aboutsummaryrefslogtreecommitdiffstats
path: root/src/common/Vericertlib.v
blob: da046f3bb138b42694773f0b8157bbadb75dc537 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2019-2021 Yann Herklotz <yann@yannherklotz.com>
 *               2020 James Pollard <j@mes.dev>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Set Implicit Arguments.

Require Export Coq.Bool.Bool.
Require Export Coq.Lists.List.
Require Export Coq.Strings.String.
Require Export Coq.ZArith.ZArith.
Require Export Coq.ZArith.Znumtheory.
Require Import Coq.micromega.Lia.

Require Export compcert.lib.Coqlib.
Require Import compcert.lib.Integers.
Require Import compcert.lib.Maps.

Require Import vericert.common.Show.
Require Export vericert.common.Monad.
Require Export vericert.common.Optionmonad.

#[global] Open Scope vericert_scope.

(* Depend on CompCert for the basic library, as they declare and prove some
   useful theorems. *)

#[local] Open Scope Z_scope.

(* This tactic due to Clement Pit-Claudel with some minor additions by JDP to
   allow the result to be named: https://pit-claudel.fr/clement/MSc/#org96a1b5f *)
Inductive Learnt {A: Type} (a: A) :=
  | AlreadyKnown : Learnt a.

Ltac learn_tac fact name :=
  lazymatch goal with
  | [ H: Learnt fact |- _ ] =>
    fail 0 "fact" fact "has already been learnt"
  | _ => let type := type of fact in
        lazymatch goal with
        | [ H: @Learnt type _ |- _ ] =>
          fail 0 "fact" fact "of type" type "was already learnt through" H
        | _ => let learnt := fresh "Learn" in
              pose proof (AlreadyKnown fact) as learnt; pose proof fact as name
        end
  end.

Tactic Notation "learn" constr(fact) := let name := fresh "H" in learn_tac fact name.
Tactic Notation "learn" constr(fact) "as" simple_intropattern(name) := learn_tac fact name.

Ltac unfold_rec c := unfold c; fold c.

Ltac solve_by_inverts n :=
  match goal with | H : ?T |- _ =>
    match type of T with Prop =>
      inversion H;
      match n with S (S (?n')) => subst; try constructor; solve_by_inverts (S n') end
    end
  end.

Ltac solve_by_invert := solve_by_inverts 1.

Ltac destruct_match :=
  match goal with
  | [ |- context[match ?x with | _ => _ end ] ] => destruct x eqn:?
  | [ H: context[match ?x with | _ => _ end] |- _ ] => destruct x eqn:?
  end.

Ltac auto_destruct x := destruct x eqn:?; simpl in *; try discriminate; try congruence.

Ltac nicify_hypotheses :=
  repeat match goal with
         | [ H : ex _ |- _ ] => inv H
         | [ H : Some _ = Some _ |- _ ] => inv H
         | [ H : ?x = ?x |- _ ] => clear H
         | [ H : _ /\ _ |- _ ] => inv H
         end.

Ltac nicify_goals :=
  repeat match goal with
         | [ |- _ /\ _ ] => split
         | [ |- Some _ = Some _ ] => f_equal
         | [ |- S _ = S _ ] => f_equal
         end.

Ltac kill_bools :=
  repeat match goal with
         | [ H : _ && _ = true |- _ ] => apply andb_prop in H
         | [ H : _ || _ = false |- _ ] => apply orb_false_elim in H

         | [ H : _ <=? _ = true |- _ ] => apply Z.leb_le in H
         | [ H : _ <=? _ = false |- _ ] => apply Z.leb_gt in H
         | [ H : _ <? _ = true |- _ ] => apply Z.ltb_lt in H
         | [ H : _ <? _ = false |- _ ] => apply Z.ltb_ge in H
         | [ H : _ >=? _ = _ |- _ ] => rewrite Z.geb_leb in H
         | [ H : _ >? _ = _ |- _ ] => rewrite Z.gtb_ltb in H

         | [ H : _ =? _ = true |- _ ] => apply Z.eqb_eq in H
         | [ H : _ =? _ = false |- _ ] => apply Z.eqb_neq in H
         end.

Ltac unfold_constants :=
  repeat match goal with
         | [ |- context[Integers.Ptrofs.modulus] ] =>
           replace Integers.Ptrofs.modulus with 4294967296 by reflexivity
         | [ H : context[Integers.Ptrofs.modulus] |- _ ] =>
           replace Integers.Ptrofs.modulus with 4294967296 in H by reflexivity

         | [ |- context[Integers.Ptrofs.min_signed] ] =>
           replace Integers.Ptrofs.min_signed with (-2147483648) by reflexivity
         | [ H : context[Integers.Ptrofs.min_signed] |- _ ] =>
           replace Integers.Ptrofs.min_signed with (-2147483648) in H by reflexivity

         | [ |- context[Integers.Ptrofs.max_signed] ] =>
           replace Integers.Ptrofs.max_signed with 2147483647 by reflexivity
         | [ H : context[Integers.Ptrofs.max_signed] |- _ ] =>
           replace Integers.Ptrofs.max_signed with 2147483647 in H by reflexivity

         | [ |- context[Integers.Ptrofs.max_unsigned] ] =>
           replace Integers.Ptrofs.max_unsigned with 4294967295 by reflexivity
         | [ H : context[Integers.Ptrofs.max_unsigned] |- _ ] =>
           replace Integers.Ptrofs.max_unsigned with 4294967295 in H by reflexivity

         | [ |- context[Integers.Int.modulus] ] =>
           replace Integers.Int.modulus with 4294967296 by reflexivity
         | [ H : context[Integers.Int.modulus] |- _ ] =>
           replace Integers.Int.modulus with 4294967296 in H by reflexivity

         | [ |- context[Integers.Int.min_signed] ] =>
           replace Integers.Int.min_signed with (-2147483648) by reflexivity
         | [ H : context[Integers.Int.min_signed] |- _ ] =>
           replace Integers.Int.min_signed with (-2147483648) in H by reflexivity

         | [ |- context[Integers.Int.max_signed] ] =>
           replace Integers.Int.max_signed with 2147483647 by reflexivity
         | [ H : context[Integers.Int.max_signed] |- _ ] =>
           replace Integers.Int.max_signed with 2147483647 in H by reflexivity

         | [ |- context[Integers.Int.max_unsigned] ] =>
           replace Integers.Int.max_unsigned with 4294967295 by reflexivity
         | [ H : context[Integers.Int.max_unsigned] |- _ ] =>
           replace Integers.Int.max_unsigned with 4294967295 in H by reflexivity

         | [ |- context[Integers.Ptrofs.unsigned (Integers.Ptrofs.repr ?x) ] ] =>
           match (eval compute in (0 <=? x)) with
           | true => replace (Integers.Ptrofs.unsigned (Integers.Ptrofs.repr x))
                    with x by reflexivity
           | false => idtac
           end
         end.

Ltac substpp :=
  repeat match goal with
         | [ H1 : ?x = Some _, H2 : ?x = Some _ |- _ ] =>
           let EQ := fresh "EQ" in
           learn H1 as EQ; rewrite H2 in EQ; inv EQ
         | _ => idtac
         end.

Ltac simplify := intros; unfold_constants; simpl in *;
                 repeat (nicify_hypotheses; nicify_goals; kill_bools; substpp);
                 simpl in *.

Infix "==nat" := eq_nat_dec (no associativity, at level 50).
Infix "==Z" := Z.eq_dec (no associativity, at level 50).

Ltac liapp :=
  repeat match goal with
         | [ |- (?x | ?y) ] =>
           match (eval compute in (Z.rem y x ==Z 0)) with
           | left _ =>
             let q := (eval compute in (Z.div y x))
             in exists q; reflexivity
           | _ => idtac
          end
         | _ => idtac
         end.

Ltac crush := simplify; try discriminate; try congruence; try lia; liapp;
              try assumption; try (solve [auto]).

#[global] Opaque Nat.div.
#[global] Opaque Z.mul.

(* Definition const (A B : Type) (a : A) (b : B) : A := a.

Definition compose (A B C : Type) (f : B -> C) (g : A -> B) (x : A) : C := f (g x). *)

Parameter debug_print : string -> unit.

Definition debug_show {A B : Type} `{Show A} (a : A) (b : B) : B :=
  let unused := debug_print (show a) in b.

Definition debug_show_msg {A B : Type} `{Show A} (s : string) (a : A) (b : B) : B :=
  let unused := debug_print (s ++ show a) in b.

Definition forall_ptree {A:Type} (f:positive->A->bool) (m:Maps.PTree.t A) : bool :=
  Maps.PTree.fold (fun (res: bool) (i: positive) (x: A) => res && f i x) m true.

Ltac boolInv :=
  match goal with
  | [ H: _ && _ = true |- _ ] =>
      destruct (andb_prop _ _ H); clear H; boolInv
  | [ H: proj_sumbool _ = true |- _ ] =>
      generalize (proj_sumbool_true _ H); clear H;
      let EQ := fresh in (intro EQ; try subst; boolInv)
  | _ =>
      idtac
  end.

Remark ptree_forall:
  forall (A: Type) (f: positive -> A -> bool) (m: Maps.PTree.t A),
  Maps.PTree.fold (fun (res: bool) (i: positive) (x: A) => res && f i x) m true = true ->
  forall i x, Maps.PTree.get i m = Some x -> f i x = true.
Proof.
  intros.
  set (f' := fun (res: bool) (i: positive) (x: A) => res && f i x).
  set (P := fun (m: Maps.PTree.t A) (res: bool) =>
              res = true -> Maps.PTree.get i m = Some x -> f i x = true).
  assert (P m true).
  rewrite <- H. fold f'. apply Maps.PTree_Properties.fold_rec.
  unfold P; intros. rewrite <- H1 in H4. auto.
  red; intros. now rewrite Maps.PTree.gempty in H2.
  unfold P; intros. unfold f' in H4. boolInv.
  rewrite Maps.PTree.gsspec in H5. destruct (peq i k).
  subst. inv H5. auto.
  apply H3; auto.
  red in H1. auto.
Qed.

Lemma forall_ptree_true:
  forall (A: Type) (f: positive -> A -> bool) (m: Maps.PTree.t A),
    forall_ptree f m = true ->
    forall i x, Maps.PTree.get i m = Some x -> f i x = true.
Proof.
  apply ptree_forall.
Qed.

Ltac decomp_logicals h :=
  idtac;match type of h with
  | @ex _ (fun x => _) => let x' := fresh x in let h1 := fresh in destruct h as [x' h1]; decomp_logicals h1
  | @sig _ (fun x => _) => let x' := fresh x in let h1 := fresh in destruct h as [x' h1]; decomp_logicals h1
  | @sig2 _ (fun x => _) (fun _ => _) => let x' := fresh x in
                                         let h1 := fresh in
                                         let h2 := fresh in
                                         destruct h as [x' h1 h2];
                                         decomp_logicals h1;
                                         decomp_logicals h2
  | @sigT _ (fun x => _) => let x' := fresh x in let h1 := fresh in destruct h as [x' h1]; decomp_logicals h1
  | @sigT2 _ (fun x => _) (fun _ => _) => let x' := fresh x in
                                          let h1 := fresh in
                                          let h2 := fresh in
                                          destruct h as [x' h1 h2]; decomp_logicals h1; decomp_logicals h2
  | and _ _ => let h1 := fresh in let h2 := fresh in destruct h as [h1 h2]; decomp_logicals h1; decomp_logicals h2
  | iff _ _ => let h1 := fresh in let h2 := fresh in destruct h as [h1 h2]; decomp_logicals h1; decomp_logicals h2
  | or _ _ => let h' := fresh in destruct h as [h' | h']; [decomp_logicals h' | decomp_logicals h' ]
  | _ => idtac
  end.