aboutsummaryrefslogtreecommitdiffstats
path: root/docs/scheduler.org
blob: c8b00ff55daa7e263ec3d0eb6e2ca12b764d2510 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
#+title: Basic Block Generation
#+author: Yann Herklotz
#+email: yann [at] yannherklotz [dot] com

* Scheduler
:PROPERTIES:
:header-args:ocaml: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/Schedule.ml
:END:

#+begin_src ocaml :comments no :padline no :exports none
<<license>>
#+end_src

#+name: scheduler-main
#+begin_src ocaml
open Printf
open Clflags
open Camlcoq
open Datatypes
open Coqlib
open Maps
open AST
open Kildall
open Op
open RTLBlockInstr
open Predicate
open RTLBlock
open HTL
open Verilog
open HTLgen
open HTLMonad
open HTLMonadExtra

module SS = Set.Make(P)

type svtype =
  | BBType of int
  | VarType of int * int

type sv = {
  sv_type: svtype;
  sv_num: int;
}

let print_sv v =
  match v with
  | { sv_type = BBType bbi; sv_num = n } -> sprintf "bb%d_%d" bbi n
  | { sv_type = VarType (bbi, i); sv_num = n } -> sprintf "var%dn%d_%d" bbi i n

module G = Graph.Persistent.Digraph.ConcreteLabeled(struct
  type t = sv
  let compare = compare
  let equal = (=)
  let hash = Hashtbl.hash
end)(struct
  type t = int
  let compare = compare
  let hash = Hashtbl.hash
  let equal = (=)
  let default = 0
end)

module GDot = Graph.Graphviz.Dot(struct
    let graph_attributes _ = []
    let default_vertex_attributes _ = []
    let vertex_name = print_sv
    let vertex_attributes _ = []
    let get_subgraph _ = None
    let default_edge_attributes _ = []
    let edge_attributes _ = []

    include G
  end)

module DFG = Graph.Persistent.Digraph.ConcreteLabeled(struct
  type t = int * instr
  let compare = compare
  let equal = (=)
  let hash = Hashtbl.hash
end)(struct
  type t = int
  let compare = compare
  let hash = Hashtbl.hash
  let equal = (=)
  let default = 0
end)

module DFGSimp = Graph.Persistent.Graph.Concrete(struct
    type t = int * instr
    let compare = compare
    let equal = (=)
    let hash = Hashtbl.hash
  end)

let convert dfg =
  DFG.fold_vertex (fun v g -> DFGSimp.add_vertex g v) dfg DFGSimp.empty
  |> DFG.fold_edges (fun v1 v2 g -> DFGSimp.add_edge (DFGSimp.add_edge g v1 v2) v2 v1) dfg

let reg r = sprintf "r%d" (P.to_int r)
let print_pred r = sprintf "p%d" (P.to_int r)

let print_instr = function
  | RBnop -> ""
  | RBload (_, _, _, _, r) -> sprintf "load(%s)" (reg r)
  | RBstore (_, _, _, _, r) -> sprintf "store(%s)" (reg r)
  | RBsetpred (_, _, _, p) -> sprintf "setpred(%s)" (print_pred p)
  | RBop (_, op, args, d) ->
    (match op, args with
    | Omove, _ -> "mov"
    | Ointconst n, _ -> sprintf "%s=%ld" (reg d) (camlint_of_coqint n)
    | Olongconst n, _ -> sprintf "%s=%LdL" (reg d) (camlint64_of_coqint n)
    | Ofloatconst n, _ -> sprintf "%s=%.15F" (reg d) (camlfloat_of_coqfloat n)
    | Osingleconst n, _ -> sprintf "%s=%.15Ff" (reg d) (camlfloat_of_coqfloat32 n)
    | Oindirectsymbol id, _ -> sprintf "%s=&%s" (reg d) (extern_atom id)
    | Ocast8signed, [r1] -> sprintf "%s=int8signed(%s)" (reg d) (reg r1)
    | Ocast8unsigned, [r1] -> sprintf "%s=int8unsigned(%s)" (reg d) (reg r1)
    | Ocast16signed, [r1] -> sprintf "%s=int16signed(%s)" (reg d) (reg r1)
    | Ocast16unsigned, [r1] -> sprintf "%s=int16unsigned(%s)" (reg d) (reg r1)
    | Oneg, [r1] -> sprintf "%s=-%s" (reg d) (reg r1)
    | Osub, [r1;r2] -> sprintf "%s=%s-%s" (reg d) (reg r1) (reg r2)
    | Omul, [r1;r2] -> sprintf "%s=%s*%s" (reg d) (reg r1) (reg r2)
    | Omulimm n, [r1] -> sprintf "%s=%s*%ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Omulhs, [r1;r2] -> sprintf "%s=mulhs(%s,%s)" (reg d) (reg r1) (reg r2)
    | Omulhu, [r1;r2] -> sprintf "%s=mulhu(%s,%s)" (reg d) (reg r1) (reg r2)
    | Odiv, [r1;r2] -> sprintf "%s=%s /s %s" (reg d) (reg r1) (reg r2)
    | Odivu, [r1;r2] -> sprintf "%s=%s /u %s" (reg d) (reg r1) (reg r2)
    | Omod, [r1;r2] -> sprintf "%s=%s %%s %s" (reg d) (reg r1) (reg r2)
    | Omodu, [r1;r2] -> sprintf "%s=%s %%u %s" (reg d) (reg r1) (reg r2)
    | Oand, [r1;r2] -> sprintf "%s=%s & %s" (reg d) (reg r1) (reg r2)
    | Oandimm n, [r1] -> sprintf "%s=%s & %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Oor, [r1;r2] -> sprintf "%s=%s | %s" (reg d) (reg r1) (reg r2)
    | Oorimm n, [r1] ->  sprintf "%s=%s | %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Oxor, [r1;r2] -> sprintf "%s=%s ^ %s" (reg d) (reg r1) (reg r2)
    | Oxorimm n, [r1] -> sprintf "%s=%s ^ %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Onot, [r1] -> sprintf "%s=not(%s)" (reg d) (reg r1)
    | Oshl, [r1;r2] -> sprintf "%s=%s << %s" (reg d) (reg r1) (reg r2)
    | Oshlimm n, [r1] -> sprintf "%s=%s << %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Oshr, [r1;r2] -> sprintf "%s=%s >>s %s" (reg d) (reg r1) (reg r2)
    | Oshrimm n, [r1] -> sprintf "%s=%s >>s %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Oshrximm n, [r1] -> sprintf "%s=%s >>x %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Oshru, [r1;r2] -> sprintf "%s=%s >>u %s" (reg d) (reg r1) (reg r2)
    | Oshruimm n, [r1] -> sprintf "%s=%s >>u %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Ororimm n, [r1] -> sprintf "%s=%s ror %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Oshldimm n, [r1;r2] -> sprintf "%s=(%s, %s) << %ld" (reg d) (reg r1) (reg r2) (camlint_of_coqint n)
    | Olea addr, args -> sprintf "%s=addr" (reg d)
    | Omakelong, [r1;r2] -> sprintf "%s=makelong(%s,%s)" (reg d) (reg r1) (reg r2)
    | Olowlong, [r1] -> sprintf "%s=lowlong(%s)" (reg d) (reg r1)
    | Ohighlong, [r1] -> sprintf "%s=highlong(%s)" (reg d) (reg r1)
    | Ocast32signed, [r1] -> sprintf "%s=long32signed(%s)" (reg d) (reg r1)
    | Ocast32unsigned, [r1] -> sprintf "%s=long32unsigned(%s)" (reg d) (reg r1)
    | Onegl, [r1] -> sprintf "%s=-l %s" (reg d) (reg r1)
    | Osubl, [r1;r2] -> sprintf "%s=%s -l %s" (reg d) (reg r1) (reg r2)
    | Omull, [r1;r2] -> sprintf "%s=%s *l %s" (reg d) (reg r1) (reg r2)
    | Omullimm n, [r1] -> sprintf "%s=%s *l %Ld" (reg d) (reg r1) (camlint64_of_coqint n)
    | Omullhs, [r1;r2] -> sprintf "%s=mullhs(%s,%s)" (reg d) (reg r1) (reg r2)
    | Omullhu, [r1;r2] -> sprintf "%s=mullhu(%s,%s)" (reg d) (reg r1) (reg r2)
    | Odivl, [r1;r2] -> sprintf "%s=%s /ls %s" (reg d) (reg r1) (reg r2)
    | Odivlu, [r1;r2] -> sprintf "%s=%s /lu %s" (reg d) (reg r1) (reg r2)
    | Omodl, [r1;r2] -> sprintf "%s=%s %%ls %s" (reg d) (reg r1) (reg r2)
    | Omodlu, [r1;r2] -> sprintf "%s=%s %%lu %s" (reg d) (reg r1) (reg r2)
    | Oandl, [r1;r2] -> sprintf "%s=%s &l %s" (reg d) (reg r1) (reg r2)
    | Oandlimm n, [r1] -> sprintf "%s=%s &l %Ld" (reg d) (reg r1) (camlint64_of_coqint n)
    | Oorl, [r1;r2] -> sprintf "%s=%s |l %s" (reg d) (reg r1) (reg r2)
    | Oorlimm n, [r1] ->  sprintf "%s=%s |l %Ld" (reg d) (reg r1) (camlint64_of_coqint n)
    | Oxorl, [r1;r2] -> sprintf "%s=%s ^l %s" (reg d) (reg r1) (reg r2)
    | Oxorlimm n, [r1] -> sprintf "%s=%s ^l %Ld" (reg d) (reg r1) (camlint64_of_coqint n)
    | Onotl, [r1] -> sprintf "%s=notl(%s)" (reg d) (reg r1)
    | Oshll, [r1;r2] -> sprintf "%s=%s <<l %s" (reg d) (reg r1) (reg r2)
    | Oshllimm n, [r1] -> sprintf "%s=%s <<l %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Oshrl, [r1;r2] -> sprintf "%s=%s >>ls %s" (reg d) (reg r1) (reg r2)
    | Oshrlimm n, [r1] -> sprintf "%s=%s >>ls %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Oshrxlimm n, [r1] -> sprintf "%s=%s >>lx %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Oshrlu, [r1;r2] -> sprintf "%s=%s >>lu %s" (reg d) (reg r1) (reg r2)
    | Oshrluimm n, [r1] -> sprintf "%s=%s >>lu %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Ororlimm n, [r1] -> sprintf "%s=%s rorl %ld" (reg d) (reg r1) (camlint_of_coqint n)
    | Oleal addr, args -> sprintf "%s=addr" (reg d)
    | Onegf, [r1] -> sprintf "%s=negf(%s)" (reg d) (reg r1)
    | Oabsf, [r1] -> sprintf "%s=absf(%s)" (reg d) (reg r1)
    | Oaddf, [r1;r2] -> sprintf "%s=%s +f %s" (reg d) (reg r1) (reg r2)
    | Osubf, [r1;r2] -> sprintf "%s=%s -f %s" (reg d) (reg r1) (reg r2)
    | Omulf, [r1;r2] -> sprintf "%s=%s *f %s" (reg d) (reg r1) (reg r2)
    | Odivf, [r1;r2] -> sprintf "%s=%s /f %s" (reg d) (reg r1) (reg r2)
    | Onegfs, [r1] -> sprintf "%s=negfs(%s)" (reg d) (reg r1)
    | Oabsfs, [r1] -> sprintf "%s=absfs(%s)" (reg d) (reg r1)
    | Oaddfs, [r1;r2] -> sprintf "%s=%s +fs %s" (reg d) (reg r1) (reg r2)
    | Osubfs, [r1;r2] -> sprintf "%s=%s -fs %s" (reg d) (reg r1) (reg r2)
    | Omulfs, [r1;r2] -> sprintf "%s=%s *fs %s" (reg d) (reg r1) (reg r2)
    | Odivfs, [r1;r2] -> sprintf "%s=%s /fs %s" (reg d) (reg r1) (reg r2)
    | Osingleoffloat, [r1] -> sprintf "%s=singleoffloat(%s)" (reg d) (reg r1)
    | Ofloatofsingle, [r1] -> sprintf "%s=floatofsingle(%s)" (reg d) (reg r1)
    | Ointoffloat, [r1] -> sprintf "%s=intoffloat(%s)" (reg d) (reg r1)
    | Ofloatofint, [r1] -> sprintf "%s=floatofint(%s)" (reg d) (reg r1)
    | Ointofsingle, [r1] -> sprintf "%s=intofsingle(%s)" (reg d) (reg r1)
    | Osingleofint, [r1] -> sprintf "%s=singleofint(%s)" (reg d) (reg r1)
    | Olongoffloat, [r1] -> sprintf "%s=longoffloat(%s)" (reg d) (reg r1)
    | Ofloatoflong, [r1] -> sprintf "%s=floatoflong(%s)" (reg d) (reg r1)
    | Olongofsingle, [r1] -> sprintf "%s=longofsingle(%s)" (reg d) (reg r1)
    | Osingleoflong, [r1] -> sprintf "%s=singleoflong(%s)" (reg d) (reg r1)
    | Ocmp c, args -> sprintf "%s=cmp" (reg d)
    | Osel (c, ty), r1::r2::args -> sprintf "%s=sel" (reg d)
    | _, _ -> sprintf "N/a")

module DFGDot = Graph.Graphviz.Dot(struct
    let graph_attributes _ = []
    let default_vertex_attributes _ = []
    let vertex_name = function (i, instr) -> sprintf "\"%d:%s\"" i (print_instr instr)
    let vertex_attributes _ = []
    let get_subgraph _ = None
    let default_edge_attributes _ = []
    let edge_attributes _ = []

    include DFG
  end)

module DFGDfs = Graph.Traverse.Dfs(DFG)

module IMap = Map.Make (struct
  type t = int

  let compare = compare
end)

let gen_vertex instrs i = (i, List.nth instrs i)

(** The DFG type defines a list of instructions with their data dependencies as [edges], which are
   the pairs of integers that represent the index of the instruction in the [nodes].  The edges
   always point from left to right. *)

let print_list f out_chan a =
  fprintf out_chan "[ ";
  List.iter (fprintf out_chan "%a " f) a;
  fprintf out_chan "]"

let print_tuple out_chan a =
  let l, r = a in
  fprintf out_chan "(%d,%d)" l r

(*let print_dfg out_chan dfg =
  fprintf out_chan "{ nodes = %a, edges = %a }"
    (print_list PrintRTLBlockInstr.print_bblock_body)
    dfg.nodes (print_list print_tuple) dfg.edges*)

let print_dfg = DFGDot.output_graph

let read_process command =
  let buffer_size = 2048 in
  let buffer = Buffer.create buffer_size in
  let string = Bytes.create buffer_size in
  let in_channel = Unix.open_process_in command in
  let chars_read = ref 1 in
  while !chars_read <> 0 do
    chars_read := input in_channel string 0 buffer_size;
    Buffer.add_substring buffer (Bytes.to_string string) 0 !chars_read
  done;
  ignore (Unix.close_process_in in_channel);
  Buffer.contents buffer

let comb_delay = function
  | RBnop -> 0
  | RBop (_, op, _, _) ->
    (match op with
     | Omove -> 0
     | Ointconst _ -> 0
     | Olongconst _ -> 0
     | Ocast8signed -> 0
     | Ocast8unsigned -> 0
     | Ocast16signed -> 0
     | Ocast16unsigned -> 0
     | Oneg -> 0
     | Onot -> 0
     | Oor -> 0
     | Oorimm _ -> 0
     | Oand -> 0
     | Oandimm _ -> 0
     | Oxor -> 0
     | Oxorimm _ -> 0
     | Omul -> 8
     | Omulimm _ -> 8
     | Omulhs -> 8
     | Omulhu -> 8
     | Odiv -> 72
     | Odivu -> 72
     | Omod -> 72
     | Omodu -> 72
     | _ -> 1)
  | _ -> 1

let pipeline_stages = function
  | RBload _ -> 2
  | RBop (_, op, _, _) ->
    (match op with
     | Odiv -> 32
     | Odivu -> 32
     | Omod -> 32
     | Omodu -> 32
     | _ -> 0)
  | _ -> 0

(** Add a dependency if it uses a register that was written to previously. *)
let add_dep map i tree dfg curr =
  match PTree.get curr tree with
  | None -> dfg
  | Some ip ->
    let ipv = (List.nth map ip) in
    DFG.add_edge_e dfg (ipv, comb_delay (snd (List.nth map i)), List.nth map i)

(** This function calculates the dependencies of each instruction.  The nodes correspond to previous
   registers that were allocated and show which instruction caused it.

   This function only gathers the RAW constraints, and will therefore only be active for operations
   that modify registers, which is this case only affects loads and operations. *)
let accumulate_RAW_deps map dfg curr =
  let i, dst_map, graph = dfg in
  let acc_dep_instruction rs dst =
    ( i + 1,
      PTree.set dst i dst_map,
      List.fold_left (add_dep map i dst_map) graph rs
    )
  in
  let acc_dep_instruction_nodst rs =
    ( i + 1,
      dst_map,
    List.fold_left (add_dep map i dst_map) graph rs)
  in
  match curr with
  | RBop (op, _, rs, dst) -> acc_dep_instruction rs dst
  | RBload (op, _mem, _addr, rs, dst) -> acc_dep_instruction rs dst
  | RBsetpred (_op, _mem, rs, _p) -> acc_dep_instruction_nodst rs
  | RBstore (op, _mem, _addr, rs, src) -> acc_dep_instruction_nodst (src :: rs)
  | _ -> (i + 1, dst_map, graph)

(** Finds the next write to the [dst] register.  This is a small optimisation so that only one
   dependency is generated for a data dependency. *)
let rec find_next_dst_write i dst i' curr =
  let check_dst dst' curr' =
    if dst = dst' then Some (i, i')
    else find_next_dst_write i dst (i' + 1) curr'
  in
  match curr with
  | [] -> None
  | RBop (_, _, _, dst') :: curr' -> check_dst dst' curr'
  | RBload (_, _, _, _, dst') :: curr' -> check_dst dst' curr'
  | _ :: curr' -> find_next_dst_write i dst (i' + 1) curr'

let rec find_all_next_dst_read i dst i' curr =
  let check_dst rs curr' =
    if List.exists (fun x -> x = dst) rs
    then (i, i') :: find_all_next_dst_read i dst (i' + 1) curr'
    else find_all_next_dst_read i dst (i' + 1) curr'
  in
  match curr with
  | [] -> []
  | RBop (_, _, rs, _) :: curr' -> check_dst rs curr'
  | RBload (_, _, _, rs, _) :: curr' -> check_dst rs curr'
  | RBstore (_, _, _, rs, src) :: curr' -> check_dst (src :: rs) curr'
  | RBnop :: curr' -> find_all_next_dst_read i dst (i' + 1) curr'
  | RBsetpred (_, _, rs, _) :: curr' -> check_dst rs curr'

let drop i lst =
  let rec drop' i' lst' =
    match lst' with
    | _ :: ls -> if i' = i then ls else drop' (i' + 1) ls
    | [] -> []
  in
  if i = 0 then lst else drop' 1 lst

let take i lst =
  let rec take' i' lst' =
    match lst' with
    | l :: ls -> if i' = i then [ l ] else l :: take' (i' + 1) ls
    | [] -> []
  in
  if i = 0 then [] else take' 1 lst

let rec next_store i = function
  | [] -> None
  | RBstore (_, _, _, _, _) :: _ -> Some i
  | _ :: rst -> next_store (i + 1) rst

let rec next_load i = function
  | [] -> None
  | RBload (_, _, _, _, _) :: _ -> Some i
  | _ :: rst -> next_load (i + 1) rst

let accumulate_RAW_mem_deps instrs dfg curri =
  let i, curr = curri in
  match curr with
  | RBload (_, _, _, _, _) -> (
      match next_store 0 (take i instrs |> List.rev) with
      | None -> dfg
      | Some d -> DFG.add_edge dfg (gen_vertex instrs (i - d - 1)) (gen_vertex instrs i) )
  | _ -> dfg

let accumulate_WAR_mem_deps instrs dfg curri =
  let i, curr = curri in
  match curr with
  | RBstore (_, _, _, _, _) -> (
      match next_load 0 (take i instrs |> List.rev) with
      | None -> dfg
      | Some d -> DFG.add_edge dfg (gen_vertex instrs (i - d - 1)) (gen_vertex instrs i) )
  | _ -> dfg

let accumulate_WAW_mem_deps instrs dfg curri =
  let i, curr = curri in
  match curr with
  | RBstore (_, _, _, _, _) -> (
      match next_store 0 (take i instrs |> List.rev) with
      | None -> dfg
      | Some d -> DFG.add_edge dfg (gen_vertex instrs (i - d - 1)) (gen_vertex instrs i))
  | _ -> dfg

(** Predicate dependencies. *)

let rec in_predicate p p' =
  match p' with
  | Plit p'' -> P.to_int p = P.to_int (snd p'')
  | Pand (p1, p2) -> in_predicate p p1 || in_predicate p p2
  | Por (p1, p2) -> in_predicate p p1 || in_predicate p p2
  | Ptrue -> false
  | Pfalse -> false

let get_predicate = function
  | RBop (p, _, _, _) -> p
  | RBload (p, _, _, _, _) -> p
  | RBstore (p, _, _, _, _) -> p
  | RBsetpred (p, _, _, _) -> p
  | _ -> None

let rec next_setpred p i = function
  | [] -> None
  | RBsetpred (_, _, _, p') :: rst ->
    if in_predicate p' p then
      Some i
    else
      next_setpred p (i + 1) rst
  | _ :: rst -> next_setpred p (i + 1) rst

let rec next_preduse p i instr=
  let next p' rst =
    if in_predicate p p' then
      Some i
    else
      next_preduse p (i + 1) rst
  in
  match instr with
  | [] -> None
  | RBload (Some p', _, _, _, _) :: rst -> next p' rst
  | RBstore (Some p', _, _, _, _) :: rst -> next p' rst
  | RBop (Some p', _, _, _) :: rst -> next p' rst
  | RBsetpred (Some p', _, _, _) :: rst -> next p' rst
  | _ :: rst -> next_load (i + 1) rst

let accumulate_RAW_pred_deps instrs dfg curri =
  let i, curr = curri in
  match get_predicate curr with
  | Some p -> (
      match next_setpred p 0 (take i instrs |> List.rev) with
      | None -> dfg
      | Some d -> DFG.add_edge dfg (gen_vertex instrs (i - d - 1)) (gen_vertex instrs i) )
  | _ -> dfg

let accumulate_WAR_pred_deps instrs dfg curri =
  let i, curr = curri in
  match curr with
  | RBsetpred (_, _, _, p) -> (
      match next_preduse p 0 (take i instrs |> List.rev) with
      | None -> dfg
      | Some d -> DFG.add_edge dfg (gen_vertex instrs (i - d - 1)) (gen_vertex instrs i) )
  | _ -> dfg

let accumulate_WAW_pred_deps instrs dfg curri =
  let i, curr = curri in
  match curr with
  | RBsetpred (_, _, _, p) -> (
      match next_setpred (Plit (true, p)) 0 (take i instrs |> List.rev) with
      | None -> dfg
      | Some d -> DFG.add_edge dfg (gen_vertex instrs (i - d - 1)) (gen_vertex instrs i) )
  | _ -> dfg

(** This function calculates the WAW dependencies, which happen when two writes are ordered one
   after another and therefore have to be kept in that order.  This accumulation might be redundant
   if register renaming is done before hand, because then these dependencies can be avoided. *)
let accumulate_WAW_deps instrs dfg curri =
  let i, curr = curri in
  let dst_dep dst =
    match find_next_dst_write i dst (i + 1) (drop (i + 1) instrs) with
    | Some (a, b) -> DFG.add_edge dfg (gen_vertex instrs a) (gen_vertex instrs b)
    | _ -> dfg
  in
  match curr with
  | RBop (_, _, _, dst) -> dst_dep dst
  | RBload (_, _, _, _, dst) -> dst_dep dst
  | RBstore (_, _, _, _, _) -> (
      match next_store (i + 1) (drop (i + 1) instrs) with
      | None -> dfg
      | Some i' -> DFG.add_edge dfg (gen_vertex instrs i) (gen_vertex instrs i') )
  | _ -> dfg

let accumulate_WAR_deps instrs dfg curri =
  let i, curr = curri in
  let dst_dep dst =
    let dep_list = find_all_next_dst_read i dst 0 (take i instrs |> List.rev)
        |> List.map (function (d, d') -> (i - d' - 1, d))
    in
    List.fold_left (fun g ->
        function (d, d') -> DFG.add_edge g (gen_vertex instrs d) (gen_vertex instrs d')) dfg dep_list
  in
  match curr with
  | RBop (_, _, _, dst) -> dst_dep dst
  | RBload (_, _, _, _, dst) -> dst_dep dst
  | _ -> dfg

let assigned_vars vars = function
  | RBnop -> vars
  | RBop (_, _, _, dst) -> dst :: vars
  | RBload (_, _, _, _, dst) -> dst :: vars
  | RBstore (_, _, _, _, _) -> vars
  | RBsetpred (_, _, _, _) -> vars

let get_pred = function
  | RBnop -> None
  | RBop (op, _, _, _) -> op
  | RBload (op, _, _, _, _) -> op
  | RBstore (op, _, _, _, _) -> op
  | RBsetpred (_, _, _, _) -> None

let independant_pred p p' =
  match sat_pred_simple (Pand (p, p')) with
  | None -> true
  | _ -> false

let check_dependent op1 op2 =
  match op1, op2 with
  | Some p, Some p' -> not (independant_pred p p')
  | _, _ -> true

let remove_unnecessary_deps graph =
  let is_dependent v1 v2 g =
    let (_, instr1) = v1 in
    let (_, instr2) = v2 in
    if check_dependent (get_pred instr1) (get_pred instr2)
    then g
    else DFG.remove_edge g v1 v2
  in
  DFG.fold_edges is_dependent graph graph

(** All the nodes in the DFG have to come after the source of the basic block, and should terminate
   before the sink of the basic block.  After that, there should be constraints for data
   dependencies between nodes. *)
let gather_bb_constraints debug bb =
  let ibody = List.mapi (fun i a -> (i, a)) bb.bb_body in
  let dfg = List.fold_left (fun dfg v -> DFG.add_vertex dfg v) DFG.empty ibody in
  let _, _, dfg' =
    List.fold_left (accumulate_RAW_deps ibody)
      (0, PTree.empty, dfg)
      bb.bb_body
  in
  let dfg'' = List.fold_left (fun dfg f -> List.fold_left (f bb.bb_body) dfg ibody) dfg'
      [ accumulate_WAW_deps;
        accumulate_WAR_deps;
        accumulate_RAW_mem_deps;
        accumulate_WAR_mem_deps;
        accumulate_WAW_mem_deps;
        accumulate_RAW_pred_deps;
        accumulate_WAR_pred_deps;
        accumulate_WAW_pred_deps
      ]
  in
  let dfg''' = remove_unnecessary_deps dfg'' in
  (List.length bb.bb_body, dfg''', successors_instr bb.bb_exit)

let encode_var bbn n i = { sv_type = VarType (bbn, n); sv_num = i }
let encode_bb bbn i = { sv_type = BBType bbn; sv_num = i }

let add_initial_sv n dfg constr =
  let add_initial_sv' (i, instr) g =
    let pipes = pipeline_stages instr in
    if pipes > 0 then
      List.init pipes (fun i' -> i')
      |> List.fold_left (fun g i' ->
          G.add_edge_e g (encode_var n i i', -1, encode_var n i (i'+1))
        ) g
    else g
  in
  DFG.fold_vertex add_initial_sv' dfg constr

let add_super_nodes n dfg =
  DFG.fold_vertex (function v1 -> fun g ->
      (if DFG.in_degree dfg v1 = 0
       then G.add_edge_e g (encode_bb n 0, 0, encode_var n (fst v1) 0)
       else g) |>
      (fun g' ->
         if DFG.out_degree dfg v1 = 0
         then G.add_edge_e g' (encode_var n (fst v1) (pipeline_stages (snd v1)),
                               0, encode_bb n 1)
         else g')) dfg

let add_data_deps n =
  DFG.fold_edges_e (function ((i1, instr1), _, (i2, _)) -> fun g ->
      let end_sv = pipeline_stages instr1 in
      G.add_edge_e g (encode_var n i1 end_sv, 0, encode_var n i2 0)
    )

let add_ctrl_deps n succs constr =
  List.fold_left (fun g n' ->
      G.add_edge_e g (encode_bb n 1, -1, encode_bb n' 0)
    ) constr succs

module BFDFG = Graph.Path.BellmanFord(DFG)(struct
    include DFG
    type t = int
    let weight = DFG.E.label
    let compare = compare
    let add = (+)
    let zero = 0
  end)

module TopoDFG = Graph.Topological.Make(DFG)

let negate_graph constr =
  DFG.fold_edges_e (function (v1, e, v2) -> fun g ->
      DFG.add_edge_e g (v1, -e, v2)
    ) constr DFG.empty

let add_cycle_constr maxf n dfg constr =
  let negated_dfg = negate_graph dfg in
  let max_initial_del = DFG.fold_vertex (fun v1 g ->
      if DFG.in_degree dfg v1 = 0
      then max g (comb_delay (snd v1))
      else g) dfg 0 in
  let longest_path v = BFDFG.all_shortest_paths negated_dfg v
                       |> BFDFG.H.to_seq |> List.of_seq
                       |> List.map (function (x, y) -> (x, y - max_initial_del)) in
  let constrained_paths = List.filter (function (_, m) -> - m > maxf) in
  List.fold_left (fun g -> function (v, v', w) ->
      G.add_edge_e g (encode_var n (fst v) 0,
                      - (int_of_float (Float.ceil (Float.div (float_of_int w) (float_of_int maxf))) - 1),
                      encode_var n (fst v') 0)
    ) constr (DFG.fold_vertex (fun v l ->
      List.append l (longest_path v (*|> (function l -> List.iter (function (a, x) ->
          printf "c: %d %d\n" (fst a) x) l; l)*) |> constrained_paths (* |> (function l -> List.iter (function (a, x) ->
          printf "%d %d\n" (fst a) x) l; l)*)
                     |> List.map (function (v', w) -> (v, v', - w)))
    ) dfg [])

type resource =
  | Mem
  | SDiv
  | UDiv

type resources = {
  res_mem: DFG.V.t list;
  res_udiv: DFG.V.t list;
  res_sdiv: DFG.V.t list;
}

let find_resource = function
  | RBload _ -> Some Mem
  | RBstore _ -> Some Mem
  | RBop (_, op, _, _) ->
    ( match op with
      | Odiv -> Some SDiv
      | Odivu -> Some UDiv
      | Omod -> Some SDiv
      | Omodu -> Some UDiv
      | _ -> None )
  | _ -> None

let add_resource_constr n dfg constr =
  let res = TopoDFG.fold (function (i, instr) ->
    function {res_mem = ml; res_sdiv = sdl; res_udiv = udl} as r ->
    match find_resource instr with
    | Some SDiv -> {r with res_sdiv = (i, instr) :: sdl}
    | Some UDiv -> {r with res_udiv = (i, instr) :: udl}
    | Some Mem -> {r with res_mem = (i, instr) :: ml}
    | None -> r
    ) dfg {res_mem = []; res_sdiv = []; res_udiv = []}
  in
  let get_constraints l g = List.fold_left (fun gv v' ->
      match gv with
      | (g, None) -> (g, Some v')
      | (g, Some v) ->
        (G.add_edge_e g (encode_var n (fst v) 0, -1, encode_var n (fst v') 0), Some v')
    ) (g, None) l |> fst
  in
  get_constraints (List.rev res.res_mem) constr
  |> get_constraints (List.rev res.res_udiv)
  |> get_constraints (List.rev res.res_sdiv)

let gather_cfg_constraints c constr curr =
  let (n, dfg) = curr in
  match PTree.get (P.of_int n) c with
  | None -> assert false
  | Some { bb_exit = ctrl; _ } ->
    add_super_nodes n dfg constr
    |> add_initial_sv n dfg
    |> add_data_deps n dfg
    |> add_ctrl_deps n (successors_instr ctrl
                        |> List.map P.to_int
                        |> List.filter (fun n' -> n' < n))
    |> add_cycle_constr 8 n dfg
    |> add_resource_constr n dfg

let rec intersperse s = function
  | [] -> []
  | [ a ] -> [ a ]
  | x :: xs -> x :: s :: intersperse s xs

let print_objective constr =
  let vars = G.fold_vertex (fun v1 l ->
      match v1 with
      | { sv_type = VarType _; sv_num = 0 } -> print_sv v1 :: l
      | _ -> l
    ) constr []
  in
  "min: " ^ String.concat "" (intersperse " + " vars) ^ ";\n"

let print_lp constr =
  print_objective constr ^
  (G.fold_edges_e (function (e1, w, e2) -> fun s ->
       s ^ sprintf "%s - %s <= %d;\n" (print_sv e1) (print_sv e2) w
     ) constr "" |>
   G.fold_vertex (fun v1 s ->
       s ^ sprintf "int %s;\n" (print_sv v1)
     ) constr)

let update_schedule v = function Some l -> Some (v :: l) | None -> Some [ v ]

let parse_soln (tree, bbtree) s =
  let r = Str.regexp "var\\([0-9]+\\)n\\([0-9]+\\)_0[ ]+\\([0-9]+\\)" in
  let bb = Str.regexp "bb\\([0-9]+\\)_\\([0-9]+\\)[ ]+\\([0-9]+\\)" in
  let upd s = IMap.update
            (Str.matched_group 1 s |> int_of_string)
            (update_schedule
               ( Str.matched_group 2 s |> int_of_string,
                 Str.matched_group 3 s |> int_of_string ))
  in
  if Str.string_match r s 0
  then (upd s tree, bbtree)
  else
    (if Str.string_match bb s 0
     then (tree, upd s bbtree)
     else (tree, bbtree))

let solve_constraints constr =
  let (fn, oc) = Filename.open_temp_file "vericert_" "_lp_solve" in
  fprintf oc "%s\n" (print_lp constr);
  close_out oc;

  let res = Str.split (Str.regexp_string "\n") (read_process ("lp_solve " ^ fn))
            |> drop 3
            |> List.fold_left parse_soln (IMap.empty, IMap.empty)
  in
  (*Sys.remove fn;*) res

let subgraph dfg l =
  let dfg' = List.fold_left (fun g v -> DFG.add_vertex g v) DFG.empty l in
  List.fold_left (fun g v ->
      List.fold_left (fun g' v' ->
          let edges = DFG.find_all_edges dfg v v' in
          List.fold_left DFG.add_edge_e g' edges
        ) g l
    ) dfg' l

let rec all_successors dfg v =
  List.concat (List.fold_left (fun l v ->
      all_successors dfg v :: l
    ) [] (DFG.succ dfg v))

let order_instr dfg =
  DFG.fold_vertex (fun v li ->
      if DFG.in_degree dfg v = 0
      then (List.map snd (v :: all_successors dfg v)) :: li
      else li
    ) dfg []

let combine_bb_schedule schedule s =
  let i, st = s in
  IMap.update st (update_schedule i) schedule

(**let add_el dfg i l =
  List.*)

let check_in el =
  List.exists (List.exists ((=) el))

let all_dfs dfg =
  let roots = DFG.fold_vertex (fun v li ->
      if DFG.in_degree dfg v = 0 then v :: li else li
    ) dfg [] in
  let dfg' = DFG.fold_edges (fun v1 v2 g -> DFG.add_edge g v2 v1) dfg dfg in
  List.fold_left (fun a el ->
      if check_in el a then a else
        (DFGDfs.fold_component (fun v l -> v :: l) [] dfg' el) :: a) [] roots

let range s e =
  List.init (e - s) (fun i -> i)
  |> List.map (fun x -> x + s)

(** Should generate the [RTLPar] code based on the input [RTLBlock] description. *)
let transf_rtlpar c c' schedule =
  let f i bb : RTLPar.bblock =
    match bb with
    | { bb_body = []; bb_exit = c } -> { bb_body = []; bb_exit = c }
    | { bb_body = bb_body'; bb_exit = ctrl_flow } ->
      let dfg = match PTree.get i c' with None -> assert false | Some x -> x in
      let bb_st_e =
        let m = IMap.find (P.to_int i) (snd schedule) in
        (List.assq 0 m, List.assq 1 m) in
      let i_sched = IMap.find (P.to_int i) (fst schedule) in
      let i_sched_tree =
        List.fold_left combine_bb_schedule IMap.empty i_sched
      in
      let body = IMap.to_seq i_sched_tree |> List.of_seq |> List.map snd
                 |> List.map (List.map (fun x -> (x, List.nth bb_body' x)))
      in
      let body2 = List.fold_left (fun x b ->
          match IMap.find_opt b i_sched_tree with
          | Some i -> i :: x
          | None -> [] :: x
        ) [] (range (fst bb_st_e) (snd bb_st_e + 1))
        |> List.map (List.map (fun x -> (x, List.nth bb_body' x)))
        |> List.rev
      in
      (*let final_body = List.map (fun x -> subgraph dfg x |> order_instr) body in*)
      let final_body2 = List.map (fun x -> subgraph dfg x
                                           |> (fun x ->
                                               all_dfs x
                                               |> List.map (subgraph x)
                                               |> List.map (fun y ->
                                                   TopoDFG.fold (fun i l -> snd i :: l) y []
                                                   |> List.rev))) body2
                                           (*|> (fun x -> TopoDFG.fold (fun i l -> snd i :: l) x [])
                                           |> List.rev) body2*)
      in
      { bb_body = final_body2;
        bb_exit = ctrl_flow
      }
  in
  PTree.map f c

let schedule entry (c : RTLBlock.bb RTLBlockInstr.code) =
  let debug = true in
  let transf_graph (_, dfg, _) = dfg in
  let c' = PTree.map1 (fun x -> gather_bb_constraints false x |> transf_graph) c in
  (*let _ = if debug then PTree.map (fun r o -> printf "##### %d #####\n%a\n\n" (P.to_int r) print_dfg o) c' else PTree.empty in*)
  let cgraph = PTree.elements c'
               |> List.map (function (x, y) -> (P.to_int x, y))
               |> List.fold_left (gather_cfg_constraints c) G.empty
  in
  let graph = open_out "constr_graph.dot" in
  fprintf graph "%a\n" GDot.output_graph cgraph;
  close_out graph;
  let schedule' = solve_constraints cgraph in
  (**IMap.iter (fun a b -> printf "##### %d #####\n%a\n\n" a (print_list print_tuple) b) schedule';*)
  (**printf "Schedule: %a\n" (fun a x -> IMap.iter (fun d -> fprintf a "%d: %a\n" d (print_list print_tuple)) x) schedule';*)
  transf_rtlpar c c' schedule'

let rec find_reachable_states c e =
  match PTree.get e c with
  | Some { bb_exit = ex; _ } ->
    e :: List.fold_left (fun x a -> List.concat [x; find_reachable_states c a]) []
      (successors_instr ex |> List.filter (fun x -> P.lt x e))
  | None -> assert false

let add_to_tree c nt i =
  match PTree.get i c with
  | Some p -> PTree.set i p nt
  | None -> assert false

let schedule_fn (f : RTLBlock.coq_function) : RTLPar.coq_function =
  let scheduled = schedule f.fn_entrypoint f.fn_code in
  let reachable = find_reachable_states scheduled f.fn_entrypoint
                  |> List.to_seq |> SS.of_seq |> SS.to_seq |> List.of_seq in
  { fn_sig = f.fn_sig;
    fn_params = f.fn_params;
    fn_stacksize = f.fn_stacksize;
    fn_code = scheduled (*List.fold_left (add_to_tree scheduled) PTree.empty reachable*);
    fn_entrypoint = f.fn_entrypoint
  }
#+end_src

* RTLPargen
:PROPERTIES:
:header-args:coq: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/RTLPargen.v
:END:

#+begin_src coq :comments no :padline no :exports none
<<license>>
#+end_src

#+name: rtlpargen-main
#+begin_src coq
Require Import compcert.backend.Registers.
Require Import compcert.common.AST.
Require Import compcert.common.Globalenvs.
Require Import compcert.common.Memory.
Require Import compcert.common.Values.
Require Import compcert.lib.Floats.
Require Import compcert.lib.Integers.
Require Import compcert.lib.Maps.
Require compcert.verilog.Op.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.RTLBlock.
Require Import vericert.hls.RTLPar.
Require Import vericert.hls.RTLBlockInstr.
Require Import vericert.hls.Predicate.
Require Import vericert.hls.Abstr.
Import NE.NonEmptyNotation.

#[local] Open Scope positive.
#[local] Open Scope forest.
#[local] Open Scope pred_op.
#+end_src

** Abstract Computations

Define the abstract computation using the [update] function, which will set each register to its
symbolic value.  First we need to define a few helper functions to correctly translate the
predicates.

#+name: rtlpargen-generation
#+begin_src coq
Fixpoint list_translation (l : list reg) (f : forest) {struct l} : list pred_expr :=
  match l with
  | nil => nil
  | i :: l => (f # (Reg i)) :: (list_translation l f)
  end.

Fixpoint replicate {A} (n: nat) (l: A) :=
  match n with
  | O => nil
  | S n => l :: replicate n l
  end.

Definition merge''' x y :=
  match x, y with
  | Some p1, Some p2 => Some (Pand p1 p2)
  | Some p, None | None, Some p => Some p
  | None, None => None
  end.

Definition merge'' x :=
  match x with
  | ((a, e), (b, el)) => (merge''' a b, Econs e el)
  end.

Definition map_pred_op {A B} (pf: option pred_op * (A -> B)) (pa: option pred_op * A): option pred_op * B :=
  match pa, pf with
  | (p, a), (p', f) => (merge''' p p', f a)
  end.

Definition predicated_prod {A B: Type} (p1: predicated A) (p2: predicated B) :=
  NE.map (fun x => match x with ((a, b), (c, d)) => (Pand a c, (b, d)) end)
         (NE.non_empty_prod p1 p2).

Definition predicated_map {A B: Type} (f: A -> B) (p: predicated A): predicated B :=
  NE.map (fun x => (fst x, f (snd x))) p.

(*map (fun x => (fst x, Econs (snd x) Enil)) pel*)
Definition merge' (pel: pred_expr) (tpel: predicated expression_list) :=
  predicated_map (uncurry Econs) (predicated_prod pel tpel).

Fixpoint merge (pel: list pred_expr): predicated expression_list :=
  match pel with
  | nil => NE.singleton (T, Enil)
  | a :: b => merge' a (merge b)
  end.

Definition map_predicated {A B} (pf: predicated (A -> B)) (pa: predicated A): predicated B :=
  predicated_map (fun x => (fst x) (snd x)) (predicated_prod pf pa).

Definition predicated_apply1 {A B} (pf: predicated (A -> B)) (pa: A): predicated B :=
  NE.map (fun x => (fst x, (snd x) pa)) pf.

Definition predicated_apply2 {A B C} (pf: predicated (A -> B -> C)) (pa: A) (pb: B): predicated C :=
  NE.map (fun x => (fst x, (snd x) pa pb)) pf.

Definition predicated_apply3 {A B C D} (pf: predicated (A -> B -> C -> D)) (pa: A) (pb: B) (pc: C): predicated D :=
  NE.map (fun x => (fst x, (snd x) pa pb pc)) pf.

Definition predicated_from_opt {A: Type} (p: option pred_op) (a: A) :=
  match p with
  | Some p' => NE.singleton (p', a)
  | None => NE.singleton (T, a)
  end.

#[local] Open Scope non_empty_scope.
#[local] Open Scope pred_op.

Fixpoint NEfold_left {A B} (f: A -> B -> A) (l: NE.non_empty B) (a: A) : A :=
  match l with
  | NE.singleton a' => f a a'
  | a' ::| b => NEfold_left f b (f a a')
  end.

Fixpoint NEapp {A} (l m: NE.non_empty A) :=
  match l with
  | NE.singleton a => a ::| m
  | a ::| b => a ::| NEapp b m
  end.

Definition app_predicated' {A: Type} (a b: predicated A) :=
  let negation := ¬ (NEfold_left (fun a b => a ∨ (fst b)) b ⟂) in
  NEapp (NE.map (fun x => (negation ∧ fst x, snd x)) a) b.

Definition app_predicated {A: Type} (p: option pred_op) (a b: predicated A) :=
  match p with
  | Some p' => NEapp (NE.map (fun x => (¬ p' ∧ fst x, snd x)) a)
                     (NE.map (fun x => (p' ∧ fst x, snd x)) b)
  | None => b
  end.

Definition pred_ret {A: Type} (a: A) : predicated A :=
  NE.singleton (T, a).

#+end_src

*** Update Function
:PROPERTIES:
:CUSTOM_ID: update-function
:END:

The [update] function will generate a new forest given an existing forest and a new instruction, so
that it can evaluate a symbolic expression by folding over a list of instructions.  The main problem
is that predicates need to be merged as well, so that:

1. The predicates are *independent*.
2. The expression assigned to the register should still be correct.

This is done by multiplying the predicates together, and assigning the negation of the expression to
the other predicates.

#+name: rtlpargen-update-function
#+begin_src coq
Definition update (f : forest) (i : instr) : forest :=
  match i with
  | RBnop => f
  | RBop p op rl r =>
    f # (Reg r) <-
    (app_predicated p
       (f # (Reg r))
       (map_predicated (pred_ret (Eop op)) (merge (list_translation rl f))))
  | RBload p chunk addr rl r =>
    f # (Reg r) <-
      (app_predicated p
         (f # (Reg r))
         (map_predicated
            (map_predicated (pred_ret (Eload chunk addr)) (merge (list_translation rl f)))
            (f # Mem)))
  | RBstore p chunk addr rl r =>
    f # Mem <-
      (app_predicated p
         (f # Mem)
         (map_predicated
            (map_predicated
               (predicated_apply2 (map_predicated (pred_ret Estore) (f # (Reg r))) chunk addr)
               (merge (list_translation rl f))) (f # Mem)))
  | RBsetpred p' c args p =>
    f # (Pred p) <-
    (app_predicated p'
       (f # (Pred p))
       (map_predicated (pred_ret (Esetpred c)) (merge (list_translation args f))))
  end.
#+end_src

Implementing which are necessary to show the correctness of the translation validation by
showing that there aren't any more effects in the resultant RTLPar code than in the RTLBlock code.

Get a sequence from the basic block.

#+name: rtlpargen-abstract-seq
#+begin_src coq
Fixpoint abstract_sequence (f : forest) (b : list instr) : forest :=
  match b with
  | nil => f
  | i :: l => abstract_sequence (update f i) l
  end.
#+end_src

Check equivalence of control flow instructions.  As none of the basic blocks should have been
moved, none of the labels should be different, meaning the control-flow instructions should match
exactly.

#+name: rtlpargen-check-functions
#+begin_src coq
Definition check_control_flow_instr (c1 c2: cf_instr) : bool :=
  if cf_instr_eq c1 c2 then true else false.
#+end_src

We define the top-level oracle that will check if two basic blocks are equivalent after a
scheduling transformation.

#+name: rtlpargen-top-check-functions
#+begin_src coq
Definition empty_trees (bb: RTLBlock.bb) (bbt: RTLPar.bb) : bool :=
  match bb with
  | nil =>
    match bbt with
    | nil => true
    | _ => false
    end
  | _ => true
  end.

Definition schedule_oracle (bb: RTLBlock.bblock) (bbt: RTLPar.bblock) : bool :=
  check (abstract_sequence empty (bb_body bb))
        (abstract_sequence empty (concat (concat (bb_body bbt)))) &&
  check_control_flow_instr (bb_exit bb) (bb_exit bbt) &&
  empty_trees (bb_body bb) (bb_body bbt).

Definition check_scheduled_trees := beq2 schedule_oracle.

Ltac solve_scheduled_trees_correct :=
  intros; unfold check_scheduled_trees in *;
  match goal with
  | [ H: context[beq2 _ _ _], x: positive |- _ ] =>
    rewrite beq2_correct in H; specialize (H x)
  end; repeat destruct_match; crush.

Lemma check_scheduled_trees_correct:
  forall f1 f2 x y1,
    check_scheduled_trees f1 f2 = true ->
    PTree.get x f1 = Some y1 ->
    exists y2, PTree.get x f2 = Some y2 /\ schedule_oracle y1 y2 = true.
Proof. solve_scheduled_trees_correct; eexists; crush. Qed.

Lemma check_scheduled_trees_correct2:
  forall f1 f2 x,
    check_scheduled_trees f1 f2 = true ->
    PTree.get x f1 = None ->
    PTree.get x f2 = None.
Proof. solve_scheduled_trees_correct. Qed.

#+end_src

** Top-level Functions

#+name: rtlpargen-top-level-functions
#+begin_src coq
Parameter schedule : RTLBlock.function -> RTLPar.function.

Definition transl_function (f: RTLBlock.function) : Errors.res RTLPar.function :=
  let tfcode := fn_code (schedule f) in
  if check_scheduled_trees f.(fn_code) tfcode then
    Errors.OK (mkfunction f.(fn_sig)
                          f.(fn_params)
                          f.(fn_stacksize)
                          tfcode
                          f.(fn_entrypoint))
  else
    Errors.Error (Errors.msg "RTLPargen: Could not prove the blocks equivalent.").

Definition transl_fundef := transf_partial_fundef transl_function.

Definition transl_program (p : RTLBlock.program) : Errors.res RTLPar.program :=
  transform_partial_program transl_fundef p.
#+end_src

* RTLPargenproof
:PROPERTIES:
:header-args:coq: :comments noweb :noweb no-export :padline yes :tangle ../src/hls/RTLPargenproof.v
:END:

#+begin_src coq :comments no :padline no :exports none
<<license>>
#+end_src

#+name: rtlpargenproof-imports
#+begin_src coq
Require Import compcert.backend.Registers.
Require Import compcert.common.AST.
Require Import compcert.common.Errors.
Require Import compcert.common.Linking.
Require Import compcert.common.Globalenvs.
Require Import compcert.common.Memory.
Require Import compcert.common.Values.
Require Import compcert.lib.Maps.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.RTLBlock.
Require Import vericert.hls.RTLPar.
Require Import vericert.hls.RTLBlockInstr.
Require Import vericert.hls.RTLPargen.
Require Import vericert.hls.Predicate.
Require Import vericert.hls.Abstr.

#[local] Open Scope positive.
#[local] Open Scope forest.
#[local] Open Scope pred_op.
#+end_src

** RTLBlock to abstract translation

Correctness of translation from RTLBlock to the abstract interpretation language.

#+name: rtlpargenproof-main
#+begin_src coq
(*Definition is_regs i := match i with mk_instr_state rs _ => rs end.
Definition is_mem i := match i with mk_instr_state _ m => m end.

Inductive state_lessdef : instr_state -> instr_state -> Prop :=
  state_lessdef_intro :
    forall rs1 rs2 m1,
    (forall x, rs1 !! x = rs2 !! x) ->
    state_lessdef (mk_instr_state rs1 m1) (mk_instr_state rs2 m1).

Ltac inv_simp :=
  repeat match goal with
  | H: exists _, _ |- _ => inv H
  end; simplify.

*)

Definition check_dest i r' :=
  match i with
  | RBop p op rl r => (r =? r')%positive
  | RBload p chunk addr rl r => (r =? r')%positive
  | _ => false
  end.

Lemma check_dest_dec i r : {check_dest i r = true} + {check_dest i r = false}.
Proof. destruct (check_dest i r); tauto. Qed.

Fixpoint check_dest_l l r :=
  match l with
  | nil => false
  | a :: b => check_dest a r || check_dest_l b r
  end.

Lemma check_dest_l_forall :
  forall l r,
  check_dest_l l r = false ->
  Forall (fun x => check_dest x r = false) l.
Proof. induction l; crush. Qed.

Lemma check_dest_l_dec i r : {check_dest_l i r = true} + {check_dest_l i r = false}.
Proof. destruct (check_dest_l i r); tauto. Qed.

Lemma check_dest_update :
  forall f i r,
  check_dest i r = false ->
  (update f i) # (Reg r) = f # (Reg r).
Proof.
  destruct i; crush; try apply Pos.eqb_neq in H; apply genmap1; crush.
Qed.

Lemma check_dest_l_forall2 :
  forall l r,
  Forall (fun x => check_dest x r = false) l ->
  check_dest_l l r = false.
Proof.
  induction l; crush.
  inv H. apply orb_false_intro; crush.
Qed.

Lemma check_dest_l_ex2 :
  forall l r,
  (exists a, In a l /\ check_dest a r = true) ->
  check_dest_l l r = true.
Proof.
  induction l; crush.
  specialize (IHl r). inv H.
  apply orb_true_intro; crush.
  apply orb_true_intro; crush.
  right. apply IHl. exists x. auto.
Qed.

Lemma check_list_l_false :
  forall l x r,
  check_dest_l (l ++ x :: nil) r = false ->
  check_dest_l l r = false /\ check_dest x r = false.
Proof.
  simplify.
  apply check_dest_l_forall in H. apply Forall_app in H.
  simplify. apply check_dest_l_forall2; auto.
  apply check_dest_l_forall in H. apply Forall_app in H.
  simplify. inv H1. auto.
Qed.

Lemma check_dest_l_ex :
  forall l r,
  check_dest_l l r = true ->
  exists a, In a l /\ check_dest a r = true.
Proof.
  induction l; crush.
  destruct (check_dest a r) eqn:?; try solve [econstructor; crush].
  simplify.
  exploit IHl. apply H. simplify. econstructor. simplify. right. eassumption.
  auto.
Qed.

Lemma check_list_l_true :
  forall l x r,
  check_dest_l (l ++ x :: nil) r = true ->
  check_dest_l l r = true \/ check_dest x r = true.
Proof.
  simplify.
  apply check_dest_l_ex in H; simplify.
  apply in_app_or in H. inv H. left.
  apply check_dest_l_ex2. exists x0. auto.
  inv H0; auto.
Qed.

Lemma check_dest_l_dec2 l r :
  {Forall (fun x => check_dest x r = false) l}
  + {exists a, In a l /\ check_dest a r = true}.
Proof.
  destruct (check_dest_l_dec l r); [right | left];
  auto using check_dest_l_ex, check_dest_l_forall.
Qed.

Lemma abstr_comp :
  forall l i f x x0,
  abstract_sequence f (l ++ i :: nil) = x ->
  abstract_sequence f l = x0 ->
  x = update x0 i.
Proof. induction l; intros; crush; eapply IHl; eauto. Qed.

(*

Lemma gen_list_base:
  forall FF ge sp l rs exps st1,
  (forall x, @sem_value FF ge sp st1 (exps # (Reg x)) (rs !! x)) ->
  sem_val_list ge sp st1 (list_translation l exps) rs ## l.
Proof.
  induction l.
  intros. simpl. constructor.
  intros. simpl. eapply Scons; eauto.
Qed.

Lemma check_dest_update2 :
  forall f r rl op p,
  (update f (RBop p op rl r)) # (Reg r) = Eop op (list_translation rl f) (f # Mem).
Proof. crush; rewrite map2; auto. Qed.

Lemma check_dest_update3 :
  forall f r rl p addr chunk,
  (update f (RBload p chunk addr rl r)) # (Reg r) = Eload chunk addr (list_translation rl f) (f # Mem).
Proof. crush; rewrite map2; auto. Qed.

Lemma abstract_seq_correct_aux:
  forall FF ge sp i st1 st2 st3 f,
    @step_instr FF ge sp st3 i st2 ->
    sem ge sp st1 f st3 ->
    sem ge sp st1 (update f i) st2.
Proof.
  intros; inv H; simplify.
  { simplify; eauto. } (*apply match_states_refl. }*)
  { inv H0. inv H6. destruct st1. econstructor. simplify.
    constructor. intros.
    destruct (resource_eq (Reg res) (Reg x)). inv e.
    rewrite map2. econstructor. eassumption. apply gen_list_base; eauto.
    rewrite Regmap.gss. eauto.
    assert (res <> x). { unfold not in *. intros. apply n. rewrite H0. auto. }
    rewrite Regmap.gso by auto.
    rewrite genmap1 by auto. auto.

    rewrite genmap1; crush. }
  { inv H0. inv H7. constructor. constructor. intros.
    destruct (Pos.eq_dec dst x); subst.
    rewrite map2. econstructor; eauto.
    apply gen_list_base. auto. rewrite Regmap.gss. auto.
    rewrite genmap1. rewrite Regmap.gso by auto. auto.
    unfold not in *; intros. inv H0. auto.
    rewrite genmap1; crush.
  }
  { inv H0. inv H7. constructor. constructor; intros.
    rewrite genmap1; crush.
    rewrite map2. econstructor; eauto.
    apply gen_list_base; auto.
  }
Qed.

Lemma regmap_list_equiv :
  forall A (rs1: Regmap.t A) rs2,
    (forall x, rs1 !! x = rs2 !! x) ->
    forall rl, rs1##rl = rs2##rl.
Proof. induction rl; crush. Qed.

Lemma sem_update_Op :
  forall A ge sp st f st' r l o0 o m rs v,
  @sem A ge sp st f st' ->
  Op.eval_operation ge sp o0 rs ## l m = Some v ->
  match_states st' (mk_instr_state rs m) ->
  exists tst,
  sem ge sp st (update f (RBop o o0 l r)) tst /\ match_states (mk_instr_state (Regmap.set r v rs) m) tst.
Proof.
  intros. inv H1. simplify.
  destruct st.
  econstructor. simplify.
  { constructor.
    { constructor. intros. destruct (Pos.eq_dec x r); subst.
      { pose proof (H5 r). rewrite map2. pose proof H. inv H. econstructor; eauto.
        { inv H9. eapply gen_list_base; eauto. }
        { instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. erewrite regmap_list_equiv; eauto. } }
      { rewrite Regmap.gso by auto. rewrite genmap1; crush. inv H. inv H7; eauto. } }
    { inv H. rewrite genmap1; crush. eauto. } }
  { constructor; eauto. intros.
    destruct (Pos.eq_dec r x);
    subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
Qed.

Lemma sem_update_load :
  forall A ge sp st f st' r o m a l m0 rs v a0,
  @sem A ge sp st f st' ->
  Op.eval_addressing ge sp a rs ## l = Some a0 ->
  Mem.loadv m m0 a0 = Some v ->
  match_states st' (mk_instr_state rs m0) ->
  exists tst : instr_state,
    sem ge sp st (update f (RBload o m a l r)) tst
    /\ match_states (mk_instr_state (Regmap.set r v rs) m0) tst.
Proof.
  intros. inv H2. pose proof H. inv H. inv H9.
  destruct st.
  econstructor; simplify.
  { constructor.
    { constructor. intros.
      destruct (Pos.eq_dec x r); subst.
      { rewrite map2. econstructor; eauto. eapply gen_list_base. intros.
        rewrite <- H6. eauto.
        instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. auto. }
      { rewrite Regmap.gso by auto. rewrite genmap1; crush. } }
    { rewrite genmap1; crush. eauto. } }
  { constructor; auto; intros. destruct (Pos.eq_dec r x);
    subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
Qed.

Lemma sem_update_store :
  forall A ge sp a0 m a l r o f st m' rs m0 st',
  @sem A ge sp st f st' ->
  Op.eval_addressing ge sp a rs ## l = Some a0 ->
  Mem.storev m m0 a0 rs !! r = Some m' ->
  match_states st' (mk_instr_state rs m0) ->
  exists tst, sem ge sp st (update f (RBstore o m a l r)) tst
              /\ match_states (mk_instr_state rs m') tst.
Proof.
  intros. inv H2. pose proof H. inv H. inv H9.
  destruct st.
  econstructor; simplify.
  { econstructor.
    { econstructor; intros. rewrite genmap1; crush. }
    { rewrite map2. econstructor; eauto. eapply gen_list_base. intros. rewrite <- H6.
      eauto. specialize (H6 r). rewrite H6. eauto. } }
  { econstructor; eauto. }
Qed.

Lemma sem_update :
  forall A ge sp st x st' st'' st''' f,
  sem ge sp st f st' ->
  match_states st' st''' ->
  @step_instr A ge sp st''' x st'' ->
  exists tst, sem ge sp st (update f x) tst /\ match_states st'' tst.
Proof.
  intros. destruct x; inv H1.
  { econstructor. split.
    apply sem_update_RBnop. eassumption.
    apply match_states_commut. auto. }
  { eapply sem_update_Op; eauto. }
  { eapply sem_update_load; eauto. }
  { eapply sem_update_store; eauto. }
Qed.

Lemma sem_update2_Op :
  forall A ge sp st f r l o0 o m rs v,
  @sem A ge sp st f (mk_instr_state rs m) ->
  Op.eval_operation ge sp o0 rs ## l m = Some v ->
  sem ge sp st (update f (RBop o o0 l r)) (mk_instr_state (Regmap.set r v rs) m).
Proof.
  intros. destruct st. constructor.
  inv H. inv H6.
  { constructor; intros. simplify.
    destruct (Pos.eq_dec r x); subst.
    { rewrite map2. econstructor. eauto.
      apply gen_list_base. eauto.
      rewrite Regmap.gss. auto. }
    { rewrite genmap1; crush. rewrite Regmap.gso; auto.  } }
  { simplify. rewrite genmap1; crush. inv H. eauto. }
Qed.

Lemma sem_update2_load :
  forall A ge sp st f r o m a l m0 rs v a0,
    @sem A ge sp st f (mk_instr_state rs m0) ->
    Op.eval_addressing ge sp a rs ## l = Some a0 ->
    Mem.loadv m m0 a0 = Some v ->
    sem ge sp st (update f (RBload o m a l r)) (mk_instr_state (Regmap.set r v rs) m0).
Proof.
  intros. simplify. inv H. inv H7. constructor.
  { constructor; intros. destruct (Pos.eq_dec r x); subst.
    { rewrite map2. rewrite Regmap.gss. econstructor; eauto.
      apply gen_list_base; eauto. }
    { rewrite genmap1; crush. rewrite Regmap.gso; eauto. }
  }
  { simplify. rewrite genmap1; crush. }
Qed.

Lemma sem_update2_store :
  forall A ge sp a0 m a l r o f st m' rs m0,
    @sem A ge sp st f (mk_instr_state rs m0) ->
    Op.eval_addressing ge sp a rs ## l = Some a0 ->
    Mem.storev m m0 a0 rs !! r = Some m' ->
    sem ge sp st (update f (RBstore o m a l r)) (mk_instr_state rs m').
Proof.
  intros. simplify. inv H. inv H7. constructor; simplify.
  { econstructor; intros. rewrite genmap1; crush. }
  { rewrite map2. econstructor; eauto. apply gen_list_base; eauto. }
Qed.

Lemma sem_update2 :
  forall A ge sp st x st' st'' f,
  sem ge sp st f st' ->
  @step_instr A ge sp st' x st'' ->
  sem ge sp st (update f x) st''.
Proof.
  intros.
  destruct x; inv H0;
  eauto using sem_update_RBnop, sem_update2_Op, sem_update2_load, sem_update2_store.
Qed.

Lemma abstr_sem_val_mem :
  forall A B ge tge st tst sp a,
    ge_preserved ge tge ->
    forall v m,
    (@sem_mem A ge sp st a m /\ match_states st tst -> @sem_mem B tge sp tst a m) /\
    (@sem_value A ge sp st a v /\ match_states st tst -> @sem_value B tge sp tst a v).
Proof.
  intros * H.
  apply expression_ind2 with

    (P := fun (e1: expression) =>
    forall v m,
    (@sem_mem A ge sp st e1 m /\ match_states st tst -> @sem_mem B tge sp tst e1 m) /\
    (@sem_value A ge sp st e1 v /\ match_states st tst -> @sem_value B tge sp tst e1 v))

    (P0 := fun (e1: expression_list) =>
    forall lv, @sem_val_list A ge sp st e1 lv /\ match_states st tst -> @sem_val_list B tge sp tst e1 lv);
  simplify; intros; simplify.
  { inv H1. inv H2. constructor. }
  { inv H2. inv H1. rewrite H0. constructor. }
  { inv H3. }
  { inv H3. inv H4. econstructor. apply H1; auto. simplify. eauto. constructor. auto. auto.
    apply H0; simplify; eauto. constructor; eauto.
    unfold ge_preserved in *. simplify. rewrite <- H2. auto.
  }
  { inv H3. }
  { inv H3. inv H4. econstructor. apply H1; eauto; simplify; eauto. constructor; eauto.
    apply H0; simplify; eauto. constructor; eauto.
    inv H. rewrite <- H4. eauto.
    auto.
  }
  { inv H4. inv H5. econstructor. apply H0; eauto. simplify; eauto. constructor; eauto.
    apply H2; eauto. simplify; eauto. constructor; eauto.
    apply H1; eauto. simplify; eauto. constructor; eauto.
    inv H. rewrite <- H5. eauto. auto.
  }
  { inv H4. }
  { inv H1. constructor. }
  { inv H3. constructor; auto. apply H0; eauto. apply Mem.empty. }
Qed.

Lemma abstr_sem_value :
  forall a A B ge tge sp st tst v,
    @sem_value A ge sp st a v ->
    ge_preserved ge tge ->
    match_states st tst ->
    @sem_value B tge sp tst a v.
Proof. intros; eapply abstr_sem_val_mem; eauto; apply Mem.empty. Qed.

Lemma abstr_sem_mem :
  forall a A B ge tge sp st tst v,
    @sem_mem A ge sp st a v ->
    ge_preserved ge tge ->
    match_states st tst ->
    @sem_mem B tge sp tst a v.
Proof. intros; eapply abstr_sem_val_mem; eauto. Qed.

Lemma abstr_sem_regset :
  forall a a' A B ge tge sp st tst rs,
    @sem_regset A ge sp st a rs ->
    ge_preserved ge tge ->
    (forall x, a # x = a' # x) ->
    match_states st tst ->
    exists rs', @sem_regset B tge sp tst a' rs' /\ (forall x, rs !! x = rs' !! x).
Proof.
  inversion 1; intros.
  inv H7.
  econstructor. simplify. econstructor. intros.
  eapply abstr_sem_value; eauto. rewrite <- H6.
  eapply H0. constructor; eauto.
  auto.
Qed.

Lemma abstr_sem :
  forall a a' A B ge tge sp st tst st',
    @sem A ge sp st a st' ->
    ge_preserved ge tge ->
    (forall x, a # x = a' # x) ->
    match_states st tst ->
    exists tst', @sem B tge sp tst a' tst' /\ match_states st' tst'.
Proof.
  inversion 1; subst; intros.
  inversion H4; subst.
  exploit abstr_sem_regset; eauto; inv_simp.
  do 3 econstructor; eauto.
  rewrite <- H3.
  eapply abstr_sem_mem; eauto.
Qed.

Lemma abstract_execution_correct':
  forall A B ge tge sp st' a a' st tst,
  @sem A ge sp st a st' ->
  ge_preserved ge tge ->
  check a a' = true ->
  match_states st tst ->
  exists tst', @sem B tge sp tst a' tst' /\ match_states st' tst'.
Proof.
  intros;
  pose proof (check_correct a a' H1);
  eapply abstr_sem; eauto.
Qed.

Lemma states_match :
  forall st1 st2 st3 st4,
  match_states st1 st2 ->
  match_states st2 st3 ->
  match_states st3 st4 ->
  match_states st1 st4.
Proof.
  intros * H1 H2 H3; destruct st1; destruct st2; destruct st3; destruct st4.
  inv H1. inv H2. inv H3; constructor.
  unfold regs_lessdef in *. intros.
  repeat match goal with
         | H: forall _, _, r : positive |- _ => specialize (H r)
         end.
  congruence.
  auto.
Qed.

Lemma step_instr_block_same :
  forall ge sp st st',
  step_instr_block ge sp st nil st' ->
  st = st'.
Proof. inversion 1; auto. Qed.

Lemma step_instr_seq_same :
  forall ge sp st st',
  step_instr_seq ge sp st nil st' ->
  st = st'.
Proof. inversion 1; auto. Qed.

Lemma sem_update' :
  forall A ge sp st a x st',
  sem ge sp st (update (abstract_sequence empty a) x) st' ->
  exists st'',
  @step_instr A ge sp st'' x st' /\
  sem ge sp st (abstract_sequence empty a) st''.
Proof.
  Admitted.

Lemma rtlpar_trans_correct :
  forall bb ge sp sem_st' sem_st st,
  sem ge sp sem_st (abstract_sequence empty (concat (concat bb))) sem_st' ->
  match_states sem_st st ->
  exists st', RTLPar.step_instr_block ge sp st bb st'
              /\ match_states sem_st' st'.
Proof.
  induction bb using rev_ind.
  { repeat econstructor. eapply abstract_interp_empty3 in H.
    inv H. inv H0. constructor; congruence. }
  { simplify. inv H0. repeat rewrite concat_app in H. simplify.
    rewrite app_nil_r in H.
    exploit sem_separate; eauto; inv_simp.
    repeat econstructor. admit. admit.
  }
Admitted.

(*Lemma abstract_execution_correct_ld:
  forall bb bb' cfi ge tge sp st st' tst,
    RTLBlock.step_instr_list ge sp st bb st' ->
    ge_preserved ge tge ->
    schedule_oracle (mk_bblock bb cfi) (mk_bblock bb' cfi) = true ->
    match_states_ld st tst ->
    exists tst', RTLPar.step_instr_block tge sp tst bb' tst'
                 /\ match_states st' tst'.
Proof.
  intros.*)
*)

Lemma match_states_list :
  forall A (rs: Regmap.t A) rs',
  (forall r, rs !! r = rs' !! r) ->
  forall l, rs ## l = rs' ## l.
Proof. induction l; crush. Qed.

Lemma PTree_matches :
  forall A (v: A) res rs rs',
  (forall r, rs !! r = rs' !! r) ->
  forall x, (Regmap.set res v rs) !! x = (Regmap.set res v rs') !! x.
Proof.
  intros; destruct (Pos.eq_dec x res); subst;
  [ repeat rewrite Regmap.gss by auto
  | repeat rewrite Regmap.gso by auto ]; auto.
Qed.

Lemma abstract_interp_empty3 :
  forall A ctx st',
    @sem A ctx empty st' -> match_states (ctx_is ctx) st'.
Proof.
  inversion 1; subst; simplify. destruct ctx.
  destruct ctx_is.
  constructor; intros.
  - inv H0. specialize (H3 x). inv H3. inv H8. reflexivity.
  - inv H1. specialize (H3 x). inv H3. inv H8. reflexivity.
  - inv H2. inv H8. reflexivity.
Qed.

Lemma step_instr_matches :
  forall A a ge sp st st',
    @step_instr A ge sp st a st' ->
    forall tst,
      match_states st tst ->
      exists tst', step_instr ge sp tst a tst'
                   /\ match_states st' tst'.
Proof.
  induction 1; simplify;
  match goal with H: match_states _ _ |- _ => inv H end;
  try solve [repeat econstructor; try erewrite match_states_list;
  try apply PTree_matches; eauto;
  match goal with
    H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
  end].
  - destruct p. match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
    erewrite <- eval_predf_pr_equiv; eassumption.
    apply PTree_matches; assumption.
    repeat (econstructor; try apply eval_pred_false); eauto. try erewrite match_states_list; eauto.
    erewrite <- eval_predf_pr_equiv; eassumption.
    econstructor; auto.
    match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
  - destruct p. match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
    erewrite <- eval_predf_pr_equiv; eassumption.
    apply PTree_matches; assumption.
    repeat (econstructor; try apply eval_pred_false); eauto. try erewrite match_states_list; eauto.
    erewrite <- eval_predf_pr_equiv; eassumption.
    econstructor; auto.
    match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
  - destruct p. match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
    match goal with
    H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
    end.
    erewrite <- eval_predf_pr_equiv; eassumption.
    repeat (econstructor; try apply eval_pred_false); eauto. try erewrite match_states_list; eauto.
    match goal with
    H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
    end.
    erewrite <- eval_predf_pr_equiv; eassumption.
    match goal with H: eval_pred _ _ _ _ |- _ => inv H end.
    repeat econstructor; try erewrite match_states_list; eauto.
    match goal with
    H: forall _, _ |- context[Mem.storev] => erewrite <- H; eauto
    end.
  - admit. Admitted.

Lemma step_instr_list_matches :
  forall a ge sp st st',
  step_instr_list ge sp st a st' ->
  forall tst, match_states st tst ->
              exists tst', step_instr_list ge sp tst a tst'
                           /\ match_states st' tst'.
Proof.
  induction a; intros; inv H;
  try (exploit step_instr_matches; eauto; []; simplify;
       exploit IHa; eauto; []; simplify); repeat econstructor; eauto.
Qed.

Lemma step_instr_seq_matches :
  forall a ge sp st st',
  step_instr_seq ge sp st a st' ->
  forall tst, match_states st tst ->
              exists tst', step_instr_seq ge sp tst a tst'
                           /\ match_states st' tst'.
Proof.
  induction a; intros; inv H;
  try (exploit step_instr_list_matches; eauto; []; simplify;
       exploit IHa; eauto; []; simplify); repeat econstructor; eauto.
Qed.

Lemma step_instr_block_matches :
  forall bb ge sp st st',
  step_instr_block ge sp st bb st' ->
  forall tst, match_states st tst ->
              exists tst', step_instr_block ge sp tst bb tst'
                           /\ match_states st' tst'.
Proof.
  induction bb; intros; inv H;
  try (exploit step_instr_seq_matches; eauto; []; simplify;
       exploit IHbb; eauto; []; simplify); repeat econstructor; eauto.
Qed.

Lemma rtlblock_trans_correct' :
  forall bb ge sp st x st'',
  RTLBlock.step_instr_list ge sp st (bb ++ x :: nil) st'' ->
  exists st', RTLBlock.step_instr_list ge sp st bb st'
              /\ step_instr ge sp st' x st''.
Proof.
  induction bb.
  crush. exists st.
  split. constructor. inv H. inv H6. auto.
  crush. inv H. exploit IHbb. eassumption. simplify.
  econstructor. split.
  econstructor; eauto. eauto.
Qed.

Lemma abstract_interp_empty A st : @sem A st empty (ctx_is st).
Proof. destruct st, ctx_is. simpl. repeat econstructor. Qed.

Lemma abstract_seq :
  forall l f i,
    abstract_sequence f (l ++ i :: nil) = update (abstract_sequence f l) i.
Proof. induction l; crush. Qed.

Lemma abstract_sequence_update :
  forall l r f,
  check_dest_l l r = false ->
  (abstract_sequence f l) # (Reg r) = f # (Reg r).
Proof.
  induction l using rev_ind; crush.
  rewrite abstract_seq. rewrite check_dest_update. apply IHl.
  apply check_list_l_false in H. tauto.
  apply check_list_l_false in H. tauto.
Qed.

(*Lemma sem_separate :
  forall A ctx b a st',
    sem ctx (abstract_sequence empty (a ++ b)) st' ->
    exists st'',
         @sem A ctx (abstract_sequence empty a) st''
      /\ @sem A (mk_ctx st'' (ctx_sp ctx) (ctx_ge ctx)) (abstract_sequence empty b) st'.
Proof.
  induction b using rev_ind; simplify.
  { econstructor. simplify. rewrite app_nil_r in H. eauto. apply abstract_interp_empty. }
  { simplify. rewrite app_assoc in H. rewrite abstract_seq in H.
    exploit sem_update'; eauto; simplify.
    exploit IHb; eauto; inv_simp.
    econstructor; split; eauto.
    rewrite abstract_seq.
    eapply sem_update2; eauto.
  }
Qed.*)

Lemma sem_update_RBnop :
  forall A ctx f st',
  @sem A ctx f st' -> sem ctx (update f RBnop) st'.
Proof. auto. Qed.

Lemma sem_update_Op :
  forall A ge sp ist f st' r l o0 o m rs v ps,
  @sem A (mk_ctx ist sp ge) f st' ->
  eval_predf ps o = true ->
  Op.eval_operation ge sp o0 (rs ## l) m = Some v ->
  match_states st' (mk_instr_state rs ps m) ->
  exists tst,
  sem (mk_ctx ist sp ge) (update f (RBop (Some o) o0 l r)) tst
  /\ match_states (mk_instr_state (Regmap.set r v rs) ps m) tst.
Proof.
  intros. inv H1. inv H. inv H1. inv H3. simplify.
  econstructor. simplify.
  { constructor; try constructor; intros; try solve [rewrite genmap1; now eauto].
    destruct (Pos.eq_dec x r); subst.
    { rewrite map2. specialize (H1 r). inv H1.
(*}
  }
  destruct st.
  econstructor. simplify.
  { constructor.
    { constructor. intros. destruct (Pos.eq_dec x r); subst.
      { pose proof (H5 r). rewrite map2. pose proof H. inv H. econstructor; eauto.
        { inv H9. eapply gen_list_base; eauto. }
        { instantiate (1 := (Regmap.set r v rs0)). rewrite Regmap.gss. erewrite regmap_list_equiv; eauto. } }
      { rewrite Regmap.gso by auto. rewrite genmap1; crush. inv H. inv H7; eauto. } }
    { inv H. rewrite genmap1; crush. eauto. } }
  { constructor; eauto. intros.
    destruct (Pos.eq_dec r x);
    subst; [repeat rewrite Regmap.gss | repeat rewrite Regmap.gso]; auto. }
Qed.*) Admitted.

Lemma sem_update :
  forall A ge sp st x st' st'' st''' f,
  sem (mk_ctx st sp ge) f st' ->
  match_states st' st''' ->
  @step_instr A ge sp st''' x st'' ->
  exists tst, sem (mk_ctx st sp ge) (update f x) tst /\ match_states st'' tst.
Proof.
  intros. destruct x.
  - inv H1. econstructor. simplify. eauto. symmetry; auto.
  - inv H1. inv H0. econstructor.
    Admitted.

Lemma rtlblock_trans_correct :
  forall bb ge sp st st',
    RTLBlock.step_instr_list ge sp st bb st' ->
    forall tst,
      match_states st tst ->
      exists tst', sem (mk_ctx tst sp ge) (abstract_sequence empty bb) tst'
                   /\ match_states st' tst'.
Proof.
  induction bb using rev_ind; simplify.
  { econstructor. simplify. apply abstract_interp_empty.
    inv H. auto. }
  { apply rtlblock_trans_correct' in H. simplify.
    rewrite abstract_seq.
    exploit IHbb; try eassumption; []; simplify.
    exploit sem_update. apply H1. symmetry; eassumption.
    eauto. simplify. econstructor. split. apply H3.
    auto. }
Qed.

Lemma abstract_execution_correct:
  forall bb bb' cfi cfi' ge tge sp st st' tst,
    RTLBlock.step_instr_list ge sp st bb st' ->
    ge_preserved ge tge ->
    schedule_oracle (mk_bblock bb cfi) (mk_bblock bb' cfi') = true ->
    match_states st tst ->
    exists tst', RTLPar.step_instr_block tge sp tst bb' tst'
                 /\ match_states st' tst'.
Proof.
  intros.
  unfold schedule_oracle in *. simplify. unfold empty_trees in H4.
  exploit rtlblock_trans_correct; try eassumption; []; simplify.
(*)  exploit abstract_execution_correct';
  try solve [eassumption | apply state_lessdef_match_sem; eassumption].
  apply match_states_commut. eauto. inv_simp.
  exploit rtlpar_trans_correct; try eassumption; []; inv_simp.
  exploit step_instr_block_matches; eauto. apply match_states_commut; eauto. inv_simp.
  repeat match goal with | H: match_states _ _ |- _ => inv H end.
  do 2 econstructor; eauto.
  econstructor; congruence.
Qed.*)Admitted.

Definition match_prog (prog : RTLBlock.program) (tprog : RTLPar.program) :=
  match_program (fun cu f tf => transl_fundef f = Errors.OK tf) eq prog tprog.

Inductive match_stackframes: RTLBlock.stackframe -> RTLPar.stackframe -> Prop :=
| match_stackframe:
    forall f tf res sp pc rs rs' ps ps',
      transl_function f = OK tf ->
      (forall x, rs !! x = rs' !! x) ->
      (forall x, ps !! x = ps' !! x) ->
      match_stackframes (Stackframe res f sp pc rs ps)
                        (Stackframe res tf sp pc rs' ps').

Inductive match_states: RTLBlock.state -> RTLPar.state -> Prop :=
| match_state:
    forall sf f sp pc rs rs' m sf' tf ps ps'
      (TRANSL: transl_function f = OK tf)
      (STACKS: list_forall2 match_stackframes sf sf')
      (REG: forall x, rs !! x = rs' !! x)
      (REG: forall x, ps !! x = ps' !! x),
      match_states (State sf f sp pc rs ps m)
                   (State sf' tf sp pc rs' ps' m)
| match_returnstate:
    forall stack stack' v m
      (STACKS: list_forall2 match_stackframes stack stack'),
      match_states (Returnstate stack v m)
                   (Returnstate stack' v m)
| match_callstate:
    forall stack stack' f tf args m
      (TRANSL: transl_fundef f = OK tf)
      (STACKS: list_forall2 match_stackframes stack stack'),
      match_states (Callstate stack f args m)
                   (Callstate stack' tf args m).

Section CORRECTNESS.

  Context (prog: RTLBlock.program) (tprog : RTLPar.program).
  Context (TRANSL: match_prog prog tprog).

  Let ge : RTLBlock.genv := Globalenvs.Genv.globalenv prog.
  Let tge : RTLPar.genv := Globalenvs.Genv.globalenv tprog.

  Lemma symbols_preserved:
    forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
  Proof using TRANSL. intros. eapply (Genv.find_symbol_match TRANSL). Qed.
  Hint Resolve symbols_preserved : rtlgp.

  Lemma function_ptr_translated:
    forall (b: Values.block) (f: RTLBlock.fundef),
      Genv.find_funct_ptr ge b = Some f ->
      exists tf,
        Genv.find_funct_ptr tge b = Some tf /\ transl_fundef f = Errors.OK tf.
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_ptr_match TRANSL); eauto.
    intros (cu & tf & P & Q & R); exists tf; auto.
  Qed.

  Lemma functions_translated:
    forall (v: Values.val) (f: RTLBlock.fundef),
      Genv.find_funct ge v = Some f ->
      exists tf,
        Genv.find_funct tge v = Some tf /\ transl_fundef f = Errors.OK tf.
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_match TRANSL); eauto.
    intros (cu & tf & P & Q & R); exists tf; auto.
  Qed.

  Lemma senv_preserved:
    Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge).
  Proof (Genv.senv_transf_partial TRANSL).
  Hint Resolve senv_preserved : rtlgp.

  Lemma sig_transl_function:
    forall (f: RTLBlock.fundef) (tf: RTLPar.fundef),
      transl_fundef f = OK tf ->
      funsig tf = funsig f.
  Proof using .
    unfold transl_fundef, transf_partial_fundef, transl_function; intros;
    repeat destruct_match; crush;
    match goal with H: OK _ = OK _ |- _ => inv H end; auto.
  Qed.
  Hint Resolve sig_transl_function : rtlgp.

  Hint Resolve Val.lessdef_same : rtlgp.
  Hint Resolve regs_lessdef_regs : rtlgp.

  Lemma find_function_translated:
    forall ros rs rs' f,
      (forall x, rs !! x = rs' !! x) ->
      find_function ge ros rs = Some f ->
      exists tf, find_function tge ros rs' = Some tf
                 /\ transl_fundef f = OK tf.
  Proof using TRANSL.
    Ltac ffts := match goal with
                 | [ H: forall _, Val.lessdef _ _, r: Registers.reg |- _ ] =>
                   specialize (H r); inv H
                 | [ H: Vundef = ?r, H1: Genv.find_funct _ ?r = Some _ |- _ ] =>
                   rewrite <- H in H1
                 | [ H: Genv.find_funct _ Vundef = Some _ |- _] => solve [inv H]
                 | _ => solve [exploit functions_translated; eauto]
                 end.
    destruct ros; simplify; try rewrite <- H;
    [| rewrite symbols_preserved; destruct_match;
      try (apply function_ptr_translated); crush ];
    intros;
    repeat ffts.
  Qed.

  Lemma schedule_oracle_nil:
    forall bb cfi,
      schedule_oracle {| bb_body := nil; bb_exit := cfi |} bb = true ->
      bb_body bb = nil /\ bb_exit bb = cfi.
  Proof using .
    unfold schedule_oracle, check_control_flow_instr.
    simplify; repeat destruct_match; crush.
  Qed.

  Lemma schedule_oracle_nil2:
    forall cfi,
      schedule_oracle {| bb_body := nil; bb_exit := cfi |}
                      {| bb_body := nil; bb_exit := cfi |} = true.
  Proof using .
    unfold schedule_oracle, check_control_flow_instr.
    simplify; repeat destruct_match; crush.
  Qed.

  Lemma eval_op_eq:
    forall (sp0 : Values.val) (op : Op.operation) (vl : list Values.val) m,
      Op.eval_operation ge sp0 op vl m = Op.eval_operation tge sp0 op vl m.
  Proof using TRANSL.
    intros.
    destruct op; auto; unfold Op.eval_operation, Genv.symbol_address, Op.eval_addressing32;
    [| destruct a; unfold Genv.symbol_address ];
    try rewrite symbols_preserved; auto.
  Qed.
  Hint Resolve eval_op_eq : rtlgp.

  Lemma eval_addressing_eq:
    forall sp addr vl,
      Op.eval_addressing ge sp addr vl = Op.eval_addressing tge sp addr vl.
  Proof using TRANSL.
    intros.
    destruct addr;
    unfold Op.eval_addressing, Op.eval_addressing32;
    unfold Genv.symbol_address;
    try rewrite symbols_preserved; auto.
  Qed.
  Hint Resolve eval_addressing_eq : rtlgp.

  Lemma ge_preserved_lem:
    ge_preserved ge tge.
  Proof using TRANSL.
    unfold ge_preserved.
    eauto with rtlgp.
  Qed.
  Hint Resolve ge_preserved_lem : rtlgp.

  Lemma lessdef_regmap_optget:
    forall or rs rs',
      regs_lessdef rs rs' ->
      Val.lessdef (regmap_optget or Vundef rs) (regmap_optget or Vundef rs').
  Proof using. destruct or; crush. Qed.
  Hint Resolve lessdef_regmap_optget : rtlgp.

  Lemma regmap_equiv_lessdef:
    forall rs rs',
      (forall x, rs !! x = rs' !! x) ->
      regs_lessdef rs rs'.
  Proof using.
    intros; unfold regs_lessdef; intros.
    rewrite H. apply Val.lessdef_refl.
  Qed.
  Hint Resolve regmap_equiv_lessdef : rtlgp.

  Lemma int_lessdef:
    forall rs rs',
      regs_lessdef rs rs' ->
      (forall arg v,
          rs !! arg = Vint v ->
          rs' !! arg = Vint v).
  Proof using. intros ? ? H; intros; specialize (H arg); inv H; crush. Qed.
  Hint Resolve int_lessdef : rtlgp.

  Ltac semantics_simpl :=
    match goal with
    | [ H: match_states _ _ |- _ ] =>
      let H2 := fresh "H" in
      learn H as H2; inv H2
    | [ H: transl_function ?f = OK _ |- _ ] =>
      let H2 := fresh "TRANSL" in
      learn H as H2;
      unfold transl_function in H2;
      destruct (check_scheduled_trees
                  (@fn_code RTLBlock.bb f)
                  (@fn_code RTLPar.bb (schedule f))) eqn:?;
               [| discriminate ]; inv H2
    | [ H: context[check_scheduled_trees] |- _ ] =>
      let H2 := fresh "CHECK" in
      learn H as H2;
      eapply check_scheduled_trees_correct in H2; [| solve [eauto] ]
    | [ H: schedule_oracle {| bb_body := nil; bb_exit := _ |} ?bb = true |- _ ] =>
      let H2 := fresh "SCHED" in
      learn H as H2;
      apply schedule_oracle_nil in H2
    | [ H: find_function _ _ _ = Some _, H2: forall x, ?rs !! x = ?rs' !! x |- _ ] =>
      learn H; exploit find_function_translated; try apply H2; eauto; inversion 1
    | [ H: Mem.free ?m _ _ _ = Some ?m', H2: Mem.extends ?m ?m'' |- _ ] =>
      learn H; exploit Mem.free_parallel_extends; eauto; intros
    | [ H: Events.eval_builtin_args _ _ _ _ _ _, H2: regs_lessdef ?rs ?rs' |- _ ] =>
      let H3 := fresh "H" in
      learn H; exploit Events.eval_builtin_args_lessdef; [apply H2 | | |];
      eauto with rtlgp; intro H3; learn H3
    | [ H: Events.external_call _ _ _ _ _ _ _ |- _ ] =>
      let H2 := fresh "H" in
      learn H; exploit Events.external_call_mem_extends;
      eauto; intro H2; learn H2
    | [ H: exists _, _ |- _ ] => inv H
    | _ => progress simplify
    end.

  Hint Resolve Events.eval_builtin_args_preserved : rtlgp.
  Hint Resolve Events.external_call_symbols_preserved : rtlgp.
  Hint Resolve set_res_lessdef : rtlgp.
  Hint Resolve set_reg_lessdef : rtlgp.
  Hint Resolve Op.eval_condition_lessdef : rtlgp.

  Hint Constructors Events.eval_builtin_arg: barg.

  Lemma eval_builtin_arg_eq:
    forall A ge a v1 m1 e1 e2 sp,
      (forall x, e1 x = e2 x) ->
      @Events.eval_builtin_arg A ge e1 sp m1 a v1 ->
      Events.eval_builtin_arg ge e2 sp m1 a v1.
Proof. induction 2; try rewrite H; eauto with barg. Qed.

  Lemma eval_builtin_args_eq:
    forall A ge e1 sp m1 e2 al vl1,
      (forall x, e1 x = e2 x) ->
      @Events.eval_builtin_args A ge e1 sp m1 al vl1 ->
      Events.eval_builtin_args ge e2 sp m1 al vl1.
  Proof.
    induction 2.
    - econstructor; split.
    - exploit eval_builtin_arg_eq; eauto. intros.
      destruct IHlist_forall2 as [| y]. constructor; eauto.
      constructor. constructor; auto.
      constructor; eauto.
  Qed.

  Lemma step_cf_instr_correct:
    forall cfi t s s',
      step_cf_instr ge s cfi t s' ->
      forall r,
        match_states s r ->
        exists r', step_cf_instr tge r cfi t r' /\ match_states s' r'.
  Proof using TRANSL.
    induction 1; repeat semantics_simpl;
    try solve [repeat (try erewrite match_states_list; eauto; econstructor; eauto with rtlgp)].
    { do 3 (try erewrite match_states_list by eauto; econstructor; eauto with rtlgp).
      eapply eval_builtin_args_eq. eapply REG.
      eapply Events.eval_builtin_args_preserved. eapply symbols_preserved.
      eauto.
      intros.
      unfold regmap_setres. destruct res.
      destruct (Pos.eq_dec x0 x); subst.
      repeat rewrite Regmap.gss; auto.
      repeat rewrite Regmap.gso; auto.
      eapply REG. eapply REG.
    }
    { repeat (try erewrite match_states_list; eauto; econstructor; eauto with rtlgp).
      unfold regmap_optget. destruct or. rewrite REG. constructor; eauto.
      constructor; eauto.
    }
    { exploit IHstep_cf_instr; eauto. simplify.
      repeat (try erewrite match_states_list; eauto; econstructor; eauto with rtlgp).
      erewrite eval_predf_pr_equiv; eauto.
    }
  Qed.

  Theorem transl_step_correct :
    forall (S1 : RTLBlock.state) t S2,
      RTLBlock.step ge S1 t S2 ->
      forall (R1 : RTLPar.state),
        match_states S1 R1 ->
        exists R2, Smallstep.plus RTLPar.step tge R1 t R2 /\ match_states S2 R2.
  Proof.

    induction 1; repeat semantics_simpl.

    { destruct bb; destruct x.
      assert (bb_exit = bb_exit0).
      { unfold schedule_oracle in *. simplify.
        unfold check_control_flow_instr in *.
        destruct_match; crush.
      }
      subst.

      exploit abstract_execution_correct; try eassumption. eapply ge_preserved_lem.
      econstructor; eauto.
      simplify. destruct x. inv H7.

      exploit step_cf_instr_correct; try eassumption. econstructor; eauto.
      simplify.

      econstructor. econstructor. eapply Smallstep.plus_one. econstructor.
      eauto. eauto. simplify. eauto. eauto. }
    { unfold bind in *. inv TRANSL0. clear Learn. inv H0. destruct_match; crush.
      inv H2. unfold transl_function in Heqr. destruct_match; crush.
      inv Heqr.
      repeat econstructor; eauto.
      unfold bind in *. destruct_match; crush. }
    { inv TRANSL0. repeat econstructor; eauto using Events.external_call_symbols_preserved, symbols_preserved, senv_preserved, Events.E0_right. }
    { inv STACKS. inv H2. repeat econstructor; eauto.
      intros. apply PTree_matches; eauto. }
  Qed.

  Lemma transl_initial_states:
    forall S,
      RTLBlock.initial_state prog S ->
      exists R, RTLPar.initial_state tprog R /\ match_states S R.
  Proof.
    induction 1.
    exploit function_ptr_translated; eauto. intros [tf [A B]].
    econstructor; split.
    econstructor. apply (Genv.init_mem_transf_partial TRANSL); eauto.
    replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved; eauto.
    symmetry; eapply match_program_main; eauto.
    eexact A.
    rewrite <- H2. apply sig_transl_function; auto.
    constructor. auto. constructor.
  Qed.

  Lemma transl_final_states:
    forall S R r,
      match_states S R -> RTLBlock.final_state S r -> RTLPar.final_state R r.
  Proof.
    intros. inv H0. inv H. inv STACKS. constructor.
  Qed.

  Theorem transf_program_correct:
    Smallstep.forward_simulation (RTLBlock.semantics prog) (RTLPar.semantics tprog).
  Proof.
    eapply Smallstep.forward_simulation_plus.
    apply senv_preserved.
    eexact transl_initial_states.
    eexact transl_final_states.
    exact transl_step_correct.
  Qed.

End CORRECTNESS.
#+end_src

* License

#+name: license
#+begin_src coq :tangle no
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020-2022 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)
#+end_src