aboutsummaryrefslogtreecommitdiffstats
path: root/src/common/NonEmpty.v
blob: 01456d0c06934f6a311aefa8b74b063948935672 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2021-2022 Yann Herklotz <yann@yannherklotz.com>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import Coq.Lists.List.
Require Import Coq.Classes.RelationClasses.
Require Import Coq.Classes.DecidableClass.
Require Import Coq.Setoids.Setoid.
Require Export Coq.Classes.SetoidClass.
Require Export Coq.Classes.SetoidDec.
Require Import Coq.Logic.Decidable.

Require Import Vericertlib.

Inductive non_empty (A: Type) :=
| singleton : A -> non_empty A
| cons : A -> non_empty A -> non_empty A
.

Arguments singleton [A].
Arguments cons [A].

Declare Scope non_empty_scope.
Delimit Scope non_empty_scope with non_empty.

Module NonEmptyNotation.
  Infix "::|" := cons (at level 60, right associativity) : non_empty_scope.
End NonEmptyNotation.
Import NonEmptyNotation.

#[local] Open Scope non_empty_scope.

Fixpoint map {A B} (f: A -> B) (l: non_empty A): non_empty B :=
  match l with
  | singleton a => singleton (f a)
  | a ::| b => f a ::| map f b
  end.

Fixpoint to_list {A} (l: non_empty A): list A :=
  match l with
  | singleton a => a::nil
  | a ::| b => a :: to_list b
  end.

Fixpoint app {A} (l1 l2: non_empty A) :=
  match l1 with
  | singleton a => a ::| l2
  | a ::| b => a ::| app b l2
  end.

Fixpoint non_empty_prod {A B} (l: non_empty A) (l': non_empty B) :=
  match l with
  | singleton a => map (fun x => (a, x)) l'
  | a ::| b => app (map (fun x => (a, x)) l') (non_empty_prod b l')
  end.

Fixpoint of_list {A} (l: list A): option (non_empty A) :=
  match l with
  | a::nil => Some (singleton a)
  | a::b =>
      match of_list b with
      | Some b' => Some (a ::| b')
      | _ => None
      end
  | nil => None
  end.

Fixpoint of_list_def {A} (d: A) (l: list A): non_empty A :=
  match l with
  | a::b => a ::| of_list_def d b
  | nil => singleton d
  end.

Fixpoint replace {A} (f: A -> A -> bool) (a b: A) (l: non_empty A) :=
  match l with
  | a' ::| l' => if f a a' then b ::| replace f a b l' else a' ::| replace f a b l'
  | singleton a' => if f a a' then singleton b else singleton a'
  end.

Inductive In {A: Type} (x: A) : non_empty A -> Prop :=
| In_cons : forall a b, x = a \/ In x b -> In x (a ::| b)
| In_single : In x (singleton x).

Ltac inv X := inversion X; clear X; subst.

Definition in_dec:
  forall A (a: A) (l: non_empty A),
    (forall a b: A, {a = b} + {a <> b}) ->
    {In a l} + {~ In a l}.
Proof.
  induction l; intros.
  { specialize (X a a0). inv X.
    left. constructor.
    right. unfold not. intros. apply H. inv H0. auto. }
  { pose proof X as X2.
    specialize (X a a0). inv X.
    left. constructor; tauto.
    apply IHl in X2. inv X2.
    left. constructor; tauto.
    right. unfold not in *; intros. apply H0. inv H1. now inv H3. }
Defined.

Fixpoint filter {A: Type} (f: A -> bool) (l: non_empty A) : option (non_empty A) :=
  match l with
  | singleton a =>
      if f a then Some (singleton a) else None
  | a ::| b =>
      if f a then
        match filter f b with Some x => Some (a ::| x) | None => Some (singleton a) end
      else filter f b
  end.

Fixpoint fold_left {A B} (f: A -> B -> A) (l: non_empty B) (a: A) {struct l} : A :=
  match l with
  | singleton a' => f a a'
  | b ::| t => fold_left f t (f a b)
  end.

Fixpoint fold_right {A B} (f: B -> A -> A) (a: A) (l: non_empty B) {struct l} : A :=
  match l with
  | singleton a' => f a' a
  | b ::| t => f b (fold_right f a t)
  end.

Fixpoint eqb {A} (val_eqb: forall a b: A, {a = b} + {a <> b})
  (n1 n2: non_empty A): bool :=
  match n1, n2 with
  | n1a ::| n1b, n2a ::| n2b =>
    if val_eqb n1a n2a
    then eqb val_eqb n1b n2b
    else false
  | singleton a, singleton b => if val_eqb a b then true else false
  | _, _ => false
  end.

Lemma eqb_sound:
  forall A val_eqb n1 n2,
    @eqb A val_eqb n1 n2 = true ->
    n1 = n2.
Proof.
  induction n1; destruct n2; intros; try discriminate;
    cbn in H; destruct (val_eqb a a0); try now subst; [].
  f_equal; now eauto.
Qed.

Lemma eqb_complete:
  forall A val_eqb n1 n2,
    n1 = n2 ->
    @eqb A val_eqb n1 n2 = true.
Proof.
  induction n1; destruct n2; intros; try discriminate;
    cbn in *; inv H; destruct (val_eqb a0 a0); auto.
Qed.

Definition eq_dec:
  forall A (val_eqb: forall a b: A, {a = b} + {a <> b}) (n1 n2: non_empty A),
    {n1 = n2} + {n1 <> n2}.
Proof.
  intros.
  case_eq (@eqb A val_eqb n1 n2); intros.
  - apply eqb_sound in H; tauto.
  - assert (n1 <> n2); unfold not; intros.
    apply Bool.not_true_iff_false in H. apply H.
    apply eqb_complete; auto. tauto.
Defined.

Inductive Forall {A : Type} (P : A -> Prop) : non_empty A -> Prop :=
| Forall_singleton a : P a -> Forall P (singleton a)
| Forall_cons x l : P x -> Forall P l -> Forall P (x ::| l).

Inductive Forall2 {A B : Type} (R : A -> B -> Prop) : non_empty A -> non_empty B -> Prop :=
| Forall2_singleton : forall a b, R a b -> Forall2 R (singleton a) (singleton b)
| Forall2_cons : forall (x : A) (y : B) (l : non_empty A) (l' : non_empty B),
  R x y -> Forall2 R l l' -> Forall2 R (x ::| l) (y ::| l').

Definition equivP {A R} `{Equivalence A R} n1 n2 := Forall2 R n1 n2.

Fixpoint equivb {A} `{EqDec A} (n1 n2: non_empty A): bool :=
  match n1, n2 with
  | n1a ::| n1b, n2a ::| n2b =>
    if n1a == n2a
    then equivb n1b n2b
    else false
  | singleton a, singleton b => if a == b then true else false
  | _, _ => false
  end.

Lemma equivb_symm : forall A (SET: Setoid A) (EQD: EqDec SET) (a b: non_empty A),
  equivb a b = equivb b a.
Proof.
  induction a; destruct b; try easy; cbn.
  - destruct (a == a0).
    + symmetry in e. destruct (a0 == a); easy.
    + destruct (a0 == a); try easy. now symmetry in e.
  - destruct (a == a1).
    + symmetry in e. destruct (a1 == a); easy.
    + destruct (a1 == a); try easy. now symmetry in e.
Qed.

Inductive norepet {A : Type} : non_empty A -> Prop :=
| norepet_singleton a : norepet (singleton a)
| list_norepet_cons hd tl :
  ~ In hd tl -> norepet tl -> norepet (hd ::| tl).

Lemma in_NEapp5 :
  forall A (a: A) x y,
    In a (app x y) ->
    In a x \/ In a y.
Proof.
  induction x; cbn in *; intros.
  - inv H. inv H1. left. constructor. tauto.
  - inv H. inv H1. left. constructor; tauto.
    apply IHx in H. inv H; intuition (constructor; auto).
Qed.

Lemma app_NEmap :
  forall A B (f: A -> B) a b,
    map f (app a b) = app (map f a) (map f b).
Proof. induction a; auto; intros; cbn in *; now rewrite IHa. Qed.

Lemma of_list_some :
  forall A a a' (e: A),
    of_list a = Some a' ->
    of_list (e :: a) = Some (cons e a').
Proof.
  induction a; [crush|].
  intros.
  cbn in H. destruct a0. inv H. auto.
  destruct_match; [|discriminate].
  inv H. specialize (IHa n a ltac:(trivial)).
  cbn. destruct_match. unfold of_list in IHa.
  fold (@of_list A) in IHa. rewrite IHa in Heqo0. inv Heqo0. auto.
  unfold of_list in IHa. fold (@of_list A) in IHa. rewrite IHa in Heqo0. inv Heqo0.
Qed.

Lemma of_list_contra :
  forall A b (a: A),
    ~ of_list (a :: b) = None.
Proof.
  induction b; try solve [crush].
  intros.
  specialize (IHb a).
  enough (X: exists x, of_list (a :: b) = Some x).
  inversion_clear X as [x X'].
  erewrite of_list_some; eauto; discriminate.
  destruct (of_list (a :: b)) eqn:?; [eauto|contradiction].
Qed.

Lemma of_list_exists :
  forall A b (a: A),
    exists x, of_list (a :: b) = Some x.
Proof.
  intros. pose proof (of_list_contra _ b a).
  destruct (of_list (a :: b)); try contradiction.
  eauto.
Qed.

Lemma of_list_exists2 :
  forall A b (a c: A),
    exists x,
      of_list (c :: a :: b) = Some (cons c x)
      /\ of_list (a :: b) = Some x.
Proof.
  intros. pose proof (of_list_exists _ b a).
  inversion_clear H as [x B].
  econstructor; split; eauto.
  eapply of_list_some; eauto.
Qed.

Lemma of_list_to_list :
  forall A (x: list A) y,
    of_list x = Some y ->
    to_list y = x.
Proof.
  induction x; [crush|].
  intros. destruct x; [crush|].
  pose proof (of_list_exists2 _ x a0 a).
  inversion_clear H0 as [x0 [HN1 HN2]]. rewrite HN1 in H. inv H.
  cbn. f_equal. eauto.
Qed.

Lemma Forall_forall:
  forall (A : Type) (P : A -> Prop) (l : non_empty A), Forall P l <-> (forall x : A, In x l -> P x).
Proof.
  induction l.
  - split; intros.
    + inv H. inv H0. auto.
    + constructor. specialize (H a). apply H. constructor.
  - split; intros.
    + inv H. inv H0. inv H1; eauto. eapply IHl in H4; eauto.
    + constructor. eapply H. constructor; tauto. eapply IHl.
      intros. eapply H. constructor; tauto.
Qed.

Lemma filter_None :
  forall A f (x: non_empty A),
    filter f x = None ->
    Forall (fun x => f x = false) x.
Proof.
  induction x; cbn; intros.
  - constructor. destruct_match; now auto.
  - constructor. destruct_match; auto. destruct_match; try discriminate.
    destruct_match; eauto. now destruct_match.
Qed.

Lemma In_map :
  forall A B (f: A -> B) n (x: A),
    In x n ->
    In (f x) (map f n).
Proof.
  induction n; inversion 1; subst; cbn in *.
  - constructor.
  - clear H. inv H1; intuition (constructor; auto).
Qed.

Lemma In_map2 :
  forall A B (f: A -> B) n (x: B),
    In x (map f n) ->
    exists y, In y n /\ x = f y.
Proof.
  induction n; inversion 1; subst; cbn in *.
  - inv H. exists a; split; auto. constructor.
  - clear H. inv H1.
    + exists a; split; auto; constructor; tauto.
    + exploit IHn; eauto; simplify. exists x0; split; auto; constructor; tauto.
Qed.

Fixpoint norepet_check {A} eq_dec (ne: non_empty A) :=
  match ne with
  | singleton a => true
  | a ::| b =>
    if in_dec A a b eq_dec then false
    else norepet_check eq_dec b
  end.

Lemma norepet_check_correct :
  forall A eq_dec ne,
    @norepet_check A eq_dec ne = true ->
    norepet ne.
Proof.
  induction ne; intros; [constructor|].
  cbn in H. destruct_match; [discriminate|].
  constructor; auto.
Qed.

Lemma to_list_in :
  forall A ne (x: A),
    In x ne ->
    List.In x (to_list ne).
Proof.
  induction ne.
  - intros. inv H. cbn; tauto.
  - intros; cbn. inv H. inv H1; eauto.
Qed.