aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/CondElimproof.v
blob: ace90b005625d4df967884016a22e88e802ac975 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
(*|
..
   Vericert: Verified high-level synthesis.
   Copyright (C) 2022 Yann Herklotz <yann@yannherklotz.com>

   This program is free software: you can redistribute it and/or modify
   it under the terms of the GNU General Public License as published by
   the Free Software Foundation, either version 3 of the License, or
   (at your option) any later version.

   This program is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
   GNU General Public License for more details.

   You should have received a copy of the GNU General Public License
   along with this program.  If not, see <https://www.gnu.org/licenses/>.

================
RTLBlockgenproof
================

.. coq:: none
|*)

Require Import compcert.common.AST.
Require Import compcert.common.Errors.
Require Import compcert.common.Globalenvs.
Require Import compcert.lib.Maps.
Require Import compcert.backend.Registers.
Require Import compcert.common.Smallstep.
Require Import compcert.common.Events.
Require Import compcert.common.Memory.
Require Import compcert.common.Values.

Require Import vericert.common.Vericertlib.
Require Import vericert.common.DecEq.
Require Import vericert.hls.Gible.
Require Import vericert.hls.GibleSeq.
Require Import vericert.hls.CondElim.
Require Import vericert.hls.Predicate.

#[local] Open Scope positive.

Lemma cf_in_step :
  forall A B ge sp is_ is_' bb cf,
    @SeqBB.step A B ge sp (Iexec is_) bb (Iterm is_' cf) ->
    exists p, In (RBexit p cf) bb
              /\ Option.default true (Option.map (eval_predf (is_ps is_')) p) = true.
  Proof. Admitted.

Lemma forbidden_term_trans :
  forall A B ge sp i c b i' c',
    ~ @SeqBB.step A B ge sp (Iterm i c) b (Iterm i' c').
Proof. induction b; unfold not; intros; inv H. Qed.

Lemma random1 :
  forall A B ge sp is_ b is_' cf,
    @SeqBB.step A B ge sp (Iexec is_) b (Iterm is_' cf) ->
    exists p b', SeqBB.step ge sp (Iexec is_) (b' ++ (RBexit p cf) :: nil) (Iterm is_' cf)
                 /\ Forall2 eq (b' ++ (RBexit p cf) :: nil) b.
Proof.
Admitted.

Lemma append :
  forall A B cf i0 i1 l0 l1 sp ge,
      (exists i0', step_list2 (@step_instr A B ge) sp (Iexec i0) l0 (Iexec i0') /\
                    @SeqBB.step A B ge sp (Iexec i0') l1 (Iterm i1 cf)) ->
    @SeqBB.step A B ge sp (Iexec i0) (l0 ++ l1) (Iterm i1 cf).
Proof. Admitted.

Lemma append2 :
  forall A B cf i0 i1 l0 l1 sp ge,
    @SeqBB.step A B ge sp (Iexec i0) l0 (Iterm i1 cf) ->
    @SeqBB.step A B ge sp (Iexec i0) (l0 ++ l1) (Iterm i1 cf).
Proof. Admitted.

Definition to_cf c :=
  match c with | Iterm _ cf => Some cf | _ => None end.

#[local] Notation "'mki'" := (mk_instr_state) (at level 1).

Variant match_ps : positive -> predset -> predset -> Prop :=
| match_ps_intro :
  forall ps ps' m,
    (forall x, x <= m -> ps !! x = ps' !! x) ->
    match_ps m ps ps'.

Lemma eval_pred_under_match:
  forall rs m rs' m' ps tps tps' ps' v p1 rs'' ps'' m'',
    eval_pred (Some p1) (mki rs ps m) (mki rs' ps' m') (mki rs'' ps'' m'') ->
    max_predicate p1 <= v ->
    match_ps v ps tps ->
    match_ps v ps' tps' ->
    exists tps'',
      eval_pred (Some p1) (mki rs tps m) (mki rs' tps' m') (mki rs'' tps'' m'')
      /\ match_ps v ps'' tps''.
Proof.
  inversion 1; subst; simplify.
    Admitted.

Lemma eval_pred_eq_predset :
  forall p rs ps m rs' m' ps' rs'' m'',
    eval_pred p (mki rs ps m) (mki rs' ps m') (mki rs'' ps' m'') ->
    ps' = ps.
Proof. inversion 1; subst; crush. Qed.

Lemma elim_cond_s_spec :
  forall A B ge sp rs m rs' m' ps tps ps' p a p0 l v,
    step_instr ge sp (Iexec (mki rs ps m)) a (Iexec (mki rs' ps' m')) ->
    max_pred_instr v a <= v ->
    match_ps v ps tps ->
    elim_cond_s p a = (p0, l) ->
    exists tps',
      step_list2 (@step_instr A B ge) sp (Iexec (mki rs tps m)) l (Iexec (mki rs' tps' m'))
      /\ match_ps v ps' tps'.
Proof.
  inversion 1; subst; simplify; inv H.
  - inv H2. econstructor. split; eauto; econstructor; econstructor.
  - inv H2. destruct p1.
    + exploit eval_pred_under_match; eauto; try lia; simplify.
      econstructor. split. econstructor. econstructor; eauto. eauto. econstructor.
      eauto.
    + inv H15. econstructor. split. econstructor. econstructor. eauto. constructor; eauto.
      constructor. auto.
  - inv H2. destruct p1.
    + exploit eval_pred_under_match; eauto; try lia; simplify.
      econstructor. split. econstructor. econstructor; eauto.
      constructor. eauto.
    + inv H18. econstructor. split. econstructor. econstructor; eauto. constructor; eauto.
      constructor. auto.
  - inv H2. destruct p1.
    + exploit eval_pred_under_match; eauto; try lia; simplify.
      econstructor. split. econstructor. econstructor; eauto.
      constructor. auto.
    + inv H18. econstructor. split. econstructor. econstructor; eauto. constructor; eauto.
      constructor. auto.
  - inv H2. destruct p'.
    exploit eval_pred_under_match; eauto. lia. Admitted.

Definition wf_predicate (v: predicate) (p: predicate) := v < p.

Lemma eval_predf_match_ps :
  forall p p' p0 v,
    match_ps v p p' ->
    max_predicate p0 <= v ->
    eval_predf p p0 = eval_predf p' p0.
  Admitted.

Lemma step_cf_instr_ps_const :
  forall ge stk f sp pc rs' ps' m' cf t pc' rs'' ps'' m'',
    step_cf_instr ge (State stk f sp pc rs' ps' m') cf t (State stk f sp pc' rs'' ps'' m'') ->
    ps' = ps''.
Proof. inversion 1; subst; auto. Qed.

Lemma step_cf_instr_ps_idem :
  forall ge stk f sp pc rs' ps' m' cf t pc' rs'' ps'' m'' tps',
    step_cf_instr ge (State stk f sp pc rs' ps' m') cf t (State stk f sp pc' rs'' ps'' m'') ->
    step_cf_instr ge (State stk f sp pc rs' tps' m') cf t (State stk f sp pc' rs'' tps' m'').
Proof. inversion 1; subst; simplify; econstructor; eauto. Qed.

Variant match_stackframe : stackframe -> stackframe -> Prop :=
  | match_stackframe_init :
    forall res f tf sp pc rs p p'
           (TF: transf_function f = tf),
      match_stackframe (Stackframe res f sp pc rs p) (Stackframe res tf sp pc rs p').

Variant match_states : state -> state -> Prop :=
  | match_state :
    forall stk stk' f tf sp pc rs p p0 m
           (TF: transf_function f = tf)
           (STK: Forall2 match_stackframe stk stk')
           (PS: match_ps (max_pred_function f) p p0),
      match_states (State stk f sp pc rs p m) (State stk' tf sp pc rs p0 m)
  | match_callstate :
    forall cs cs' f tf args m
           (TF: transf_fundef f = tf)
           (STK: Forall2 match_stackframe cs cs'),
      match_states (Callstate cs f args m) (Callstate cs' tf args m)
  | match_returnstate :
    forall cs cs' v m
           (STK: Forall2 match_stackframe cs cs'),
      match_states (Returnstate cs v m) (Returnstate cs' v m)
.

Lemma step_instr_inv_exit :
  forall A B ge sp i p cf,
    eval_predf (is_ps i) p = true ->
    @step_instr A B ge sp (Iexec i) (RBexit (Some p) cf) (Iterm i cf).
Proof.
  intros.
  replace (Iterm i cf) with (if (eval_predf (is_ps i) p) then Iterm i cf else Iexec i).
  constructor; auto.
  rewrite H; auto.
Qed.

Lemma step_instr_inv_exit2 :
  forall A B ge sp i p cf,
    eval_predf (is_ps i) p = false ->
    @step_instr A B ge sp (Iexec i) (RBexit (Some p) cf) (Iexec i).
Proof.
  intros.
  replace (Iexec i) with (if (eval_predf (is_ps i) p) then Iterm i cf else Iexec i) at 2.
  constructor; auto.
  rewrite H; auto.
Qed.

Lemma eval_predf_in_ps :
  forall v ps ps' p1 b p tps,
    eval_predf ps p1 = true ->
    max_predicate p1 <= v ->
    wf_predicate v p ->
    match_ps v ps ps' ->
    eval_predf tps # p <- b (Pand (Plit (b, p)) p1) = true.
Admitted.

Lemma eval_predf_in_ps2 :
  forall v ps ps' p1 b b' p tps,
    eval_predf ps p1 = true ->
    max_predicate p1 <= v ->
    wf_predicate v p ->
    match_ps v ps ps' ->
    b <> b' ->
    eval_predf tps # p <- b (Pand (Plit (b', p)) p1) = false.
Admitted.

Lemma match_ps_set_gt :
  forall v ps tps p b,
    wf_predicate v p ->
    match_ps v ps tps ->
    match_ps v ps tps # p <- b.
Proof.
  intros. constructor. intros.
  unfold wf_predicate in *. inv H0.
  rewrite PMap.gso; auto; lia.
Qed.

Lemma transf_block_spec :
  forall f pc b,
    f.(fn_code) ! pc = Some b ->
    exists p,
      (transf_function f).(fn_code) ! pc
      = Some (snd (replace_section elim_cond_s p b)). Admitted.

Definition match_prog (p: program) (tp: program) :=
  Linking.match_program (fun cu f tf => tf = transf_fundef f) eq p tp.

Section CORRECTNESS.

  Context (prog tprog : program).

  Let ge : genv := Globalenvs.Genv.globalenv prog.
  Let tge : genv := Globalenvs.Genv.globalenv tprog.

  Context (TRANSL : match_prog prog tprog).

  Lemma symbols_preserved:
    forall (s: AST.ident), Genv.find_symbol tge s = Genv.find_symbol ge s.
  Proof using TRANSL. intros. eapply (Genv.find_symbol_match TRANSL). Qed.

  Lemma senv_preserved:
    Senv.equiv (Genv.to_senv ge) (Genv.to_senv tge).
  Proof using TRANSL. intros; eapply (Genv.senv_transf TRANSL). Qed.

  Lemma function_ptr_translated:
    forall b f,
      Genv.find_funct_ptr ge b = Some f ->
      Genv.find_funct_ptr tge b = Some (transf_fundef f).
  Proof (Genv.find_funct_ptr_transf TRANSL).

  Lemma sig_transf_function:
    forall (f tf: fundef),
      funsig (transf_fundef f) = funsig f.
  Proof using.
    unfold transf_fundef. unfold AST.transf_fundef; intros. destruct f.
    unfold transf_function. auto. auto.
  Qed.

  Lemma functions_translated:
    forall (v: Values.val) (f: GibleSeq.fundef),
      Genv.find_funct ge v = Some f ->
      Genv.find_funct tge v = Some (transf_fundef f).
  Proof using TRANSL.
    intros. exploit (Genv.find_funct_match TRANSL); eauto. simplify. eauto.
  Qed.

  Lemma find_function_translated:
    forall ros rs f,
      find_function ge ros rs = Some f ->
      find_function tge ros rs = Some (transf_fundef f).
  Proof using TRANSL.
    Ltac ffts := match goal with
                 | [ H: forall _, Val.lessdef _ _, r: Registers.reg |- _ ] =>
                     specialize (H r); inv H
                 | [ H: Vundef = ?r, H1: Genv.find_funct _ ?r = Some _ |- _ ] =>
                     rewrite <- H in H1
                 | [ H: Genv.find_funct _ Vundef = Some _ |- _] => solve [inv H]
                 | _ => solve [exploit functions_translated; eauto]
                 end.
    destruct ros; simplify; try rewrite <- H;
      [| rewrite symbols_preserved; destruct_match;
         try (apply function_ptr_translated); crush ];
      intros;
      repeat ffts.
  Qed.

  Lemma transf_initial_states :
    forall s1,
      initial_state prog s1 ->
      exists s2, initial_state tprog s2 /\ match_states s1 s2.
  Proof using TRANSL.
    induction 1.
    exploit function_ptr_translated; eauto; intros.
    do 2 econstructor; simplify. econstructor.
    apply (Genv.init_mem_transf TRANSL); eauto.
    replace (prog_main tprog) with (prog_main prog). rewrite symbols_preserved; eauto.
    symmetry; eapply Linking.match_program_main; eauto. eauto.
    erewrite sig_transf_function; eauto. constructor. auto. auto.
  Qed.

  Lemma transf_final_states :
    forall s1 s2 r,
      match_states s1 s2 -> final_state s1 r -> final_state s2 r.
  Proof using.
    inversion 2; crush. subst. inv H. inv STK. econstructor.
  Qed.

  Lemma elim_cond_s_spec2 :
    forall rs m rs' m' ps tps ps' p a p0 l v cf stk f sp pc t st,
      step_instr ge sp (Iexec (mki rs ps m)) a (Iterm (mki rs' ps' m') cf) ->
      step_cf_instr ge (State stk f sp pc rs' ps' m') cf t st ->
      max_pred_instr v a <= v ->
      match_ps v ps tps ->
      wf_predicate v p ->
      elim_cond_s p a = (p0, l) ->
      exists tps' cf' st',
        SeqBB.step tge sp (Iexec (mki rs tps m)) l (Iterm (mki rs' tps' m') cf')
        /\ match_ps v ps' tps'
        /\ step_cf_instr tge (State stk f sp pc rs' tps' m') cf' t st'
        /\ match_states st st'.
  Proof.
    inversion 1; subst; simplify.
    - destruct (eval_predf ps p1) eqn:?; [|discriminate]. inv H2.
      destruct cf; inv H5;
        try (do 3 econstructor; simplify;
             [ constructor; apply step_instr_inv_exit; erewrite <- eval_predf_match_ps; eauto; lia
             | auto
             | eauto using step_cf_instr_ps_idem
             | assert (ps' = ps'') by (eauto using step_cf_instr_ps_const); subst; auto ]).
      do 3 econstructor; simplify.
      constructor; apply step_instr_inv_exit; erewrite <- eval_predf_match_ps; eauto; lia.
      auto.
      (*inv H0; destruct b.
      + do 3 econstructor; simplify.
        econstructor. econstructor; eauto. eapply eval_pred_true.
        erewrite <- eval_predf_match_ps; eauto. simpl. lia.
        constructor. apply step_instr_inv_exit. simpl.
        eapply eval_predf_in_ps; eauto. lia.
        apply match_ps_set_gt; auto.
        constructor; auto.
        apply match_ps_set_gt; auto.
      + do 3 econstructor; simplify.
        econstructor. econstructor; eauto. eapply eval_pred_true.
        erewrite <- eval_predf_match_ps; eauto. simpl. lia.
        econstructor. apply step_instr_inv_exit2. simpl.
        eapply eval_predf_in_ps2; eauto. lia.
        constructor. apply step_instr_inv_exit. simpl.
        eapply eval_predf_in_ps; eauto; lia.
        apply match_ps_set_gt; auto.
        constructor; auto.
        apply match_ps_set_gt; auto.
    -*) Admitted.

  Lemma eval_op_eq:
    forall (sp0 : Values.val) (op : Op.operation) (vl : list Values.val) m,
      Op.eval_operation ge sp0 op vl m = Op.eval_operation tge sp0 op vl m.
  Proof using TRANSL.
    intros.
    destruct op; auto; unfold Op.eval_operation, Genv.symbol_address, Op.eval_addressing32;
    [| destruct a; unfold Genv.symbol_address ];
    try rewrite symbols_preserved; auto.
  Qed.

  Lemma eval_addressing_eq:
    forall sp addr vl,
      Op.eval_addressing ge sp addr vl = Op.eval_addressing tge sp addr vl.
  Proof using TRANSL.
    intros.
    destruct addr;
      unfold Op.eval_addressing, Op.eval_addressing32;
      unfold Genv.symbol_address;
      try rewrite symbols_preserved; auto.
  Qed.

  Lemma step_instr_ge :
    forall sp i a i',
      step_instr ge sp i a i' ->
      step_instr tge sp i a i'.
  Proof using TRANSL.
    inversion 1; subst; simplify; clear H; econstructor; eauto;
      try (rewrite <- eval_op_eq; auto); rewrite <- eval_addressing_eq; auto.
  Qed.

  Lemma step_cf_instr_ge :
    forall st cf t st' tst,
      step_cf_instr ge st cf t st' ->
      match_states st tst ->
      exists tst', step_cf_instr tge tst cf t tst' /\ match_states st' tst'.
  Proof.
    inversion 1; subst; simplify; clear H;
      match goal with H: context[match_states] |- _ => inv H end.
    - inv H1. do 2 econstructor. rewrite <- sig_transf_function. econstructor; eauto.
      eauto using find_function_translated. auto.
      econstructor; auto. repeat (constructor; auto).
    - inv H1. do 2 econstructor. econstructor. eauto using find_function_translated.
      eauto using sig_transf_function. eauto.
      econstructor; auto.
    - inv H2.

  Lemma step_list2_ge :
    forall sp l i i',
      step_list2 (step_instr ge) sp i l i' ->
      step_list2 (step_instr tge) sp i l i'.
  Proof using TRANSL.
    induction l; simplify; inv H.
    - constructor.
    - econstructor. apply step_instr_ge; eauto.
      eauto.
  Qed.

  Lemma step_list_ge :
    forall sp l i i',
      step_list (step_instr ge) sp i l i' ->
      step_list (step_instr tge) sp i l i'.
  Proof using TRANSL.
    induction l; simplify; inv H.
    - eauto using exec_RBcons, step_instr_ge.
    - eauto using exec_RBterm, step_instr_ge.
  Qed.

  Lemma replace_section_spec :
    forall sp bb rs ps m rs' ps' m' stk f t cf pc tps v n p p' bb' st st',
      SeqBB.step ge sp (Iexec (mki rs ps m)) bb (Iterm (mki rs' ps' m') cf) ->
      step_cf_instr ge (State stk f sp pc rs' ps' m') cf t st ->
      match_ps v ps tps ->
      max_pred_block v n bb <= v ->
      replace_section elim_cond_s p bb = (p', bb') ->
      exists tps' cf',
        SeqBB.step tge sp (Iexec (mki rs tps m)) bb' (Iterm (mki rs' tps' m') cf')
        /\ match_ps v ps' tps'
        /\ step_cf_instr tge (State stk f sp pc rs' tps' m') cf' t st'
        /\ match_states st st'.
  Proof.
    induction bb; simplify; inv H.
    - destruct state'. repeat destruct_match. inv H3.
      exploit elim_cond_s_spec; eauto. admit. simplify.
      exploit IHbb; eauto; simplify. admit.
      do 2 econstructor. simplify.
      eapply append. econstructor; simplify.
      eapply step_list2_ge; eauto. eauto.
      eauto. eauto. eauto.
    - repeat destruct_match; simplify. inv H3.
      exploit elim_cond_s_spec2; eauto. admit. admit. simplify.
      do 3 econstructor; simplify; eauto.
      eapply append2; eauto using step_list2_ge.
      Unshelve. exact 1.
  Admitted.

  Lemma transf_step_correct:
    forall (s1 : state) (t : trace) (s1' : state),
      step ge s1 t s1' ->
      forall s2 : state,
        match_states s1 s2 ->
        exists s2' : state, step tge s2 t s2' /\ match_states s1' s2'.
  Proof.
    induction 1; intros.
    + inv H2. eapply cf_in_step in H0; simplify.
      exploit transf_block_spec; eauto; simplify.
      do 2 econstructor. econstructor; eauto.
      simplify. Admitted.

  Theorem transf_program_correct:
    forward_simulation (semantics prog) (semantics tprog).
  Proof using TRANSL.
    eapply forward_simulation_step.
    + apply senv_preserved.
    + apply transf_initial_states.
    + apply transf_final_states.
    + apply transf_step_correct.
  Qed.


End CORRECTNESS.