aboutsummaryrefslogtreecommitdiffstats
path: root/src/hls/DHTL.v
blob: 6be82ae356d0d31df0280dc9c3c6ca5ed6006d4a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
(*
 * Vericert: Verified high-level synthesis.
 * Copyright (C) 2020-2023 Yann Herklotz <yann@yannherklotz.com>
 *               2020 James Pollard <j@mes.dev>
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *)

Require Import Coq.FSets.FMapPositive.
Require Import Coq.micromega.Lia.

Require compcert.common.Events.
Require compcert.common.Globalenvs.
Require compcert.common.Smallstep.
Require compcert.common.Values.
Require Import compcert.lib.Integers.
Require Import compcert.lib.Maps.

Require Import vericert.common.Vericertlib.
Require Import vericert.hls.ValueInt.
Require Import vericert.hls.AssocMap.
Require Import vericert.hls.Array.
Require vericert.hls.Verilog.

Local Open Scope positive.

(** The purpose of the hardware transfer language (HTL) is to create a more
hardware-like layout that is still similar to the register transfer language
(RTL) that it came from. The main change is that function calls become module
instantiations and that we now describe a state machine instead of a
control-flow graph. *)

Local Open Scope assocmap.

Definition reg := positive.
Definition node := positive.

Definition datapath := PTree.t Verilog.stmnt.
Definition controllogic := PTree.t Verilog.stmnt.

Definition map_well_formed {A : Type} (m : PTree.t A) : Prop :=
  forall p0 : positive,
    In p0 (map fst (Maps.PTree.elements m)) ->
    (Z.pos p0 <= Integers.Int.max_unsigned)%Z.

Record ram := mk_ram {
  ram_size: nat;
  ram_mem: reg;
  ram_en: reg;
  ram_u_en: reg;
  ram_addr: reg;
  ram_wr_en: reg;
  ram_d_in: reg;
  ram_d_out: reg;
  ram_ordering: (ram_addr < ram_en
                 /\ ram_en < ram_d_in
                 /\ ram_d_in < ram_d_out
                 /\ ram_d_out < ram_wr_en
                 /\ ram_wr_en < ram_u_en)
}.

Definition module_ordering a b c d e f g h := a < b < c /\ c < d < e /\ e < f < g /\ g < h.

Record module: Type :=
  mkmodule {
    mod_params : list reg;
    mod_datapath : datapath;
    mod_entrypoint : node;
    mod_st : reg;
    mod_stk : reg;
    mod_stk_len : nat;
    mod_finish : reg;
    mod_return : reg;
    mod_start : reg;
    mod_reset : reg;
    mod_clk : reg;
    mod_preg : reg;
    mod_scldecls : AssocMap.t (option Verilog.io * Verilog.scl_decl);
    mod_arrdecls : AssocMap.t (option Verilog.io * Verilog.arr_decl);
    mod_ram : option ram;
    mod_wf : map_well_formed mod_datapath;
    mod_ordering_wf : module_ordering mod_st mod_finish mod_return mod_stk mod_start mod_reset mod_clk mod_preg;
    mod_ram_wf : forall r', mod_ram = Some r' -> mod_preg < ram_addr r';
    mod_params_wf : Forall (Pos.gt mod_st) mod_params;
  }.

Definition fundef := AST.fundef module.

Definition program := AST.program fundef unit.

Fixpoint init_regs (vl : list value) (rl : list reg) {struct rl} :=
  match rl, vl with
  | r :: rl', v :: vl' => AssocMap.set r v (init_regs vl' rl')
  | _, _ => empty_assocmap
  end.

Definition empty_stack (m : module) : Verilog.assocmap_arr :=
  (AssocMap.set m.(mod_stk) (Array.arr_repeat None m.(mod_stk_len)) (AssocMap.empty Verilog.arr)).

(** * Operational Semantics *)

Definition genv := Globalenvs.Genv.t fundef unit.

Inductive stackframe : Type :=
  Stackframe :
    forall  (res : reg)
            (m : module)
            (pc : node)
            (reg_assoc : Verilog.assocmap_reg)
            (arr_assoc : Verilog.assocmap_arr),
      stackframe.

Inductive state : Type :=
| State :
    forall (stack : list stackframe)
           (m : module)
           (st : node)
           (reg_assoc : Verilog.assocmap_reg)
           (arr_assoc : Verilog.assocmap_arr), state
| Returnstate :
    forall (res : list stackframe)
           (v : value), state
| Callstate :
    forall (stack : list stackframe)
           (m : module)
           (args : list value), state.

Inductive exec_ram:
  Verilog.reg_associations -> Verilog.arr_associations -> option ram ->
  Verilog.reg_associations -> Verilog.arr_associations -> Prop :=
| exec_ram_Some_idle:
    forall ra ar r,
      Int.eq (Verilog.assoc_blocking ra)#(ram_en r, 32)
             (Verilog.assoc_blocking ra)#(ram_u_en r, 32) = true ->
      exec_ram ra ar (Some r) ra ar
| exec_ram_Some_write:
    forall ra ar r d_in addr en wr_en u_en,
      Int.eq en u_en = false ->
      Int.eq wr_en (ZToValue 0) = false ->
      (Verilog.assoc_blocking ra)#(ram_en r, 32) = en ->
      (Verilog.assoc_blocking ra)!(ram_u_en r) = Some u_en ->
      (Verilog.assoc_blocking ra)!(ram_wr_en r) = Some wr_en ->
      (Verilog.assoc_blocking ra)!(ram_d_in r) = Some d_in ->
      (Verilog.assoc_blocking ra)!(ram_addr r) = Some addr ->
      exec_ram ra ar (Some r) (Verilog.nonblock_reg (ram_en r) ra u_en)
               (Verilog.nonblock_arr (ram_mem r) (valueToNat addr) ar d_in)
| exec_ram_Some_read:
    forall ra ar r addr v_d_out en u_en,
      Int.eq en u_en = false ->
      (Verilog.assoc_blocking ra)#(ram_en r, 32) = en ->
      (Verilog.assoc_blocking ra)!(ram_u_en r) = Some u_en ->
      (Verilog.assoc_blocking ra)!(ram_wr_en r) = Some (ZToValue 0) ->
      (Verilog.assoc_blocking ra)!(ram_addr r) = Some addr ->
      Verilog.arr_assocmap_lookup (Verilog.assoc_blocking ar)
                                  (ram_mem r) (valueToNat addr) = Some v_d_out ->
      exec_ram ra ar (Some r) (Verilog.nonblock_reg (ram_en r)
                               (Verilog.nonblock_reg (ram_d_out r) ra v_d_out) u_en) ar
| exec_ram_None:
    forall r a,
      exec_ram r a None r a.

Inductive step : genv -> state -> Events.trace -> state -> Prop :=
| step_module :
    forall g m st sf data
        asr asa
        basr2 basa2 nasr2 nasa2
        basr3 basa3 nasr3 nasa3
        asr' asa'
        f pstval,
      asr!(mod_reset m) = Some (ZToValue 0) ->
      asr!(mod_finish m) = Some (ZToValue 0) ->
      asr!(m.(mod_st)) = Some (posToValue st) ->
      m.(mod_datapath)!st = Some data ->
      Verilog.stmnt_runp f
        (Verilog.mkassociations asr empty_assocmap)
        (Verilog.mkassociations asa (empty_stack m))
        data
        (Verilog.mkassociations basr2 nasr2)
        (Verilog.mkassociations basa2 nasa2) ->
      exec_ram
        (Verilog.mkassociations (Verilog.merge_regs nasr2 basr2) empty_assocmap)
        (Verilog.mkassociations (Verilog.merge_arrs nasa2 basa2) (empty_stack m))
        (mod_ram m)
        (Verilog.mkassociations basr3 nasr3)
        (Verilog.mkassociations basa3 nasa3) ->
      asr' = Verilog.merge_regs nasr3 basr3 ->
      asa' = Verilog.merge_arrs nasa3 basa3 ->
      asr'!(m.(mod_st)) = Some (posToValue pstval) ->
      (Z.pos pstval <= Integers.Int.max_unsigned)%Z ->
      step g (State sf m st asr asa) Events.E0 (State sf m pstval asr' asa')
| step_finish :
    forall g m st asr asa retval sf,
    asr!(m.(mod_finish)) = Some (ZToValue 1) ->
    asr!(m.(mod_return)) = Some retval ->
    step g (State sf m st asr asa) Events.E0 (Returnstate sf retval)
| step_call :
    forall g m args res,
      step g (Callstate res m args) Events.E0
           (State res m m.(mod_entrypoint)
             (AssocMap.set (mod_reset m) (ZToValue 0)
              (AssocMap.set (mod_finish m) (ZToValue 0)
               (AssocMap.set (mod_st m) (posToValue m.(mod_entrypoint))
                (init_regs args m.(mod_params)))))
             (empty_stack m))
| step_return :
    forall g m asr asa i r sf pc mst,
      mst = mod_st m ->
      step g (Returnstate (Stackframe r m pc asr asa :: sf) i) Events.E0
           (State sf m pc ((asr # mst <- (posToValue pc)) # r <- i) asa).
#[export] Hint Constructors step : htl.

Inductive initial_state (p: program): state -> Prop :=
  | initial_state_intro: forall b m0 m,
      let ge := Globalenvs.Genv.globalenv p in
      Globalenvs.Genv.init_mem p = Some m0 ->
      Globalenvs.Genv.find_symbol ge p.(AST.prog_main) = Some b ->
      Globalenvs.Genv.find_funct_ptr ge b = Some (AST.Internal m) ->
      initial_state p (Callstate nil m nil).

Inductive final_state : state -> Integers.int -> Prop :=
| final_state_intro : forall retval retvali,
    retvali = valueToInt retval ->
    final_state (Returnstate nil retval) retvali.

Definition semantics (m : program) :=
  Smallstep.Semantics step (initial_state m) final_state
                      (Globalenvs.Genv.globalenv m).

Definition max_pc_function (m: module) :=
  List.fold_left Pos.max (List.map fst (PTree.elements m.(mod_datapath))) 1.

Definition max_list := fold_right Pos.max 1.

Definition max_stmnt_tree t :=
  PTree.fold (fun i _ st => Pos.max (Verilog.max_reg_stmnt st) i) t 1.

Definition max_reg_ram r :=
  match r with
  | None => 1
  | Some ram => Pos.max (ram_mem ram)
                (Pos.max (ram_en ram)
                 (Pos.max (ram_addr ram)
                  (Pos.max (ram_addr ram)
                   (Pos.max (ram_wr_en ram)
                    (Pos.max (ram_d_in ram)
                     (Pos.max (ram_d_out ram) (ram_u_en ram)))))))
  end.

Definition max_reg_module m :=
  Pos.max (max_list (mod_params m))
   (Pos.max (max_stmnt_tree (mod_datapath m))
     (Pos.max (mod_st m)
      (Pos.max (mod_stk m)
       (Pos.max (mod_finish m)
        (Pos.max (mod_return m)
         (Pos.max (mod_start m)
          (Pos.max (mod_reset m)
           (Pos.max (mod_clk m) (Pos.max (mod_preg m) (max_reg_ram (mod_ram m))))))))))).

Lemma max_fold_lt :
  forall m l n, m <= n -> m <= (fold_left Pos.max l n).
Proof. induction l; crush; apply IHl; lia. Qed.

Lemma max_fold_lt2 :
  forall (l: list (positive * Verilog.stmnt)) v n,
    v <= n ->
    v <= fold_left (fun a p => Pos.max (Verilog.max_reg_stmnt (snd p)) a) l n.
Proof. induction l; crush; apply IHl; lia. Qed.

Lemma max_fold_lt3 :
  forall (l: list (positive * Verilog.stmnt)) v v',
    v <= v' ->
    fold_left (fun a0 p => Pos.max (Verilog.max_reg_stmnt (snd p)) a0) l v
    <= fold_left (fun a0 p => Pos.max (Verilog.max_reg_stmnt (snd p)) a0) l v'.
Proof. induction l; crush; apply IHl; lia. Qed.

Lemma max_fold_lt4 :
  forall (l: list (positive * Verilog.stmnt)) (a: positive * Verilog.stmnt),
    fold_left (fun a0 p => Pos.max (Verilog.max_reg_stmnt (snd p)) a0) l 1
    <= fold_left (fun a0 p => Pos.max (Verilog.max_reg_stmnt (snd p)) a0) l
                 (Pos.max (Verilog.max_reg_stmnt (snd a)) 1).
Proof. intros; apply max_fold_lt3; lia. Qed.

Lemma max_reg_stmnt_lt_stmnt_tree':
  forall l (i: positive) v,
    In (i, v) l ->
    list_norepet (map fst l) ->
    Verilog.max_reg_stmnt v <= fold_left (fun a p => Pos.max (Verilog.max_reg_stmnt (snd p)) a) l 1.
Proof.
  induction l; crush. inv H; inv H0; simplify. apply max_fold_lt2. lia.
  transitivity (fold_left (fun (a : positive) (p : positive * Verilog.stmnt) =>
                             Pos.max (Verilog.max_reg_stmnt (snd p)) a) l 1).
  eapply IHl; eauto. apply max_fold_lt4.
Qed.

Lemma max_reg_stmnt_le_stmnt_tree :
  forall d i v,
    d ! i = Some v ->
    Verilog.max_reg_stmnt v <= max_stmnt_tree d.
Proof.
  intros. unfold max_stmnt_tree. rewrite PTree.fold_spec.
  apply PTree.elements_correct in H.
  eapply max_reg_stmnt_lt_stmnt_tree'; eauto.
  apply PTree.elements_keys_norepet.
Qed.

Lemma max_reg_stmnt_lt_stmnt_tree :
  forall d i v,
    d ! i = Some v ->
    Verilog.max_reg_stmnt v < max_stmnt_tree d + 1.
Proof. intros. apply max_reg_stmnt_le_stmnt_tree in H; lia. Qed.

Lemma max_stmnt_lt_module :
  forall m d i,
    (mod_datapath m) ! i = Some d ->
    Verilog.max_reg_stmnt d < max_reg_module m + 1.
Proof.
  intros * Hv.
  unfold max_reg_module;
  apply max_reg_stmnt_le_stmnt_tree in Hv; lia.
Qed.

Lemma max_list_correct l st : st > max_list l -> Forall (Pos.gt st) l.
Proof. induction l; crush; constructor; [|apply IHl]; lia. Qed.

Definition max_list_dec (l: list reg) (st: reg) : {Forall (Pos.gt st) l} + {True}.
  refine (
      match bool_dec (max_list l <? st) true with
      | left _ => left _
      | _ => _
      end
    ); auto.
  apply max_list_correct. apply Pos.ltb_lt in e. lia.
Qed.