright (C) 2020 Yann Herklotz <yann@yannherklotz.com>
- *
- * This program is free software: you can redistribute it and/or modify
- * it under the terms of the GNU General Public License as published by
- * the Free Software Foundation, either version 3 of the License, or
- * (at your option) any later version.
- *
- * This program is distributed in the hope that it will be useful,
- * but WITHOUT ANY WARRANTY; without even the implied warranty of
- * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
- * GNU General Public License for more details.
- *
- * You should have received a copy of the GNU General Public License
- * along with this program. If not, see <https://www.gnu.org/licenses/>.
- *)
-
-(* begin hide *)
-From bbv Require Import Word.
-From bbv Require HexNotation WordScope.
-From Coq Require Import ZArith.ZArith FSets.FMapPositive Lia.
-From compcert Require Import lib.Integers common.Values.
-From vericert Require Import Vericertlib.
-(* end hide *)
-
-(** * Value
-
-A [value] is a bitvector with a specific size. We are using the implementation
-of the bitvector by mit-plv/bbv, because it has many theorems that we can reuse.
-However, we need to wrap it with an [Inductive] so that we can specify and match
-on the size of the [value]. This is necessary so that we can easily store
-[value]s of different sizes in a list or in a map.
-
-Using the default [word], this would not be possible, as the size is part of the type. *)
-
-Record value : Type :=
- mkvalue {
- vsize: nat;
- vword: word vsize
- }.
-
-(** ** Value conversions
-
-Various conversions to different number types such as [N], [Z], [positive] and
-[int], where the last one is a theory of integers of powers of 2 in CompCert. *)
-
-Definition wordToValue : forall sz : nat, word sz -> value := mkvalue.
-
-Definition valueToWord : forall v : value, word (vsize v) := vword.
-
-Definition valueToNat (v :value) : nat :=
- wordToNat (vword v).
-
-Definition natToValue sz (n : nat) : value :=
- mkvalue sz (natToWord sz n).
-
-Definition valueToN (v : value) : N :=
- wordToN (vword v).
-
-Definition NToValue sz (n : N) : value :=
- mkvalue sz (NToWord sz n).
-
-Definition ZToValue (s : nat) (z : Z) : value :=
- mkvalue s (ZToWord s z).
-
-Definition valueToZ (v : value) : Z :=
- wordToZ (vword v).
-
-Definition uvalueToZ (v : value) : Z :=
- uwordToZ (vword v).
-
-Definition posToValue sz (p : positive) : value :=
- ZToValue sz (Zpos p).
-
-Definition posToValueAuto (p : positive) : value :=
- let size := Pos.to_nat (Pos.size p) in
- ZToValue size (Zpos p).
-
-Definition valueToPos (v : value) : positive :=
- Z.to_pos (uvalueToZ v).
-
-Definition intToValue (i : Integers.int) : value :=
- ZToValue Int.wordsize (Int.unsigned i).
-
-Definition valueToInt (i : value) : Integers.int :=
- Int.repr (uvalueToZ i).
-
-Definition ptrToValue (i : Integers.ptrofs) : value :=
- ZToValue Ptrofs.wordsize (Ptrofs.unsigned i).
-
-Definition valueToPtr (i : value) : Integers.ptrofs :=
- Ptrofs.repr (uvalueToZ i).
-
-Definition valToValue (v : Values.val) : option value :=
- match v with
- | Values.Vint i => Some (intToValue i)
- | Values.Vptr b off => if Z.eqb (Z.modulo (uvalueToZ (ptrToValue off)) 4) 0%Z
- then Some (ptrToValue off)
- else None
- | Values.Vundef => Some (ZToValue 32 0%Z)
- | _ => None
- end.
-
-(** Convert a [value] to a [bool], so that choices can be made based on the
-result. This is also because comparison operators will give back [value] instead
-of [bool], so if they are in a condition, they will have to be converted before
-they can be used. *)
-
-Definition valueToBool (v : value) : bool :=
- negb (weqb (@wzero (vsize v)) (vword v)).
-
-Definition boolToValue (sz : nat) (b : bool) : value :=
- natToValue sz (if b then 1 else 0).
-
-(** ** Arithmetic operations *)
-
-Definition unify_word (sz1 sz2 : nat) (w1 : word sz2): sz1 = sz2 -> word sz1.
-intros; subst; assumption. Defined.
-
-Lemma unify_word_unfold :
- forall sz w,
- unify_word sz sz w eq_refl = w.
-Proof. auto. Qed.
-
-Definition value_eq_size:
- forall v1 v2 : value, { vsize v1 = vsize v2 } + { True }.
-Proof.
- intros; destruct (Nat.eqb (vsize v1) (vsize v2)) eqn:?.
- left; apply Nat.eqb_eq in Heqb; assumption.
- right; trivial.
-Defined.
-
-Definition map_any {A : Type} (v1 v2 : value) (f : word (vsize v1) -> word (vsize v1) -> A)
- (EQ : vsize v1 = vsize v2) : A :=
- let w2 := unify_word (vsize v1) (vsize v2) (vword v2) EQ in
- f (vword v1) w2.
-
-Definition map_any_opt {A : Type} (sz : nat) (v1 v2 : value) (f : word (vsize v1) -> word (vsize v1) -> A)
- : option A :=
- match value_eq_size v1 v2 with
- | left EQ =>
- Some (map_any v1 v2 f EQ)
- | _ => None
- end.
-
-Definition map_word (f : forall sz : nat, word sz -> word sz) (v : value) : value :=
- mkvalue (vsize v) (f (vsize v) (vword v)).
-
-Definition map_word2 (f : forall sz : nat, word sz -> word sz -> word sz) (v1 v2 : value)
- (EQ : (vsize v1 = vsize v2)) : value :=
- let w2 := unify_word (vsize v1) (vsize v2) (vword v2) EQ in
- mkvalue (vsize v1) (f (vsize v1) (vword v1) w2).
-
-Definition map_word2_opt (f : forall sz : nat, word sz -> word sz -> word sz) (v1 v2 : value)
- : option value :=
- match value_eq_size v1 v2 with
- | left EQ => Some (map_word2 f v1 v2 EQ)
- | _ => None
- end.
-
-Definition eq_to_opt (v1 v2 : value) (f : vsize v1 = vsize v2 -> value)
- : option value :=
- match value_eq_size v1 v2 with
- | left EQ => Some (f EQ)
- | _ => None
- end.
-
-Lemma eqvalue {sz : nat} (x y : word sz) : x = y <-> mkvalue sz x = mkvalue sz y.
-Proof.
- split; intros.
- subst. reflexivity. inversion H. apply existT_wordToZ in H1.
- apply wordToZ_inj. assumption.
-Qed.
-
-Lemma eqvaluef {sz : nat} (x y : word sz) : x = y -> mkvalue sz x = mkvalue sz y.
-Proof. apply eqvalue. Qed.
-
-Lemma nevalue {sz : nat} (x y : word sz) : x <> y <-> mkvalue sz x <> mkvalue sz y.
-Proof. split; intros; intuition. apply H. apply eqvalue. assumption.
- apply H. rewrite H0. trivial.
-Qed.
-
-Lemma nevaluef {sz : nat} (x y : word sz) : x <> y -> mkvalue sz x <> mkvalue sz y.
-Proof. apply nevalue. Qed.
-
-(*Definition rewrite_word_size (initsz finalsz : nat) (w : word initsz)
- : option (word finalsz) :=
- match Nat.eqb initsz finalsz return option (word finalsz) with
- | true => Some _
- | false => None
- end.*)
-
-Definition valueeq (sz : nat) (x y : word sz) :
- {mkvalue sz x = mkvalue sz y} + {mkvalue sz x <> mkvalue sz y} :=
- match weq x y with
- | left eq => left (eqvaluef x y eq)
- | right ne => right (nevaluef x y ne)
- end.
-
-Definition valueeqb (x y : value) : bool :=
- match value_eq_size x y with
- | left EQ =>
- weqb (vword x) (unify_word (vsize x) (vsize y) (vword y) EQ)
- | right _ => false
- end.
-
-Definition value_projZ_eqb (v1 v2 : value) : bool := Z.eqb (valueToZ v1) (valueToZ v2).
-
-Theorem value_projZ_eqb_true :
- forall v1 v2,
- v1 = v2 -> value_projZ_eqb v1 v2 = true.
-Proof. intros. subst. unfold value_projZ_eqb. apply Z.eqb_eq. trivial. Qed.
-
-Theorem valueeqb_true_iff :
- forall v1 v2,
- valueeqb v1 v2 = true <-> v1 = v2.
-Proof.
- split; intros.
- unfold valueeqb in H. destruct (value_eq_size v1 v2) eqn:?.
- - destruct v1, v2. simpl in H.
-Abort.
-
-Definition value_int_eqb (v : value) (i : int) : bool :=
- Z.eqb (valueToZ v) (Int.unsigned i).
-
-(** Arithmetic operations over [value], interpreting them as signed or unsigned
-depending on the operation.
-
-The arithmetic operations over [word] are over [N] by default, however, can also
-be called over [Z] explicitly, which is where the bits are interpreted in a
-signed manner. *)
-
-Definition vplus v1 v2 := map_word2 wplus v1 v2.
-Definition vplus_opt v1 v2 := map_word2_opt wplus v1 v2.
-Definition vminus v1 v2 := map_word2 wminus v1 v2.
-Definition vmul v1 v2 := map_word2 wmult v1 v2.
-Definition vdiv v1 v2 := map_word2 wdiv v1 v2.
-Definition vmod v1 v2 := map_word2 wmod v1 v2.
-
-Definition vmuls v1 v2 := map_word2 wmultZ v1 v2.
-Definition vdivs v1 v2 := map_word2 wdivZ v1 v2.
-Definition vmods v1 v2 := map_word2 wremZ v1 v2.
-
-(** ** Bitwise operations
-
-Bitwise operations over [value], which is independent of whether the number is
-signed or unsigned. *)
-
-Definition vnot v := map_word wnot v.
-Definition vneg v := map_word wneg v.
-Definition vbitneg v := boolToValue (vsize v) (negb (valueToBool v)).
-Definition vor v1 v2 := map_word2 wor v1 v2.
-Definition vand v1 v2 := map_word2 wand v1 v2.
-Definition vxor v1 v2 := map_word2 wxor v1 v2.
-
-(** ** Comparison operators
-
-Comparison operators that return a bool, there should probably be an equivalent
-which returns another number, however I might just add that as an explicit
-conversion. *)
-
-Definition veqb v1 v2 := map_any v1 v2 (@weqb (vsize v1)).
-Definition vneb v1 v2 EQ := negb (veqb v1 v2 EQ).
-
-Definition veq v1 v2 EQ := boolToValue (vsize v1) (veqb v1 v2 EQ).
-Definition vne v1 v2 EQ := boolToValue (vsize v1) (vneb v1 v2 EQ).
-
-Definition vltb v1 v2 := map_any v1 v2 wltb.
-Definition vleb v1 v2 EQ := negb (map_any v2 v1 wltb (eq_sym EQ)).
-Definition vgtb v1 v2 EQ := map_any v2 v1 wltb (eq_sym EQ).
-Definition vgeb v1 v2 EQ := negb (map_any v1 v2 wltb EQ).
-
-Definition vltsb v1 v2 := map_any v1 v2 wsltb.
-Definition vlesb v1 v2 EQ := negb (map_any v2 v1 wsltb (eq_sym EQ)).
-Definition vgtsb v1 v2 EQ := map_any v2 v1 wsltb (eq_sym EQ).
-Definition vgesb v1 v2 EQ := negb (map_any v1 v2 wsltb EQ).
-
-Definition vlt v1 v2 EQ := boolToValue (vsize v1) (vltb v1 v2 EQ).
-Definition vle v1 v2 EQ := boolToValue (vsize v1) (vleb v1 v2 EQ).
-Definition vgt v1 v2 EQ := boolToValue (vsize v1) (vgtb v1 v2 EQ).
-Definition vge v1 v2 EQ := boolToValue (vsize v1) (vgeb v1 v2 EQ).
-
-Definition vlts v1 v2 EQ := boolToValue (vsize v1) (vltsb v1 v2 EQ).
-Definition vles v1 v2 EQ := boolToValue (vsize v1) (vlesb v1 v2 EQ).
-Definition vgts v1 v2 EQ := boolToValue (vsize v1) (vgtsb v1 v2 EQ).
-Definition vges v1 v2 EQ := boolToValue (vsize v1) (vgesb v1 v2 EQ).
-
-(** ** Shift operators
-
-Shift operators on values. *)
-
-Definition shift_map (sz : nat) (f : word sz -> nat -> word sz) (w1 w2 : word sz) :=
- f w1 (wordToNat w2).
-
-Definition vshl v1 v2 := map_word2 (fun sz => shift_map sz (@wlshift sz)) v1 v2.
-Definition vshr v1 v2 := map_word2 (fun sz => shift_map sz (@wrshift sz)) v1 v2.
-
-Module HexNotationValue.
- Export HexNotation.
- Import WordScope.
-
- Notation "sz ''h' a" := (NToValue sz (hex a)) (at level 50).
-
-End HexNotationValue.
-
-Inductive val_value_lessdef: val -> value -> Prop :=
-| val_value_lessdef_int:
- forall i v',
- i = valueToInt v' ->
- val_value_lessdef (Vint i) v'
-| val_value_lessdef_ptr:
- forall b off v',
- off = valueToPtr v' ->
- (Z.modulo (uvalueToZ v') 4) = 0%Z ->
- val_value_lessdef (Vptr b off) v'
-| lessdef_undef: forall v, val_value_lessdef Vundef v.
-
-Inductive opt_val_value_lessdef: option val -> value -> Prop :=
-| opt_lessdef_some:
- forall v v', val_value_lessdef v v' -> opt_val_value_lessdef (Some v) v'
-| opt_lessdef_none: forall v, opt_val_value_lessdef None v.
-
-Lemma valueToZ_ZToValue :
- forall n z,
- (- Z.of_nat (2 ^ n) <= z < Z.of_nat (2 ^ n))%Z ->
- valueToZ (ZToValue (S n) z) = z.
-Proof.
- unfold valueToZ, ZToValue. simpl.
- auto using wordToZ_ZToWord.
-Qed.
-
-Lemma uvalueToZ_ZToValue :
- forall n z,
- (0 <= z < 2 ^ Z.of_nat n)%Z ->
- uvalueToZ (ZToValue n z) = z.
-Proof.
- unfold uvalueToZ, ZToValue. simpl.
- auto using uwordToZ_ZToWord.
-Qed.
-
-Lemma uvalueToZ_ZToValue_full :
- forall sz : nat,
- (0 < sz)%nat ->
- forall z : Z, uvalueToZ (ZToValue sz z) = (z mod 2 ^ Z.of_nat sz)%Z.
-Proof. unfold uvalueToZ, ZToValue. simpl. auto using uwordToZ_ZToWord_full. Qed.
-
-Lemma ZToValue_uvalueToZ :
- forall v,
- ZToValue (vsize v) (uvalueToZ v) = v.
-Proof.
- intros.
- unfold ZToValue, uvalueToZ.
- rewrite ZToWord_uwordToZ. destruct v; auto.
-Qed.
-
-Lemma valueToPos_posToValueAuto :
- forall p, valueToPos (posToValueAuto p) = p.
-Proof.
- intros. unfold valueToPos, posToValueAuto.
- rewrite uvalueToZ_ZToValue. auto. rewrite positive_nat_Z.
- split. apply Zle_0_pos.
-
- assert (p < 2 ^ (Pos.size p))%positive by apply Pos.size_gt.
- inversion H. rewrite <- Z.compare_lt_iff. rewrite <- H1.
- simpl. rewrite <- Pos2Z.inj_pow_pos. trivial.
-Qed.
-
-Lemma valueToPos_posToValue :
- forall p, valueToPos (posToValueAuto p) = p.
-Proof.
- intros. unfold valueToPos, posToValueAuto.
- rewrite uvalueToZ_ZToValue. auto. rewrite positive_nat_Z.
- split. apply Zle_0_pos.
-
- assert (p < 2 ^ (Pos.size p))%positive by apply Pos.size_gt.
- inversion H. rewrite <- Z.compare_lt_iff. rewrite <- H1.
- simpl. rewrite <- Pos2Z.inj_pow_pos. trivial.
-Qed.
-
-Lemma valueToInt_intToValue :
- forall v,
- valueToInt (intToValue v) = v.
-Proof.
- intros.
- unfold valueToInt, intToValue. rewrite uvalueToZ_ZToValue. auto using Int.repr_unsigned.
- split. apply Int.unsigned_range_2.
- assert ((Int.unsigned v <= Int.max_unsigned)%Z) by apply Int.unsigned_range_2.
- apply Z.lt_le_pred in H. apply H.
-Qed.
-
-Lemma valueToPtr_ptrToValue :
- forall v,
- valueToPtr (ptrToValue v) = v.
-Proof.
- intros.
- unfold valueToPtr, ptrToValue. rewrite uvalueToZ_ZToValue. auto using Ptrofs.repr_unsigned.
- split. apply Ptrofs.unsigned_range_2.
- assert ((Ptrofs.unsigned v <= Ptrofs.max_unsigned)%Z) by apply Ptrofs.unsigned_range_2.
- apply Z.lt_le_pred in H. apply H.
-Qed.
-
-Lemma intToValue_valueToInt :
- forall v,
- vsize v = 32%nat ->
- intToValue (valueToInt v) = v.
-Proof.
- intros. unfold valueToInt, intToValue. rewrite Int.unsigned_repr_eq.
- unfold ZToValue, uvalueToZ. unfold Int.modulus. unfold Int.wordsize. unfold Wordsize_32.wordsize.
- pose proof (uwordToZ_bound (vword v)).
- rewrite Z.mod_small. rewrite <- H. rewrite ZToWord_uwordToZ. destruct v; auto.
- rewrite <- H. rewrite two_power_nat_equiv. apply H0.
-Qed.
-
-Lemma ptrToValue_valueToPtr :
- forall v,
- vsize v = 32%nat ->
- ptrToValue (valueToPtr v) = v.
-Proof.
- intros. unfold valueToPtr, ptrToValue. rewrite Ptrofs.unsigned_repr_eq.
- unfold ZToValue, uvalueToZ. unfold Ptrofs.modulus. unfold Ptrofs.wordsize. unfold Wordsize_Ptrofs.wordsize.
- pose proof (uwordToZ_bound (vword v)).
- rewrite Z.mod_small. rewrite <- H. rewrite ZToWord_uwordToZ. destruct v; auto.
- rewrite <- H. rewrite two_power_nat_equiv. apply H0.
-Qed.
-
-Lemma valToValue_lessdef :
- forall v v',
- valToValue v = Some v' ->
- val_value_lessdef v v'.
-Proof.
- intros.
- destruct v; try discriminate; constructor.
- unfold valToValue in H. inversion H.
- symmetry. apply valueToInt_intToValue.
- inv H. destruct (uvalueToZ (ptrToValue i) mod 4 =? 0); try discriminate.
- inv H1. symmetry. apply valueToPtr_ptrToValue.
- inv H. destruct (uvalueToZ (ptrToValue i) mod 4 =? 0) eqn:?; try discriminate.
- inv H1. apply Z.eqb_eq. apply Heqb0.
-Qed.
-
-Lemma boolToValue_ValueToBool :
- forall b,
- valueToBool (boolToValue 32 b) = b.
-Proof. destruct b; auto. Qed.
-
-Local Open Scope Z.
-
-Ltac word_op_value H :=
- intros; unfold uvalueToZ, ZToValue; simpl; rewrite unify_word_unfold;
- rewrite <- H; rewrite uwordToZ_ZToWord_full; auto; omega.
-
-Lemma zadd_vplus :
- forall sz z1 z2,
- (sz > 0)%nat ->
- uvalueToZ (vplus (ZToValue sz z1) (ZToValue sz z2) eq_refl) = (z1 + z2) mod 2 ^ Z.of_nat sz.
-Proof. word_op_value ZToWord_plus. Qed.
-
-Lemma zadd_vplus2 :
- forall z1 z2,
- vplus (ZToValue 32 z1) (ZToValue 32 z2) eq_refl = ZToValue 32 (z1 + z2).
-Proof.
- intros. unfold vplus, ZToValue, map_word2. rewrite unify_word_unfold. simpl.
- rewrite ZToWord_plus; auto.
-Qed.
-
-Lemma ZToValue_eq :
- forall w1,
- (mkvalue 32 w1) = (ZToValue 32 (wordToZ w1)). Abort.
-
-Lemma wordsize_32 :
- Int.wordsize = 32%nat.
-Proof. auto. Qed.
-
-Lemma intadd_vplus :
- forall i1 i2,
- valueToInt (vplus (intToValue i1) (intToValue i2) eq_refl) = Int.add i1 i2.
-Proof.
- intros. unfold Int.add, valueToInt, intToValue. rewrite zadd_vplus.
- rewrite <- Int.unsigned_repr_eq.
- rewrite Int.repr_unsigned. auto. rewrite wordsize_32. omega.
-Qed.
-
-(*Lemma intadd_vplus2 :
- forall v1 v2 EQ,
- vsize v1 = 32%nat ->
- Int.add (valueToInt v1) (valueToInt v2) = valueToInt (vplus v1 v2 EQ).
-Proof.
- intros. unfold Int.add, valueToInt, intToValue. repeat (rewrite Int.unsigned_repr).
- rewrite (@vadd_vplus v1 v2 EQ). trivial.
- unfold uvalueToZ. pose proof (@uwordToZ_bound (vsize v2) (vword v2)).
- rewrite H in EQ. rewrite <- EQ in H0 at 3.*)
- (*rewrite zadd_vplus3. trivia*)
-
-Lemma valadd_vplus :
- forall v1 v2 v1' v2' v v' EQ,
- val_value_lessdef v1 v1' ->
- val_value_lessdef v2 v2' ->
- Val.add v1 v2 = v ->
- vplus v1' v2' EQ = v' ->
- val_value_lessdef v v'.
-Proof.
- intros. inv H; inv H0; constructor; simplify.
- Abort.
-
-Lemma zsub_vminus :
- forall sz z1 z2,
- (sz > 0)%nat ->
- uvalueToZ (vminus (ZToValue sz z1) (ZToValue sz z2) eq_refl) = (z1 - z2) mod 2 ^ Z.of_nat sz.
-Proof. word_op_value ZToWord_minus. Qed.
-
-Lemma zmul_vmul :
- forall sz z1 z2,
- (sz > 0)%nat ->
- uvalueToZ (vmul (ZToValue sz z1) (ZToValue sz z2) eq_refl) = (z1 * z2) mod 2 ^ Z.of_nat sz.
-Proof. word_op_value ZToWord_mult. Qed.
-
-Local Open Scope N.
-Lemma zdiv_vdiv :
- forall n1 n2,
- n1 < 2 ^ 32 ->
- n2 < 2 ^ 32 ->
- n1 / n2 < 2 ^ 32 ->
- valueToN (vdiv (NToValue 32 n1) (NToValue 32 n2) eq_refl) = n1 / n2.
-Proof.
- intros; unfold valueToN, NToValue; simpl; rewrite unify_word_unfold. unfold wdiv.
- unfold wordBin. repeat (rewrite wordToN_NToWord_2); auto.
-Qed.
-
-Lemma ZToValue_valueToNat :
- forall x sz,
- (sz > 0)%nat ->
- (0 <= x < 2^(Z.of_nat sz))%Z ->
- valueToNat (ZToValue sz x) = Z.to_nat x.
-Proof.
- destruct x; intros; unfold ZToValue, valueToNat; crush.
- - rewrite wzero'_def. apply wordToNat_wzero.
- - rewrite posToWord_nat. rewrite wordToNat_natToWord_2. trivial.
- clear H1.
- lazymatch goal with
- | [ H : context[(_ < ?x)%Z] |- _ ] => replace x with (Z.of_nat (Z.to_nat x)) in H
- end.
- 2: { apply Z2Nat.id; apply Z.pow_nonneg; lia. }
-
- rewrite Z2Nat.inj_pow in H2; crush.
- replace (Pos.to_nat 2) with 2%nat in H2 by reflexivity.
- rewrite Nat2Z.id in H2.
- rewrite <- positive_nat_Z in H2.
- apply Nat2Z.inj_lt in H2.
- assumption.
-Qed.
-*)